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Abstract

In this paper, we develop a new formulation and methodology for including invariance in a general form of the Hough
transform. Essentially, the transformations that control a shape’s appearance are extracted using invariance, for arbitrary
shapes with a continuous description. We first develop a formal definition of the Hough transform mapping for arbitrary
shapes and general transformations. We then include an invariant characterisation of shapes and develop and apply
our new technique to extract shapes under similarity and affine transformations. Our formulation and implementation
is based directly on parametric curves and so avoids the use of indexed look-up tables. This confers the attributes of a
continuous shape description avoiding discretisation problems inherent in earlier formulations. To obtain an invariant
characterisation, each point in the model is related to a collection of other points defining a geometric arrangement. This
characterisation does not require the computation of properties for lines or other primitives that compose the model,
but is based solely on the local geometry of the points on shapes. The transformation is obtained by solving for the
parameters of the curve according to an arrangement of points defined for a point in the image and a corresponding
arrangement of points for a point in the model with the same invariant properties. The location parameters can be
gathered in a 2D accumulator space independent of the transformation and of a shape’s complexity. Experimental results
show that the new technique is capable of extracting arbitrary shapes under occlusion and when the image contains
significant noise. © 2002 Pattern Recognition Society. Published by Elsevier Science Ltd. All rights reserved.
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1. Introduction

The characterisation and extraction of objects based on
shape information has been an extensive field of research
in image analysis. Shapes offer an important feature for
object characterisation since they contain valuable infor-
mation independent of photometric phenomena such as
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changes in illumination, contrast and colour. How-
ever, the appearance of shapes changes with viewpoint.
Accordingly, an important topic of research in object
extraction has focused on characterising and extracting
shapes under different image transformations. These
techniques generally use a model shape obtained from
a reference image. Thus, shape extraction is achieved
by determining the transformation which maps the
model into the primitive in the image. This paradigm is
commonly referred to as model-based shape extraction
[1-3].
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Many methods of shape extraction have used the con-
cept of invariance to overcome the problem of character-
ising shapes under different transformations. Invariance
is a fundamental concept in geometry [4,5]. Currently,
the study of invariance is an active field of research in
computer vision. The general approach to shape extrac-
tion via invariance features has been based on three main
steps [6,7]. Firstly, some significant matching structures
of the image and the model are identified. Secondly, the
image transformation which maps the model structures
into the image is computed. Finally, the consistency of the
transformation is evaluated to determine if the structure
in the image corresponds to the structures in the model.
In the earliest methods, these steps were based on a
verification mechanism [8] wherein new transformations
were obtained by trying different structures in the im-
age. Transformations were evaluated until a strong con-
sistency between the image and model features was de-
termined. These original ideas have motivated the devel-
opment of other techniques cited under different names
such as cluster methods, pose clustering, evidence gath-
ering, geometric hashing and hypothesis accumulation
[6,7,9—-12]. These techniques develop a different way of
evaluating the consistency of the transformation. Instead
of performing a verification process for each transforma-
tion of a template, the set of possible transformations is
considered as a “cluster space” according to a suitable
parameterisation. Each point in the image space then pro-
vides evidence that can be gathered in the cluster space.
When all image points have been considered, each el-
ement in the cluster space contains a measure of the
consistency of the transformation. In this way the local
search given by the verification procedure is replaced by
a global clustering approach. Although some techniques
have considered efficient search techniques to perform
the verification process [11,13], it is generally recognised
that evidence gathering is computationally more attrac-
tive, in spite of requiring significantly more memory for
implementation.

