
IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 1

Abstract-- On-line testing increases system reliability,
which is essential in a number of applications. High-level
synthesis, on the other hand, offers fast time-to-market and
allows quick and painless design space exploration. In this
work, we investigate on-line testing in the high-level synthesis
context. Further, we propose a new technique (inversion
testing) and demonstrate its potential benefits.

Index terms−on-line testing, reliable systems, operational
redundancy, high-level synthesis

1 INTRODUCTION

n-line testing targets physical failures, that is failures
that occur while the system is operating, as opposed to
fabrication errors or defects [1]. A physical failure

may be due to environmental factors, like temperature,
radiation or pressure. On the other hand, on-line testing
resources can result in a significant hardware penalty or
performance degradation to the original design, thus
increasing cost. There are cases, however, where reliability
is more important than cost or speed, or the environment is
so hostile that we can expect relatively frequent physical
failures – and this is where on-line testing fits in. These
cases include (but are not restricted to) flight, space,
automotive, medical and industrial electronics [2,7].
Further, VLSI technology is moving towards deeper
submicron integration and reduced power supply voltages.
These make systems more susceptible to physical failures
and increase the need for on-line testing [6]. With the
addition of self-recovering or self-repair techniques,
extremely robust systems can be produced [8].

High-level (or behavioural) synthesis [9] provides a
designer with the capability to consider several realisations
of a conceptual design, in a fast and efficient manner. In
this way, the designer can estimate the characteristics (area,
performance, testability, power dissipation) of each
realisation and choose the one that better accommodates the
specification. Incorporating on-line testing in a high-level
synthesis environment would let the designer estimate the
cost and performance penalty associated with on-line

   Petros Oikonomakos and Mark Zwolinski are with the Electronic
Systems Design Group, Department of Electronics and Computer Science,
University of Southampton,  Highfield, Southampton SO17 1BJ, UK.
Email: { po00r, mz} @ecs.soton.ac.uk.

testability, and finally make the decision to keep or drop
that capability (at an early stage in the design process),
according to the reliability requirements and target
application.

2 FOUNDATION AND PREVIOUS WORK

Several on-line testing techniques have been proposed.
Roughly speaking, they can be grouped into three main
categories :

• self-checking design
• on-line built-in self-test (BIST)
• monitoring analogue characteristics.

We will not consider the last two categories further in this
paper.

In self-checking design [7], the circuit under test (CUT)
is augmented such that its output is encoded according to
some error-detecting code. Provided that it falls within the
detecting capabilities of the code, a failure results in the
output being a non-code word, which is detected by a
checker. Related to the self-checking design scheme are the
well-established [7] self-testing, fault-secure, totally self-
checking and code-disjoint properties that the CUT and
checker (respectively) must satisfy in order to avoid fault
escapes. Several error-detecting codes have been proposed
[1], each one with its unique characteristics regarding error-
detection capabilities, hardware overhead and checker

complexity. Of particular interest for our work are
duplication-related self-checking techniques. Figure 1
shows the duplication testing scheme. In this technique, the
“augmented” CUT consists of two copies of the original

Using high-level synthesis to implement on-line
testability

Petros Oikonomakos, Mark Zwolinski, Senior Member, IEEE 

O

 

CUT CUT’ 

Comparator 

Error 

Augmented CUT 

Figure 1. Duplication



IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 2

circuit. The second copy (CUT’) must be functionally
equivalent to CUT; if it is structurally equivalent as well,
then we talk about identical duplication. Otherwise, we
have the diverse duplication case. It has been demonstrated
[4,5] that diverse duplication is preferable, due to the
protection it offers against common mode failures. Note
that duplication testing is fault secure by its very nature [7].

Clearly, simple physical duplication results in a hardware
penalty of over 100%. When considering data paths (as
opposed to isolated CUTs), a very attractive alternative is
algorithmic duplication. Consider the example data flow

graph (DFG) of Figure 2. Four operations are performed
over three control steps. Operations (additions) +1 and +2
are bound to module (adder) A1; +3 is bound to A2 and
multiplication *1 is bound to multiplier M1. So the data
path consist of 2 adders and 1 multiplier. Physically
duplicating the data path obviously leads to 4 adders and 2
multipliers. However, note that adder A2 is idle during
control steps (cs) 1 and 3, while adder A1 is idle∗ during cs
3. So A2 can be used during cs 1 to duplicate operation +1
(at the cost of an introduced multiplexer). Similarly, we can
duplicate +2 and +3 during cs 3, binding the duplicate
operations to modules A2 and A1 respectively. This way,
we duplicate operations (as opposed to operators), saving
hardware. Two recent examples of algorithmic duplication
techniques are presented in [3,8]. In [8], algorithmic
duplication is combined with rollback to provide error
recovery, while in [3] module differentiation is exploited to
provide fault identification.

