|EEE Real-Time Embedded System Workshop, Dec. 3, 2001

Using high-level synthesis to implement on-line
testability

Petros Oikonomakos, Mark Zwolinski, Senior Member, |EEE

Abstract-- On-line testing increases system reliability,
which is essential in a number of applications. High-level
synthesis, on the other hand, offers fast time-to-market and
allows quick and painless design space exploration. In this
work, we investigate on-line testing in the high-level synthesis
context. Further, we propose a new technique (inversion
testing) and demonstrateits potential benefits.

Index terms-on-line testing, reliable systems, operational
redundancy, high-level synthesis

1 INTRODUCTION

n-line testing targets physical failures, that is failures

that occur while the system is operating, as opposed to

fabrication errors or defects [1]. A physical failure
may be due to environmental factors, like temperature,
radiation or pressure. On the other hand, on-line testing
resources can result in a sgnificant hardware penalty or
performance degradation to the original design, thus
increasing cost. There are cases, however, where rdiability
is more important than cost or speed, or the environment is
so hostile that we can expect relatively frequent physical
failures — and this is where on-line testing fits in. These
cases include (but are not restricted to) flight, space,
automotive, medica and industriad eectronics [2,7].
Further, VLSl technology is moving towards deeper
submicron integration and reduced power supply voltages.
These make systems more susceptible to physical failures
and increase the need for on-line testing [6]. With the
addition of sef-recovering or sdf-repair techniques,
extremely robust systems can be produced [8].

High-level (or behavioural) synthesis [9] provides a
designer with the capability to consider several realisations
of a conceptual design, in a fast and efficient manner. In
this way, the designer can estimate the characteristics (area,
performance, testability, power dissipation) of each
realisation and choose the one that better accommodates the
specification. Incorporating on-line testing in a high-level
synthesis environment would let the designer estimate the
cost and performance penaty associated with on-line

Petros Oikonomakos and Mark Zwolinski are with the Electronic
Systems Design Group, Department of Electronics and Computer Science,
University of Southampton, Highfield, Southampton SO17 1BJ, UK.
Email: { po00r, mz} @ecs.soton.ac.uk.

testability, and finally make the decision to keep or drop
that capability (at an early stage in the design process),
according to the reliability requirements and target
application.

2 FOUNDATION AND PREVIOUS WORK

Severa on-line testing techniques have been proposed.
Roughly speaking, they can be grouped into three main
categories:

e sdf-checking design

e on-linebuilt-in salf-test (BIST)

e monitoring anal ogue characterigtics.
We will not consider the last two categories further in this
paper.

In self-checking design [7], the circuit under test (CUT)
is augmented such that its output is encoded according to
some error-detecting code. Provided that it falls within the
detecting capabilities of the code, a failure results in the
output being a non-code word, which is detected by a
checker. Related to the self-checking design scheme are the
well-established [7] self-testing, fault-secure, totally self-
checking and code-digoint properties that the CUT and
checker (respectively) must satisfy in order to avoid fault
escapes. Several error-detecting codes have been proposed
[1], each one with its unique characteristics regarding error-
detection capabilities, hardware overhead and checker

Augmented CUT
| |
' I
: A A |
| cuT cuT I

|
' I
|

& Comparator <

I—» Error

Figure 1. Duplication

complexity. Of particular interest for our work are
duplication-related self-checking techniques. Figure 1
shows the duplication testing scheme. In this technique, the
“augmented” CUT consists of two copies of the origina

|EEE Real-Time Embedded System Workshop, Dec. 3, 2001

circuit. The second copy (CUT') mugt be functionaly
equivalent to CUT; if it is gructurally equivalent as well,
then we talk about identical duplication. Otherwise, we
have the diverse duplication case. It has been demondtrated
[4,5] that diverse duplication is preferable, due to the
protection it offers againg common mode failures. Note
that duplication testing is fault secure by its very nature [7].

Clearly, smple physical duplication resultsin ahardware
penalty of over 100%. When consdering data paths (as
opposed to isolated CUTS), a very attractive alternative is
algorithmic duplication. Consider the example data flow

et

2

A2

A

Figure 2. Example DFG

graph (DFG) of Figure 2. Four operations are performed
over three control steps. Operations (additions) +1 and +2
are bound to module (adder) Al; +3 is bound to A2 and
multiplication *1 is bound to multiplier M1. So the data
path consist of 2 adders and 1 multiplier. Physically
duplicating the data path obvioudy leads to 4 adders and 2
multipliers. However, note that adder A2 is idle during
control steps (cs) 1 and 3, while adder Al isidle” during cs
3. S0 A2 can be used during c¢s 1 to duplicate operation +1
(at the cost of an introduced multiplexer). Similarly, we can
duplicate +2 and +3 during cs 3, binding the duplicate
operations to modules A2 and A1 respectively. This way,
we duplicate operations (as opposed to operators), saving
hardware. Two recent examples of algorithmic duplication
techniques are presented in [3,8]. In [8], agorithmic
duplication is combined with rollback to provide error
recovery, while in [3] module differentiation is exploited to
provide fault identification.