By definition, cluster methods and verification meth-
ods of matching are robust. In these methods, we can
consider that all the values of potential transformations
between a model and data in an image define a prob-
ability distribution, thus the best transformation is esti-
mated by the mode, that is, by the maximum value. It
is well known that the mode is a robust estimator [14]
since it is not biased due to outliers. In shape extraction,
outliers correspond to transformations obtained by map-
ping model structures to noise or to other data that do
not define the primitive in the image. In consequence,
clustering techniques should be able to handle incorrect
evidence. However, an error analysis of clustering meth-
ods concludes that they can fail to provide the correct
solution [15]. According to error analysis, the problem
of clustering approaches is that they are based on primi-
tives that are generally unreliable. For example, if we use

lines to estimate the scale of a shape, then the length of
the lines must be precisely known. Errors provide a fac-
tor of uncertainty which generates considerable incorrect
evidence [15]. Thus, the computation of properties useful
for matching requires efficient and accurate methods for
detecting primitive structures. Unfortunately, noise, oc-
clusion, and changes in position and illumination make
it difficult to obtain an accurate estimate of measured
properties. Additionally, some primitives are adequate
for characterising only one type of object such as poly-
hedra and might fail in a general context. In general, the
inclusion of non-geometric parameters in the characteri-
sation of a shape can reduce excessive accumulation of
votes [12]. However, properties such as colour or bright-
ness can change due to illumination conditions and pro-
vide a less generic characterisation of an object than the
exclusive use of the borders of a shape. Here, we are
particularly interested in the geometric invariance char-
acterisation of shapes.

In this paper, we consider the problem of shape ex-
traction by matching only points in a shape. That is, in-
stead of searching for lines or other image primitives,
we study how invariant evidence can be gathered when
points in a shape are matched to points in the model. The
advantage is that uncertainty (by occlusion or imperfect
detection) is lower for points than for higher level prim-
itives. We use a gathering evidence mechanism defined
by the Hough Transform (HT) [16]. In the HT, a straight
line in an image has a dual representation as a point in
the parameter space. A discrete version of this space is
commonly referred to as the Hough space or accumula-
tor space and it is used to gather evidence by exploiting
the dual representation of a point in the image. In the
HT, this point is obtained by incrementing the elements
of the accumulator space that define the trace of the dual
line of each edge point in the image. A concurrent point
in the parameter space, defined by collinear points in the
image, is incremented several times forming a local max-
imum in the accumulator space. These ideas have been
extended to extract quadratic forms and arbitrary shapes
[17-19].

In this paper, we avoid the representation of models
by indexed look-up tables and we directly use paramet-
ric curves to represent shapes under a transformation. In
our approach, the problem of shape extraction is charac-
terised, not by the properties of curves, but by the trans-
formation. For example, the problem of shape extraction
of an ellipse is studied as the problem of extracting a cir-
cular shape under an affine transformation. Thus, instead
of performing shape extraction by considering particular
geometric properties of the ellipse, we use a more general
approach based on invariant properties that are generic
for any shape under an affine mapping. By considering
arbitrary shapes and arbitrary transformations, it is pos-
sible to develop a general formulation and methodology
for including invariance in a general form of the HT. In
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this way, we formulate a formal definition of invariant
characterisation within the HT, and we then develop and
implement particular techniques for similarity and affine
transformations.

In the HT, a point in an image and a point in a
curve define a point spread function (psf) that represents
the trace of a curve in an accumulation space whose
size is exponentially proportional to the number of free
parameters of the shape. By using an invariant char-
acterisation, a psf can be reduced to a collection of
points in a 2D space whose arguments represent shape’s
location. The size of this space is independent of the
transformation or complexity of the shape, thus, in-
variance provides a general approach for reducing the
computational requirements of the gathering process in
the HT. In order to characterise invariance, each point
in a model is related to a collection of other points
defining a geometric arrangement whose properties re-
main invariant under a particular transformation. Thus,
each point in the model has an invariant characterisation
which does not depend on the location of primitives
but on the local geometry. The transformation is ob-
tained by solving for the parameters according to the
arrangement of points defined for a point in the im-
age and a corresponding arrangement of points for the
model with the same invariant properties. Since for a
given point a great number of potential arrangements
can be defined, then to avoid combinatorial complexity
only selected points in the curve are considered as can-
didates of the arrangement. In this approach occlusion
and points that do not belong to the primitive gener-
ate wrong evidence, however, there is no uncertainty
associated with the data. Experimental results show
that the techniques are capable of extracting arbitrary
shapes under occlusion and when the image contains
noise.

