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ABSTRACT

This paper proposes a new method te reduce the compu-
tationa! complexity of the frequency-domain GSC. In this
proposed GSC structure, the column vectors of the blocking
matrix constitute a series of bandpass filters, which decom-
pose the impinging signals into components of specific DOA
angles and. frequencies and lead to band-limited spectra of
blocking matrix outputs. When applying a DFT to each
of these outputs, some of the frequency bins of the DFT
are zero and can be omitted from the adaptive processing.
This, together with partial adaptivity of the beamformer,
results in a low computational complexity system.

1. INTRODUCTION

Adaptive beamforming has found many applications in
various areas ranging from sonar and radar to wireless com-
munications. It is based on a technigue where, by adjusting
the weights of a sensor array, a prescribed spatial and spec-
tral selectivity is achieved, A broadband beamformer with
M sensors receiving a signal of interest from the direction
of arrival (DOA) angle @ is shown in Fig. 1, where fn,
m = O(1)M —1, are the attached filters to each sensor. As
an alternative beamforming structure for the linearly con-
strained minimum variance (LCMV) beamformer [1], the
generalised sidelobe canceller (GSC) was proposed in 2],
which transforms the constrained optimisation problem into
an unconstrained one.

As the time-domain GSC using least mean square (LMS)
algorithms suffers from a low convergence rate when the
condition number of the input correlation matrix increases,
a frequency-domain GSC (FGSC) was proposed by Chen
and Fang [3]. In their work, a one-dimensional discrete
Fourier transform (DFT) is used on each of the tap-delay
lines at the output of the blocking matrix. Therefore, an
LMS algorithm with self-orthogonalising property is ap-
plied. With two-dimensional transform-domain GSC intro-

-duced in the reference [4], the convergence rate is improved
further due to the removal of both the spatial and tempo-
ral correlation. With the advantage of higher convergence
speed, the transform-domain GSC however poses the prob-
lem of large computational complexity.

In this paper, a new realisation of the FGSC called
subband-selective FGSC (SSFGSC) will be proposed to re-
duce its computational complexity. In our SSFGSC, the
blocking matrix of the GSC is comstructed such that its
columns constitute a series of bandpass filters, which se-
lect signals with specific direction of arrival angles and fre-

0-7803-7488-6/02/$17.00 © 2002 IEEE.

386

B xoln]

£ }—‘ eln]

(Hy—rnz

mlle

Fig. 1: A broadband beamformer with linear array.

quencies. This results in bandlimited spectra of the block-
ing matrix outputs. When applying the DFT to each of
these tap-delay lines, the frequency-bins of the DFT out-
puts corresponding to the stopbands of these spectra will
be approximately zero and can be omitted from the follow-
ing adaptive processing, which reduces the computational
complexity greatly. Because of the finite-duration effect of
this DF'T, we need to apply a window function with narrow
bandwidth to the tap-delay line signals before performing
the DFT, which is not necessary in the original FGSC.

The paper is organised as follows. Sec. 2 briefly reviews
the frequency-domain realisation of the GSC structure. The
structure and design of our novel subband-selective FGSC
is introduced in Sec. 3 and 4, respectively. Simulations un-
derlining the benefit of our proposed method are discussed
in Sec. 5 and conclusions drawn in Sec. 6.

2. FREQUENCY-DOMAIN GENERALISED
SIDELOBE CANCELLER

A linearly constrained minimum variance (LCMV) beam-
former {1} performs the minimization of the variance or
power of the beamformer output with respect 1o some given
spatial and spectral constraints. For a broadband beam-
former with M sensors and J filter taps following each sen-
sor, the output e[n] can be expressed as

e[n] = wx,

&)

where coefficients and input sample values are defined as

wo= [wf Wl W] )
wi = [woy wiy .. wa-s]" (3)
x = [l -] o kT d]]) @)
xfn—j] = [woln—j] mln-jl ... zaaln—gl" . (5)



Each vector wj, j = 0(1)J —1, contains the M compler
conjugate coefficients sitting at the jth tap position of the
M attached filters in Fig. 1 and x[n - 7}, § = 0(1)J -1,
holds the jth data slice corresponding to the jth coefficient
vector w.
The LCMV problem can be formulated as

mvl;anRuw Clfw=r¢, {6)
where R, is the covariance matrix of observed array data
in x, f is the J x 1 response vector and C is an MJ x J
constraint matrix.

subject to

c 0

C= with ¢ € CM*!, (7)

0

[+

The constraint optimisation in (6) can be conveniently
solved using a GSC [2], which performs a projection of
the data onto an unconstrained subspace by means of a
blocking matrix B and a quiescent vector w, shown in the
frequency-domain GSC of Fig. 2, where

dnl=wy xn with w,=C(C"C)'t , (8
and B € C¥**

B = [bo b . bL—l]; (9)

b = [al0] Bif1] ... baM 137 (10)