Having demonstrated the scope for hardware savings that
algorithmic duplication introduces, it is this particular form
of self-checking design that we favour for incorporation in
high-level synthesis. Furthermore, we supplement it with a
new, alied technique, which we present in the next section.

FA functional module is considered to beidle during a control step, if it
is not processing any useful data and is not expected to produce any valid
result during that particular control step.

3 INVERSION TESTING

The proposed inversion testing scheme (Figure 3) is a
variation of duplication testing. INV(CUT) stands for a
circuit performing the inverse (arithmetic or logica)
operation of CUT. Pairs of CUT/ INV(CUT) can be simple,
for example adder/subtractor or left shifter/right shifter, or
complex such as chains of simple modules. As shown in
Figure 3, functional inputs are compared with the inverted
functional outputs. In the fault free case, they will be equal.
If either of the modules fails, the comparator detects and
signalsthefailure.

Augmented CUT

CuT

i Functiona
t i~ Output

INV(CUT)

Figure 3. Inversion Testing

The inversion testing scheme is fault secure by its nature
(under the common single fault assumption), just like
duplication schemes. In general, there is no advantage in
physicaly inverting a module for testing purposes, as
opposed to physically duplicating it. However, if modules
of type INV(CUT) areidle during particular clock cyclesin
a design, then algorithmic inversion can lead to more
hardware efficient implementations. A smple case to

\

A
3 s1

Figure 4. Motivating example

illugrate this concept is shown in Figure 4. This DFG
consists of one addition, one subtraction and two
multiplications. The circuit is implemented by one adder
(A1), one sutractor (S1) and two multipliers (M1, M2).
Adder Al isidle during cs 2 and 3, while subtractor S1 is

|EEE Real-Time Embedded System Workshop, Dec. 3, 2001

idle during cs 1 and 2. Operation +1 can be inverted by
subtractor S1 at c¢s 2, while operation —1 can also be tested
during cs 2 by Al (assuming that the operations are in a
control loop so that after cs 3 control returns to cs 1). So,
the result of each operation is verified without the need to
introduce any additional adders or subtractors. Applying
duplication to the same DFG would necessarily lead to
physically duplicating both modules. In that particular case,
applying inversion saves 50% of the functiona modules
used if duplication is applied.

Comparing Figures 1 and 3, we note that the inverse
operation is performed after the origina, while the duplicate
can be performed simultaneously. However, given relaxed
clock period requirements and a powerful synthesistool, an
operation and its inverse can be chained in the same control
step. If an operation and its duplicate or inverse are
scheduled in the same control step, then a potential failure
is detected during that same control step. If the duplicate or
inverse is scheduled n control steps later, then any failure is
detected with an error latency of n clock cycles.
Experimental results presented in the following section
illugrate the effects of chaining and the effects of
preventing chaining in system speed and in error latency.

4 EXPERIMENTAL RESULTS

In this section we present our first experimental results.
We have been experimenting with three High-Leve
Synthesis Workshop benchmarks, namely tseng (1991),
diffeq (1992) and grs (1995). Tseng is an example design
with no physical significance, consisting of 8 arithmetic and
logical operations and used extensively for high-level
synthesis experimentation and evaluation. Diffeq is a
differential equation solver (adso very popular for
experimental purposes), whilegrsis amore complex design
representing a medica electronics application and
consisting of more than 70 operations. All three
benchmarks have been synthesized using the MOODS
Behavioural Synthesis Suite [9,10], developed at the
University of Southampton. Commercia tools have been
used for lower level synthesis and implementation.
Synplicity Synplify version 6.2 has been used for RT level
synthesis, while Xilinx Design Manager version 3.1i has
been used for implementation. For each benchmark, we
have changed the high-leve VHDL descriptions to
synthesize and compare on-line testing methods. Tables 1
through 4 summarize our results. In all our examples,
hardware usage figures are the ones reported by the
implementer tool (Xilinx Design Manager). The
implementer tool timing analysis reports are aso used to
determine the maximum achievable frequency. In all our
experiments, 16-bit arithmetic has been used.