2. Definitions and notation

In this paper, we consider that a curve is composed
of a collection of points in 932. The domain of the curve
is given by a closed interval in R'. A point in the do-
main is mapped into a point in the curve, thus a model
shape can be defined as a parametric curve v(s). A curve
is the trace of a continuous function which defines a rule
of correspondence between the parameter s and a set of
points in the Euclidean plane. Here, a curve is represented
in the orthogonal form v(s) = v:(s)U, + v,(s)U, where
Ur=[1,0] and U, =0, 1] are the two orthonormal vec-
tors that span 2%, The functions v,(s) and v,(s) define a
correspondence between the parameters s and 9_!. Here,
the notation v(s) can be ambiguous since it can represent
either the rule of correspondence or a particular point.
To distinguish between these two interpretations, we use
a sub-index in the parameter s to indicate a point. That

is, v(so) is a point in v(s) for so € D and D represents the
domain of the curve. Thus, v(s;) and v(s;) denote two
different points in a curve. The slope of the tangent to a
point is denoted as G(v(so)).

A transformation f is a function that maps each point
v(s) into a new curve f(v(s)). A parametric transforma-
tion f; defines a family of transformations. The transfor-
mation of a curve by a parametric transformation is de-
noted as f'(a,v(s)) where a is a vector of parameters of
the transformation. We name the curve obtained by ap-
plying a parametric transformation a parametric model,
and it is denoted as w(s, @). The function z(s, @) denotes
a parametric model with translation. In accordance with
the notation of v(s), z(so,a) denotes a point in z(s,a),
and w(sg,a) denotes a point in w(s,a) for a particular
value of the parameters.

In this paper, an image is a collection of points in 92,
where a point is denoted as 4;. Thus, 4y and 4; denote two
different points in an image. The coordinates of a point
are denoted as (A, 4,,). The relationship 49 = z(so,a)
means that the coordinates of the point 4y and the coordi-
nates of the point z(sg, @) are the same. In such case, we
say that 4 and z(so, @) are corresponding points. Collec-
tions of points in an image in a parametric curve and in a
parametric model are denoted by upper case letters. If a
collection of points is defined based on the value of some
point or points, then the dependent points are indicated
in parentheses. Thus, W(4) defines a collection of
points which satisfy a given condition with respect to the
point 4.

3. Robust estimation and evidence gathering of
arbitrary shapes

Model shape extraction is fundamentally a problem of
analysis of regression where parametric models are fitted
to observable data [20]. A shape is extracted when un-
known location parameters of the parametric model are
estimated. In order to formalise this aspect, we consider
a parametric model defined by a shape model v(s) and a
parametric transformation f;. The shape model represents
the border of an object and the transformation defines a
family of shapes which characterises the potential manner
in which a shape can appear in an image. Thus, a para-
metric model is defined as w(s,a) = f(a,v(s)), where a
is a vector that contains the transformation parameters.
We consider that f; does not contain any translation term,
thus the model shape w(s, a) is relative to the origin. In
this way a primitive in an image is represented by a trans-
lation of the parametric model. That is,

z2(s,a)=w(s,a) + b, (1)

where the point b= (ao,by) defines the position of the
primitive in an image. Thus, shape extraction is solved by
determining the parameters in @ and the position b such
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that they define a curve z(s, a) that best fits image data.
The estimation of the parameters is affected by missing
data due to occlusion or noise due to background objects
in the scene. Points that do not form part of the fitting
curve z(s,a) are called outliers. Since, in general, these
points are not characterised by a Gaussian distribution,
then techniques based on the minimisation of quadratic
or absolute errors are biased. Additional problems due to
change in the position of the objects have been discussed
in Refs. [21,22].