To receive the desired signal from broadside,the block-
ing matrix B must satisfy

"B =0. (11

The blocking matrix output ufn] = [uefr} wafn}. ..
is obtained by u[r] = B¥x[n], then a J-point DFT is ap-
plied to each of the tap-delay vectors wn}, I = 0(1)L—1,
where

wln] = [wln] win —1] ... wn—J+ 17 (12)

The cutput of the ith DFT is
vi[n] = DFT{u[n]}, (13)
where vi[r] = [o,0[r] via[n] ... via_1[n]]". Now we write

all the DFT outputs into a single vector:

. vf_l] (14)

vin] = [vg vi

l

Fig. 2; A general frequency-domam (GSC structure.
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Therefore y[n] = Wv[n], where W is the weight vector
including all the corresponding weights in the frequency-
domain LMS algorithm and updated continually to min-

imise the power of the error signal e[n] = d[n] — y[n} by a
self-orthogonalising LMS algorithm 5] :
Wln + 1] = Win] + 2ve’ MRy, vin], (15)

where Ry, = = e{v[n]v¥[n]} and 0 < v < 5. Note
that R,y is unknown and must be estimated.

Although the FGSC accellerates the convergence speed,
it also increases the computational complexity of the sys-
tem. In the next section, instead of using the traditional
subtractor structure for the blocking matrix, we sacrifice
somne degrees of freedom (DOFs) of the system to make a
special arrangement for the blocking matrix to reduce the
computational complexity of the FGSC.

3. SPATIALLY/SPECTRALLY
SUBBAND-SELECTIVE FGSC

Consider a unity amplitude complex input wave with an-
gular frequency w and DOA angle 8. Referring to Fig. 1,
the waveform impinges with a time delay At on adjacent
sensors separated by d in a medium with propagation speed
¢. The received phase vector at the sensor array, X, is

. . T
X= [1 g TIWAT, | gmiuwiM —mf] with Ar = gsin 8. (16)

Agsume that the array sensors are spaced by half the wave-
length of the maximum signal frequency and the temporal
sampling frequency ws is twice the maximum signal fre-
quency, i.e. d = Ay = T, where T, is the temporal sam-
pling period. Then, we get Ar = T, sin 8. Noting wT; = Q,
where Q is the normalised angular frequency of the signal,
the phase vector changes to

X = [1 e—jﬂsina e—J(M—l)QsinBEIT

(17)

Using the substitution ¥ = 2sind, the lth output of
the blocking matrix can be denoted as

M-1

b X =3 bpml-e?Y =B(¥),  (18)
m=0

with Bj(e’¥) e—o b[m] being a Fourier transform pair.

When the bearnformer is constrained to receive the sig-
nal of interest from broadside, the blocking matrix has to
suppress any component impinging from 8 = 0. Therefore,
at ¥ = 0 the response of the b; has to be zero. Now we
arrange these column vectors on the interval ¥ € [0; 7] as
shown in Fig. 3 [6),

1
0

fﬂr T [‘I‘rl lower; Wi upper}

otherwise (19)

Bi(e’¥) = {

In reality, the bandpass filters Bi(e’¥) will not be ideal and
hence an overlap and finite transition bands have to be per-
mitted. However, a better design quality can be attained by
reducing the number of columns, L, below the limit M —1,
thus yielding a partially adaptive beamformer by sacriﬁcing
some DOFs.



B (el

0 ' \PI, lawer \I"l. upper r

Fig. 3: Arrangement of the I, column vectors in B.

From (19), we can get

i si 1 L' ry
B = { § o oo

By this arrangement, the blocking matrix cannot only
decompose the received signals in the spatial, but also in the
temporal domain because its column vectors perform a tem-
poral high-pass filtering operation. With increasing I, these
filters are associated with a tighter and tighter highpass
spectrum and the last output {L —1) only contains the ulti-
mate highpass'component. When we apply the frequency-
domain LMS algorithm to the output signal w[n], some of
the frequency bins will be zero and can be omitted from
the following adaptive process. In order to make good use
of this property, we need select a good window functicn to
multiply with the time-domain signals prior to applying the
DFT.

Now we analysis the computational complexity of this
system. For the fully adaptive GSC, L = M — 1, so by
partial adaptivity, the total weight number is first reduced
by L/(M —1). For the FLMS part, if sufficiently selective
column vectors by and window function can be designed,
under ideal condition, the last DFT output vi_1 will have
only two non-zero frequency bins, and v —» has four, and so
on, while finally only vg has no zero frequency bins. Thus,
under ideal conditions, the total number of weights to be
updated will bé reduced further by half. Considering the
whole SSFGSC, its computational complexity is listed in
Table 1 comparing with the Chen-Fan FGSC (CFGSC).