Having demonstrated the scope for hardware savings that
algorithmic duplication introduces, it is this particular form
of self-checking design that we favour for incorporation in
high-level synthesis. Furthermore, we supplement it with a
new, allied technique, which we present in the next section.

∗A functional module is considered to be idle during a control step, if it
is not processing any useful data and is not expected to produce any valid
result during that particular control step.

3 INVERSION TESTING

The proposed inversion testing scheme (Figure 3) is a
variation of duplication testing. INV(CUT) stands for a
circuit performing the inverse (arithmetic or logical)
operation of CUT. Pairs of CUT/ INV(CUT) can be simple,
for example adder/subtractor or left shifter/right shifter, or
complex such as chains of simple modules. As shown in
Figure 3, functional inputs are compared with the inverted
functional outputs. In the fault free case, they will be equal.
If either of the modules fails, the comparator detects and
signals the failure.

The inversion testing scheme is fault secure by its nature
(under the common single fault assumption), just like
duplication schemes. In general, there is no advantage in
physically inverting a module for testing purposes, as
opposed to physically duplicating it. However, if modules
of type INV(CUT) are idle during particular clock cycles in
a design, then algorithmic inversion can lead to more
hardware efficient implementations. A simple case to

illustrate this concept is shown in Figure 4. This DFG
consists of one addition, one subtraction and two
multiplications. The circuit is implemented by one adder
(A1), one sutractor (S1) and two multipliers (M1, M2).
Adder A1 is idle during cs 2 and 3, while subtractor S1 is

 
 
 
1 
 
 
2 
 
 
3 

+1 

+3 
 

*1 

+2 

A1 

M1 

A2 A1 

Figure 2. Example DFG

 

Comparator 

Error 

CUT 

INV(CUT) 

Functional 
Output 

Augmented CUT 

Figure 3. Inversion Testing

 
 
 
1 
 
 
2 
 
 
3 

+1 

*2 
 

-1 

*1 

A1 

S1 

M2 M1 

Figure 4. Motivating example



IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 3

idle during cs 1 and 2. Operation +1 can be inverted by
subtractor S1 at cs 2, while operation –1 can also be tested
during cs 2 by A1 (assuming that the operations are in a
control loop so that after cs 3 control returns to cs 1). So,
the result of each operation is verified without the need to
introduce any additional adders or subtractors. Applying
duplication to the same DFG would necessarily lead to
physically duplicating both modules. In that particular case,
applying inversion saves 50% of the functional modules
used if duplication is applied.

Comparing Figures 1 and 3, we note that the inverse
operation is performed after the original, while the duplicate
can be performed simultaneously. However, given relaxed
clock period requirements and a powerful synthesis tool, an
operation and its inverse can be chained in the same control
step. If an operation and its duplicate or inverse are
scheduled in the same control step, then a potential failure
is detected during that same control step. If the duplicate or
inverse is scheduled n control steps later, then any failure is
detected with an error latency of n clock cycles.
Experimental results presented in the following section
illustrate the effects of chaining and the effects of
preventing chaining in system speed and in error latency.

4 EXPERIMENTAL RESULTS

In this section we present our first experimental results.
We have been experimenting with three High-Level
Synthesis Workshop benchmarks, namely tseng (1991),
diffeq (1992) and qrs (1995). Tseng is an example design
with no physical significance, consisting of 8 arithmetic and
logical operations and used extensively for high-level
synthesis experimentation and evaluation. Diffeq is a
differential equation solver (also very popular for
experimental purposes), while qrs is a more complex design
representing a medical electronics application and
consisting of more than 70 operations. All three
benchmarks have been synthesized using the MOODS
Behavioural Synthesis Suite [9,10], developed at the
University of Southampton. Commercial tools have been
used for lower level synthesis and implementation.
Synplicity Synplify version 6.2 has been used for RT level
synthesis, while Xilinx Design Manager version 3.1i has
been used for implementation. For each benchmark, we
have changed the high-level VHDL descriptions to
synthesize and compare on-line testing methods. Tables 1
through 4 summarize our results. In all our examples,
hardware usage figures are the ones reported by the
implementer tool (Xilinx Design Manager). The
implementer tool timing analysis reports are also used to
determine the maximum achievable frequency. In all our
experiments, 16-bit arithmetic has been used.