The basic principle of robust methods is to perform
a fitting without outliers. For images, the best fit is the
curve that passes through a maximum number of points,
thus any point that does not lie on the curve is consid-
ered as an outlier. In this case, we can observe that the
parameters form a distribution, wherein the probability
that a set of parameters provides the best fit is directly
proportional to the number of points that fit the paramet-
ric model. Then the best fit is given by the mode of the
distribution. The nature of outliers in images means that
robust methods of shape extraction can deal with more
outliers than methods of general robust regression. For
example, in some cases curve fitting based on the HT can
handle data comprising of 90% outliers whilst for meth-
ods of robust statistics the best that can be expected is
50% [23].

To determine the best model we can perform a verifi-
cation process of all the potential parameterised models
in the image or alternatively, in a more computationally
efficient approach, it is possible to gather evidence of the
parameters by the HT [24,25]. Evidence can be gathered
by considering all the values of the parameters defined
when a point in an image is matched to a point in the
model. For Eq. (1), if a point in an image Ay is matched
to a point in the model z(sp,a), then we can solve for
the location parameter as a function of 4y and a. That is,

b(lo, a) = b(ao,b()) for
b( Ao, @) = 79 — w(s0,a). (2)

This relationship establishes that the location can be
determined given a point in the image (i.e., 49), and
the parameters of the transformation (i.e., @). Since
the parameters of the transformation are unknown,
then each combination of the values in a defines a
potential value of b. That is, the local matching of a
point in the model and a point in the image define
a hyper-surface of potential location and parameters
of the transformation. This hyper-surface defines the
psf of the point Zy. Only one point in the psf defines
the values of a and b which define the primitive in
the image. These values are given by the intersec-
tion of all psfs formed by considering all the points
in the image and their corresponding points in the
model. In the HT, the intersection is computed by
increasing the element of an accumulator space that

forms the trace of each psf and then searching for a max-
imum. Thus, the elements that are incremented in the
accumulator space are given by

{(b,a)|b =79 — w(so,a), w(so,a) =f(a,v(s0))} VAo €1,
Yv(so)- (3)

This equation defines a general HT mapping for ar-
bitrary shapes and transformations: a set of parameters
in the accumulator space is determined for each point in
the image and each point in the model. However, this
equation is not suited to direct implementation due to the
computational complexity required to store and process
the accumulator space defined by the location parame-
ters b and the transformation parameters a. Additionally,
Eq. (3) presupposes that we have a finite number of points
in the model (i.e., discrete set). The rest of this paper
will focus on reducing the computational requirements in
Eq. (3) and on providing an analytic way of computing
Eq. (3) for models represented by curves under similar-
ity and affine transformations.

4. Generalised invariant HT

Although the HT can be formulated for gathering ev-
idence of arbitrary shapes and general transformations,
the computation requires excessive resources. This prob-
lem is inherent in the HT’s definition and its solution
has been studied by several authors [18,19]. Techniques
of parameter space reduction exploit selected geometri-
cal properties of shapes such as straight lines, circles or
ellipses, to reduce the dimensionality of the accumula-
tor space. In our case this approach cannot be followed
since we cannot presuppose any geometric constraint in a
general shape model. However, we can consider geomet-
ric properties of the transformation. These properties can
be characterised by invariant features. Thus, the HT can
be developed as a pose estimation mechanism that gath-
ers shape evidence according to the geometric invariant
properties of the points in an image.

We define a function Q (where Q: 9> — R) which
computes a feature on a single point in a curve. The func-
tion Q is invariant with respect to f; if the same feature
is obtained from a point in the curve v(s), and from the
corresponding point in a curve obtained by applying the
transformation f;. That is, if Q(f(a,v(s0)))=Q(v(s0)).
If Q is invariant under translation, then according to the
definitions in the previous section, it is possible to estab-
lish the relationship,

O(z(s0,@)) = O(f (a,(s0))) = O(V(50))- 4)

Thereby, for a point 4y there exists a model point v(so)
such that,

O(40) = O(¥(s0))- (%)
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To gather evidence, we can constrain the elements of
the accumulator space in Eq. (3) by considering only
the elements for which Eq. (5) holds. It is important to
notice that generally several points in a shape can be
characterised by the same invariant value. That is, if we
compute the value of an invariant feature at an image
point and we determine all the points in the model which
have that value, then we obtain a collection of points.
The uniqueness or variety of values for the points in a
shape, as well as the complexity in the computation and
accuracy, are important considerations in the definition
and evaluation of an invariant function.