Tables 1 and 2 show implementation results for the tseng
example. The original version has no testing strategy at dl
(that is why the error latency is infinite). In the duplicated
version, we have applied the duplication testing strategy.
We supplemented the VHDL description by adding

3

duplicate and comparison operations to every operation of
the original version. For example, a simple addition

operation :
v8i := v3i + vb5i;
isreplaced by the series of operations:
v8i := v3i + vb5i;
scl := v3i + vbi;

failed <= scl /= v8i;

and an additional port (failed) is added to the design. In the
inverted_1 version, we have applied the inversion testing
scheme for those operations that can be inverted within the
particular data path, ie whenever the “inverse’” module is
present in the design. Again, we achieved this by modifying
the VHDL description in a manner similar to the
duplication case shown above. Further, in the inverted 2
version, we force the high-level synthesis tool to schedule
inverse operations one clock cycle after valid operations,
thus preventing chaining.

Comparing the results in Table 1 for the duplicated and
the inverted 1 versions, we note that inverted 1 has a
smaller hardware overhead. Thisis made clearer in Table 2,
where functional module usage is shown. Further, Table 1
shows that errors are detected at the same control step as
they occur (so error latency is 0) in both duplicated and
inverted_1 cases and performance degradation (in terms of
clock cycles) is dso the same; however, chaining of
operation/inverse pairs within the same control step results
in the maximum achievable clock frequency being 7 times
lower in the inverted 1 version. On the other hand, in the
inverted 2 version an additional 4 cycles are needed, but
the maximum achievable clock frequency is the same asin
the duplicated version. The hardware overhead is more than
for the inverted_1 version but is dill less than the
duplicated version. Functional module usage is the same as
in inverted_1 (reported in Table 2); the extra hardware
overhead is due to registers introduced to store values
across clock cycle boundaries. Non-zero error latency is
introduced; indeed, out of 8 operations, 4 are inverted and
checked with an error latency of 1. Error latency is O for the
other 4 (duplicated) ones, giving an average of 0.5.

Similar to the tseng benchmark are the results obtained
with the diffeq example, summarised in Table 3. This
benchmark consists of 12 operations, 4 of which are
suitable for inverson. Verson names have the same
meaning as in the previous example.

In Table 4, our results for the grs benchmark are
presented. The qrs application is composed mainly of
additions, subtractions and right shift operations. For this
benchmark, we synthesized duplicated (dupl_1) and
inverted (inv_1) versions exactly as before. This time,
though, we tried two different target technologies. Further,
we also tried the dupl_2 and inv_2 versions, where we used
several sc and failed signalsingead of one (asin the above
code fragment) and ORed the failed ones to produce the
failed single-pin output port.

In contrast to what we have seen up to now, comparing
different implementations shows that there can be cases (ie

|EEE Real-Time Embedded System Workshop, Dec. 3, 2001 4
technologies) when duplication resultsin smaller Avrage
overhead than inversion. Further, comparing _1 ResourceUsage | Speed Paraeters Tegting Penalty Error
and _2 versions shows how unacceptably high Verson | Sices | Tristate | Oydes | Maimum | Hardwere | Performance | Latency
performance degradation (133.3% in _1 Buffers Frequency | Over heoad Degada(t)um (odey)
versions) can be reduced considerably (about _ (dices%) | (oydles
30% in _2 versions), at the expense of some Oigrd | 187 | 400 ! SO Mz . . »
- ' . Duplicated | 166 706 9 3B MHz 212 286 0
more hardware ove_rhead (_due to introduced || ated 1 | 158 754 9 5VHz 153 26 0
registers for the additiona signals). Thus, for a | |nated 2 | 161 | 770 13 35 MHz 175 &7 05

design of some realigic complexity, the well-
known high-level synthesis concept of trading-
off areafor speed or vice versa applies equally to

Table 1 : Tseng benchmerk synthesi sresuits (Target technology Xilinx Virtex XCv800 FPGA)

on-linetest insertion. Vason | addes | sudtradors | OR | AND |eft right | conperators
gates | gates | dhifters | dhifters
5 CONCLUSION AND FUTURE WORK D%?(;f o ; ; ; ; ; ; 1