Tables 1 and 2 show implementation results for the tseng
example. The original version has no testing strategy at all
(that is why the error latency is infinite). In the duplicated
version, we have applied the duplication testing strategy.
We supplemented the VHDL description by adding

duplicate and comparison operations to every operation of
the original version. For example, a simple addition
operation :

v8i := v3i + v5i;
is replaced by the series of operations :

v8i := v3i + v5i;
sc1 := v3i + v5i;
failed <= sc1 /= v8i;

and an additional port (failed) is added to the design. In the
inverted_1 version, we have applied the inversion testing
scheme for those operations that can be inverted within the
particular data path, ie whenever the “ inverse” module is
present in the design. Again, we achieved this by modifying
the VHDL description in a manner similar to the
duplication case shown above. Further, in the inverted_2
version, we force the high-level synthesis tool to schedule
inverse operations one clock cycle after valid operations,
thus preventing chaining.

Comparing the results in Table 1 for the duplicated and
the inverted_1 versions, we note that inverted_1 has a
smaller hardware overhead. This is made clearer in Table 2,
where functional module usage is shown. Further, Table 1
shows that errors are detected at the same control step as
they occur (so error latency is 0) in both duplicated and
inverted_1 cases and performance degradation (in terms of
clock cycles) is also the same; however, chaining of
operation/inverse pairs within the same control step results
in the maximum achievable clock frequency being 7 times
lower in the inverted_1 version. On the other hand, in the
inverted_2 version an additional 4 cycles are needed, but
the maximum achievable clock frequency is the same as in
the duplicated version. The hardware overhead is more than
for the inverted_1 version but is still less than the
duplicated version. Functional module usage is the same as
in inverted_1 (reported in Table 2); the extra hardware
overhead is due to registers introduced to store values
across clock cycle boundaries. Non-zero error latency is
introduced; indeed, out of 8 operations, 4 are inverted and
checked with an error latency of 1. Error latency is 0 for the
other 4 (duplicated) ones, giving an average of 0.5.

Similar to the tseng benchmark are the results obtained
with the diffeq example, summarised in Table 3. This
benchmark consists of 12 operations, 4 of which are
suitable for inversion. Version names have the same
meaning as in the previous example.

In Table 4, our results for the qrs benchmark are
presented. The qrs application is composed mainly of
additions, subtractions and right shift operations. For this
benchmark, we synthesized duplicated (dupl_1) and
inverted (inv_1) versions exactly as before. This time,
though, we tried two different target technologies. Further,
we also tried the dupl_2 and inv_2 versions, where we used
several sc and failed signals instead of one  (as in the above
code fragment) and ORed the failed ones to produce the
failed single-pin output port.

In contrast to what we have seen up to now, comparing
different implementations shows that there can be cases (ie



IEEE Real-Time Embedded System Workshop, Dec. 3, 2001 4

technologies) when duplication results in smaller
overhead than inversion. Further, comparing _1
and _2 versions shows how unacceptably high
performance degradation (133.3% in _1
versions) can be reduced considerably (about
30% in _2 versions), at the expense of some
more hardware overhead (due to introduced
registers for the additional signals). Thus, for a
design of some realistic complexity, the well-
known high-level synthesis concept of trading-
off area for speed or vice versa applies equally to
on-line test insertion.

5 CONCLUSION AND FUTURE WORK

In this work, we have presented a new self-
testing technique (inversion testing), and
justified it through examples as a competitive
alternative or supplement to algorithmic
duplication. Through our experiments, we have
been able to identify factors that can be used to
evaluate the quality of our testing scheme and
direct the synthesis process towards the most
beneficial one, according to the particular
designer’s needs and specifications. Namely,
introduced hardware overhead and performance
degradation, restrictions imposed to clock
frequency and average error latency are among
those factors. In addition, target technology has a
significant role in the whole process, while
traditional high-level synthesis dilemmas and
trade-offs are still valid.

Our future work regards implementation of
on-line testing within the MOODS synthesis
system, in a way that it will be transparent to the
user (no modification of VHDL code will be
required). To achieve this, we are already
working towards quantifying on-line testability
so that a traditional high-level synthesis cost
function can be enhanced to include the on-line
testability criterion, in addition to the traditional
ones (area, delay [9,10]). When these two tasks
are finished, we expect to have developed the first (to our
knowledge) high-level synthesis system to provide on-line
testing, in a totally automated manner, according to the
designer’s requirements.

6 REFERENCES

[1] M. Abramovici, M.A. Breuer, A.D. Friedman, “Digital Systems
Testing and Testable Design” , IEEE Press 1990.