4. COSINE-MODULATED BLOCKING
MATRIX

In our subband-selective FGSC, the blocking matrix
plays a central role and the column vector design with a
good band-selective property is of great importance.

We may design each of the columm vectors indepen-
dently subject to the constraint (11) [6]. In order to reduce
the design and implementation complexity of the block-
ing matrix, we here use a cosine-modulated version, where
all column vectors are derived from a prototype vector by
cosine-modulation and the broadside constraint is guaran-
teed by imposing zeros appropriately on the prototype vec-
tor.

Tab. 1: Comparison of computational complexities for SS-
FGSC and CFGSC:
GSC realisations
CFGSC
SSFGSC

complex multiplications per cycle
(M —1}Jog, J+3.6(M —1)J
LJlog,J 1 1.75LJ
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Fig. 4: A design example for a 28 x 11 blocking matrix.

Agsume the prototype vector is Afm)], m = 0{1)M 1. It
is shifted along the frequency axis by (22!2—32; d— F‘;’;’f%’*,
respectively and properly added to obtain the Ith column

vector b{m], 1 = 0(1)L—1

M—1 Ll
~h-0g].

(21)
To comply with the broadside constraint B;(e/Y)|g=0 = 0,
the frequency response H{z) of h[m] should have one zero

at each point of w; = i%, { = 0(1)L—1. If we factorize
H(z) into two parts

bi[m] = hfm]cos ﬁfﬁ(zz +3)(m —

H(z) = P(x)Qz),  with
L—-1

Q) = J[Q -1 - et i) (2)
=0

then the broadside constraint will be automatically satis-
fied for all the column vectors. Now the free parameters
contained in P(z) can be used to optimize its frequency re-
sponse. By this factorization, the design of the blocking
matrix becomes an unconstrained optimization problem of
the prototype vector. The objective function we minimize
is

& = [w ’:uH(eﬂ’)nzdw, (23)

where U, is the stopband cutoff frequency. The optimiza-
tion problem can be solved conveniently by invoking a non-
linear optimisation software package, such as’ the subrou-
tines BCONF/DBCONTF in the IMSL library [7]. A design
example for the blocking matrix with M = 28 sensors, and
L = 11 column vectors is given in Fig. 4.

Note that for § — 1 order derivative constraints in the
blocking matrix [8], we can replace Q(z) by Q(=)7 in (22),
but too many DOFs will be sacrificed and a satisfying per-
formance may not be achieved for small-scale arrays.

5. SIMULATIONS AND RESULTS

In our simulation, we use a scenario similar to [3]. A
beamformer with M = 17 sensors receives the desired signal
from broadside with normalised frequency f = 0.1 in ad-
ditive uncorrelated background noise of 20 dB SNR. Three
jammers with normalised frequency 0.3,0.4, 0.25 come from
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Fig. 6: Frequency responses of 17 x 8 blocking matrix.

DOA of & = 34°, ~49° and —24°, with jammer-to-signal
ratios (JSR) of 20 dB, 40 dB and 30 dB, respectively. A
16-point DFT (J = 16) with a window function shown in
Fig. 5 is applied in the FLMS algorithm. In our SSFGSC,
the dimension of the blocking matrix is 17 x 8 (L = 8) and
its frequency responses are shown in Fig. 6. We compare the
performance of the SSFGSC with the original time-domain
GSC (TDGSC) and the CFGSC. The corresponding step-
size parameters v for the SSFGSC, TDGSC, CFGSC are
respectively 1.054 x 1072, 1.289 x 1072 and 1.172 x 1073
which have been chosen empirically to achieve the same
steady-state value of the mean square residual error (MSE).

From the simulation result shown in Fig. 6, we can see
that the CFGSC converges much faster than the TDGSC
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Fig. 7: Learning curves for simulation.
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because of the temporal decorrelation effect of the DFT,
whereas our new method is faster than the CFGSC due to
its combined spatial/temporal decorrelation effect. At last,
we need to point out that because of the selected size of
the beamformer and the use of narrowband signal and jam-
mers in our simulation, the sacrifice of some DOFs due to
its partial adaptivity did not affect the performance of our
SSFGSC. In addition, the proposed SSFGSC only requires
about 40% of the complexity needed for the CFGSC.

6. CONCLUSIONS

In this paper, a new realisation of the frequency-domain
GSC called subband-selective FGSC has been proposed,
where the blocking matrix is constructed such that it de-
composes the impinging signals into components of specific
DOA angles and frequencies and leads to band-limited spec-
tra of its outputs. When applying a DFT to each of these
tap-delay line outputs, some of the frequency bins of the
DF'T output are zero and can be omitted from the adaptive
processing. Together with its parcial adaptivity property,
this results in a low computational complexity system. Be-
cause of its combined spatial/temporal decorrelation effect,
it can achieve a faster convergence speed at lower complex-
ity, as shown in our simulation.
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