To constrain Eq. (3) we determine, by Eq. (5), the
potential points in the curve for a given image point.
These points can be represented as

W (o) = {v(5))1Q(40) — Q(v(s;)) = 0}. (6)

Thus, instead of gathering evidence by considering
all the points of v(s) for each point 4¢ in I (i.e., Vig €1,
Vv(so)), evidence can be gathered by considering
only the points in W (4y) for each point 4y in / (i.e.,
Yo € LVYv(so) € W(4y)). A further and more signif-
icant simplification can be achieved if we consider
that the matching process in Eq. (6) is an invariant
mapping, so we can find the transformation by solv-
ing for @ in O(49)=0(f(a,v(s9))). The solution is
multi-valued. That is, for each point 4g €/, and each
point v(so) € W(4y) we can determine a different trans-
formation that maps the model point into the image point.
The set of solutions is denoted as (4o, v(so)). That is,

[ (o, v(50)) = {a|Q(4o) = O(f (a,(50)))}- (7

Thus, the position of the image point 4y and the trans-
formation parameters can be gathered independently. Ac-
cordingly the HT mapping in Eq. (3) can be redefined as

{blb= 4o — f(a,v(50)), a€ [*(4o,v(50))} VAo €1,
WY(so) € w(ho). (8)

Consequently, if we establish an invariant function Q
for a family of transformations f;, we can characterise
equivalent objects, and thereby solve the extraction
problem by searching for the location of a shape in a
2D accumulator space. The size of this accumulator is
independent of the complexity of the object or of the
generality of the transformation. The transformation
parameters can be determined by gathering evidence
according to the mapping,

{ala= f"(40,v(50))} Vo€l Y¥(s0) € W(ko). (9)

Alternatively, we can exploit the values of the location
parameters to solve for some of the parameters in a,
reducing the computational burden. This approach will
be considered in further detail in Section 5. According to
Eqgs. (8) and (9) the extraction process described by three

general steps in Section 1 can be defined for the extrac-
tion of a shape via a general invariant form of the HT as
follows. First, for each point in the image identify a po-
tential set of points in the model by matching invariant
features according to Eq. (6). Second, the image trans-
formation that maps the point in the image and the point
in the model is determined by Eq. (7). Finally, evidence
of the location position and transformation parameters is
gathered by the HT mappings in Eqs. (8) and (9). The
reminder of this paper will be concerned with character-
ising the function Q and solving the analytic expression
in (6) and (7) when f; is defined by similarity and affine
transformations.

5. Similarity transformations
5.1. Parametric model

The transformation f; defines a family of shapes that
can be located in an image. The generality of this family is
related to the generality of the transformation. Similarity
transformations are defined by a change in rotation and
scale and are of practical significance since they can be
used to model changes in the distance between an object
and a camera, as well as variation in the orientation within
the plane of view.

A parametric model for similarity transformations is
defined by multiplying a model shape v(s) by a scalar
value and by a rotation matrix. Thus, the mapping in Eq.
(2) is given by a= (1, p), where [ and p are the scale and
rotation parameters, respectively. Here, the parametric
model is represented by an orthogonal decomposition of
the form

w(s,a) =wx(s,a)Us +wy(s,a)U, (10)

for wi(s,a) =IR:(s, p), wy(s,a)=1IR,(s,p)and [R.(s, p)
Ry(s,p)] is the result of multiplying the model vector
[vi(s) vy(s)] by a rotation matrix.