In this work, we have presented a new saf- | Inverted 1 1 1 2 2 2 2 1
testing technique (inversion testing), and _
justified it through examples as a competitive Teble2: Tseng benchrmerk fundtiondl mocule usge
aternative or supplement to agorithmic Average
duplication. Through our experiments, we have ResourceUsage | Speed Parameters Testing Penalty Error
been able to identify factors that can be used to | V&son | Sices| Tristate | Qydes | Maximum | Hardwere | Performence | Latency
evaluate the quality of our testing scheme and Buffers Frequency 2““95" Degada})'/m (odes)
direct the synthesis process towards the_most Oigrd | 28 | 58 3 % Mz ('0?5 9 (Cyd_a 9 "
ben_eflual one, according _t_o _the particular Duplicated | 322 o 5 5 MHz 82 54 0
designer’s needs and specifications. Namely, | wvated 1| 206 | 948 15 4ANHz 313 154 0
introduced hardware overhead and performance | |nveted 2 | 316 9% 18 25 MHz 356 385 03

degradation, restrictions imposed to clock
frequency and average error latency are among
those factors. In addition, target technology has a

Teble 3 : Diffeq benchmerk synthes sresuits (Target technology Xilinx Virtex XCV800 FPGA)

significant role in the whole process, while , Resource Usage Testing Peralty
traditional high-level synthesis dilemmas and | YOS | TrodTedolony | | Odes | Hadare Egm
trade-offs are ill vaid. Buffers (dices%) (cdes%)
Our future work regards implementation of | Original | XilinxMirtexXCVB00 | 465 | 2910 3 B B
on-line testing within the MOODS synthesis | Orignal | XlinkXC95288XvV | 548 | 2910 3 - -
system, in away that it will be transparent tothe | Dupl 1 | XilicxMrtexXCv800 | 589 | 4874 7 2.7 1333
user (no modification of VHDL code will be | Inv.1 | XilinxVirtexXCv800| 600 | 5000 | 77 20 1333
required). To achieve this we are aready | Dl | XlinxXCO5288XV | 702 | 4874 | 77 8.1 1333
working towar(_j_s quanti_fyi ng on-line t&s_tability [I)%lz x)lqilrl&u\/i):m g;ll % Z 42(2)2 12373:?
so that a traditiona high-level synthesis cost Iv2 | XlincMrtexXOvB00 | 630 | 5841 3 *5 203

function can be enhanced to include the on-line
testability criterion, in addition to the traditional
ones (area, deday [9,10]). When these two tasks

Table4 : Qrsbenchmark synthesisresults

are finished, we expect to have developed the first (to our
knowledge) high-level synthesis system to provide on-line
testing, in a totally automated manner, according to the
designer’ srequirements.

(1]
(2]

(3]

(4]

6 REFERENCES

M. Abramovici, M.A. Breuer, A.D. Friedman, “Digital Sysems
Testing and Testable Design”, |EEE Press 1990.

H. Al-Asaad, B.T. Murray, J.P. Hayes, “Online BIST for embedded
sysems’, |IEEE Design & Test of Computers, Vol. 15, No. 4,
October—December 1998, p. 17-24.

SN. Hamilton, A. Orailoglu, “On-line test for fault-secure fault
identification”, |IEEE Transactions on VLS, Vol. 8, No. 4, August
2000, p. 446-452.

S. Mitra, E.J. McCluskey, “Which concurrent error detection scheme
to choose?’, | EEE International Test Conference, 2000, p. 985-994.

(5]
(6]

(7]

(8]

(9]
(10]

S. Mitra, N.R. Saxena, E.J. McCluskey, “Fault Escapes in Duplex
Systems’, IEEE VLS| Test Symposium, 2000, p. 453-458.

M. Nicolaidis, L. Anghel, “Concurrent Checking for VLSI",
Microelectronic Engineering, Vol. 49, No. 1-2, November 1999, p.
139-156.

M. Nicolaidis, Y. Zorian, “On-line Teging for VLS - A
compendium of approaches’, Journal of Electronic Testing — Theory
and Applications, Val. 12, No. 1-2, February-April 1998, p. 7-20.

A. Orailoglu, R. Karri, “Automatic Synthesis of Self-Recovering
VLSl Systems’, |EEE Transactions on Computers, Vol. 45, No. 2,
February 1996, p. 131-142.

A.C. Williams, “A Behavioural VHDL synthesis system using data
path optimisation”, PhD Thes's, University of Southampton, 1997.
A.C. Williams, A.D. Brown, M. Zwolinski, “Simultaneous
optimisation of dynamic power, area and delay in behavioura
synthesis’, |EE Proceedings — Computers and Digital Techniques,
Vol. 147, No. 6, November 2000, p. 383-390.