[2] H. Al-Asaad, B.T. Murray, J.P. Hayes, “Online BIST for embedded
systems” , IEEE Design & Test of Computers, Vol. 15, No. 4,
October–December 1998, p. 17-24.

[3] S.N. Hamilton, A. Orailoglu, “On-line test for fault-secure fault
identification” , IEEE Transactions on VLSI, Vol. 8, No. 4, August
2000, p. 446-452.

[4] S. Mitra, E.J. McCluskey, “Which concurrent error detection scheme
to choose?” , IEEE International Test Conference, 2000, p. 985-994.

[5] S. Mitra, N.R. Saxena, E.J. McCluskey, “Fault Escapes in Duplex
Systems” , IEEE VLSI Test Symposium, 2000, p. 453-458.

[6] M. Nicolaidis, L. Anghel, “Concurrent Checking for VLSI” ,
Microelectronic Engineering, Vol. 49, No. 1-2, November 1999, p.
139-156.

[7] M. Nicolaidis, Y. Zorian, “On-line Testing for VLSI – A
compendium of approaches” , Journal of Electronic Testing – Theory
and Applications, Vol. 12, No. 1-2, February-April 1998, p. 7-20.

[8] A. Orailoglu, R. Karri, “ Automatic Synthesis of Self-Recovering
VLSI Systems” , IEEE Transactions on Computers, Vol. 45, No. 2,
February 1996, p. 131-142.

[9] A.C. Williams, “ A Behavioural VHDL synthesis system using data
path optimisation” , PhD Thesis, University of Southampton, 1997.

[10] A.C. Williams, A.D. Brown, M. Zwolinski, “Simultaneous
optimisation of dynamic power, area and delay in behavioural
synthesis” , IEE Proceedings – Computers and Digital Techniques,
Vol. 147, No. 6, November 2000, p. 383-390.

  
Resource Usage 

 
Speed Parameters 

 
Testing Penalty 

 
 

Version Slices Tristate 
Buffers 

Cycles Maximum 
Frequency 

Hardware 
Overhead 
(slices %) 

Performance 
Degradation 
(cycles %) 

Average 
Error 

Latency 
(cycles) 

Original 137 400 7 50 MHz - - ∞ 
Duplicated 166 706 9 35 MHz 21.2 28.6 0 
Inverted_1 158 754 9 5 MHz 15.3 28.6 0 
Inverted_2 161 770 13 35 MHz 17.5 85.7 0.5 

 
Table 1 : Tseng benchmark synthesis results (Target technology Xilinx Virtex XCV800 FPGA) 

 
Version adders subtractors OR 

gates 
AND 
gates 

left 
shifters 

right 
shifters 

comparators 

Original 1 1 1 1 1 1 - 
Duplicated 2 2 2 2 2 2 1 
Inverted_1 1 1 2 2 2 2 1 

 
Table 2 : Tseng benchmark functional module usage 

 
 

Resource Usage 
 

Speed Parameters 
 

Testing Penalty 
 
 

Version Slices Tristate 
Buffers 

Cycles Maximum 
Frequency 

Hardware 
Overhead 
(slices %) 

Performance 
Degradation 
(cycles %) 

Average 
Error 

Latency 
(cycles) 

Original 233 578 13 25 MHz - - ∞ 
Duplicated 322 964 15 25 MHz 38.2 15.4 0 
Inverted_1 306 948 15 4 MHz 31.3 15.4 0 
Inverted_2 316 996 18 25 MHz 35.6 38.5 0.33 

 
Table 3 : Diffeq benchmark synthesis results (Target technology Xilinx Virtex XCV800 FPGA) 

 
Resource Usage Testing Penalty  

Version 
 

Target Technology  
Slices 

 
Tristate 
Buffers 

 
Cycles Hardware 

Overhead 
(slices %) 

Performance 
Degradation 
(cycles %) 

Original Xilinx Virtex XCV800 465 2910 33 - - 
Original Xilinx XC95288XV 548 2910 33 - - 
Dupl_1 Xilinx Virtex XCV800 589 4874 77 26.7 133.3 
Inv_1 Xilinx Virtex XCV800 600 5000 77 29.0 133.3 

Dupl_1 Xilinx XC95288XV 702 4874 77 28.1 133.3 
Inv_1 Xilinx XC95288XV 671 5000 77 22.4 133.3 

Dupl_2 Xilinx Virtex XCV800 654 5208 42 40.6 27.3 
Inv_2 Xilinx Virtex XCV800 630 5441 43 35.5 30.3 

 
Table 4 : Qrs benchmark synthesis results 

 