5.2. Geometric invariance

The definition of invariance is based on a characteri-
sation of a shape by a function Q. For similarity trans-
formations this function is derived from the concept of
angle. The measure of an angle is the fundamental in-
variant for similarity transformations since its value does
not change with changes in scale or rotation. Clearly, a
single point does not provide enough information for an
invariant geometric characterisation, so it is necessary to
consider the relationship of the point with other points
in the curve. In this way, the invariant of a point can be
defined by considering the angle formed by the lines that
join the point with other two points in the curve. In order
to distinguish between the point that is characterised by
the invariant, we use the sub-index s, while the points
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w(s;.a)

Fig. 1. Arrangements of points. (a) General triangle. (b) Triangle defined relative to gradient direction. (c¢) Natural triangle defined

by a pole—polar relationship.

used to define the angle are denoted by the sub-indices
s; and sp. An invariant characterisation of the point
w(so,a) in the parametric model is given by the tangent
of one angle in the triangle formed by the three points.
That is,

VXZ Vyl - V‘Cl V,VZ

sz Vx1 - Vy1 Vyz ’

(1)

Qsim(w(SOs a)> W(Sl,a), W(Sz,a)) =

for

Vi, =wx(si,a) — wx(so, @), Vy, =wy(si,a) — wy(so,a).

For completeness, the proof is included in Appendix
A. It is important to notice that although the number of
parameters in Q has been increased with respect to the
definition presented in Section 4, the function maintains
the same meaning as in Eq. (8). That is, it provides a
characterisation of a single point in the model (i.e., for
w(so,a)).

Although Eq. (11) defines a unique invariant for the
points in the model, there exist different ways in which the
points can be chosen. Three alternative ways are shown
in Fig. 1. In a straightforward approach, the three points
in Eq. (11) can represent points of the shape which sat-
isfy some given geometric condition. Since angles re-
main invariant under similarity transformations, then we
can consider the arrangement of points which forms a
triangle with fixed angles as shown in Fig. 1(a) [26].
Thus, the points w(s;,a) and w(s,,a) can be chosen by
searching for points in the lines that pass from w(so,a)
and that have a fixed orientation defined by the fixed
angles o and 5. The problem with this arrangement is
that it is dependent on rotation, since the angles are not
measured relative to the orientation of the shape. Thus,
when the shape is rotated, the position of w(sy,a) and
w(s1, a) cannot be determined without involving the rota-
tion parameter. That is, given a point w(so, @) and a fixed
value of o, the point w(s|, @) must satisfy the relationship
(wy(s1,a) — wy(s0,@))/(wx(s1,@) — wi(s0,a)) =2 + p.
Since p is unknown, any point w(s;, @) can be an element

of the arrangement. Thus, it is necessary to consider all
points combinations for all values of the rotation.

A Dbetter definition of the points that characterise the
invariance relationship can be obtained by defining their
position with reference to the point w(sg,a). Two of
these definitions are shown in Fig. 1(b) and (c). In Fig.
1(b) the point w(s;,a) is defined relative to the gradient
direction of the point w(so,a). Thus, the point w(s;,a)
can be located independent of rotation by searching on a
line passing through w(so, @) whose slope is (w,(s1,a) —
wy(s0,@))/(Wx(s1,@)—wx(s0,a)) = G(w(s1,a))+p. Since
B is relative to the line which joins the points w(so,a)
and w(s;,a), then the point w(s,,a) is also determined,
again independent of the rotation.

The collection of points shown in Fig. 1(c) uses the
value of the gradient direction at two points in the curve
to define an invariant angle. In this case, the third point is
defined by the intersection of the tangents to two points
in the curve. The advantage of this definition is that it
characterises a point by only one other point in the im-
age and this point does not require a particular geometric
relationship to the other two. The definition of the third
point is based on the pole—polar form of the shape and it
has been previously used for the extraction of circles and
ellipses [27,28]. In [29-32] this relationship is exploited
to define indexed tables suited to invariant extraction of
shapes by the HT. These tables store the position of the
centre of a shape as a function of the invariant properties
in the pole—polar form. The geometry used in Ref. [31]
considers pairs of edge points with the same gradient di-
rection and by fixing f§ to 90°. The disadvantage of this
definition is that since a point can only be paired to other
point with the same slope, the technique can suffer when
there are missing data. In Ref. [29] a more general rela-
tionship is defined by considering complementary angles
of o and f. Since the table includes all the possible val-
ues of o and f, the complexity of the technique is similar
to the one obtained by the arrangement of points shown
in Fig. 1(a). In Ref. [32] different complementary angles
of « and f§ are used to define a 2D indexed table. In this
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case, invariant properties are not exploited and the tech-
nique is associated with a four-dimensional parameter
space. As in the case of Ref. [29] geometric relationships
are used to solve for the parameters of scale and rotation
necessary to obtain the position of the shape and pairs of
points are considered in a computationally intensive pro-
cess. In the next section, we consider the arrangement of
points in Fig. 1(c) to formulate the analytic definition of
the collection of points in W (4o).

5.3. Local matching

According to Eq. (6), invariant shape extraction re-
quires establishment of a collection of points W (4o)
which are composed of all the points v(sg) for which the
relationship  Qsim(40, A1, 42) = Osim(v(50), v(s1), v(s2))
holds. In the case of the arrangement of points in
Fig. 1(c), the invariant feature only depends on two
points. Thus, we can consider the simplified relation-
ship Qsim(40, 41) = Osim(v(s0),v(s1)). The form of each
invariance in this relationship can be obtained by sim-
plifying Eq. (11) by using the pole—polar relationships.
Thus, invariant features for the points in the model and
for the points in the image can be expressed as a function
of the position of the points and their gradient direction.
There exist two different ways in which the invariance
defined in Eq. (11) can be used to define invariance
features in the arrangement shown in Fig. 1(c): (1) as a
measure of the angle o, between the line joining s¢ and
s1, and the tangent at s;; and (2) as a measure of the
angle f defined by the intersection of the lines. For the
first case we have that

G(4o) — y(s0,51)
1+ G(4o)y(s0,51)

G(v(50)) — ¢(s0,51)
1+ G((s0))¢(s0,51)

for p(so,s1)=(4y = Ay)/(ley — Jx) and ¢(so,s1) =
(vy(s1) = vy(50))/(vx(s1) — vx(50))-

As a measure of the angle f§ the invariant arrangement
of points is given by
G(4o) — G(41)
1+ G(40)G(4r)’

G(v(s0)) = G(v(s1))
1+ G(v(50))G(v(s1))

Qsim()-'O, il ) -

Qsim(v(s0),v(s1)) = (12)

Qlim(ho, ) =

Qlim(¥(50),¥(s1)) = (13)

Thus, from Eq. (6), we observe that the problem of
obtaining a definition of W (4y) can be formulated as
the problem of obtaining the points v(sg) such that the
invariant features Ogim(4g,41) and O, (Ag, A1) com-
puted from an image are equal to the invariant features
Osim(v(50),v(s1)) and O, (v(sp),v(s1)) in the model.
That is, for two points in an image, we have a pair

of equations that defines a pair of points in the model
with the same invariant characterisation. More formally,

Wsim(Ao, A1) = {v(50), v(51)| Osim(4o, A1) = Osim(v(s0),
V(51))s Qlim(A0, 1) = Qsim(¥(50), ¥(51))}- (14)
The pair of simultaneous equations can be written as
Osim(4o, 41) =(G(v(s0)) — P(s0,51))/
(1 + G(v(s50))9(s0,51)),
Olin(ko, 21) = (G(¥(50)) — G(¥(51)))/
(1+ G(v(50))G(v(51))). (15)

By considering a function D that obtains the deriva-
tive of the component at a point in the curve (i.e.,
G(v(s0))=D(v,(s0))/D(vx(s9))) and the definition of
¢(s0,51), the equations in Eq. (15) can be rewritten as

(vx(s1) = va(50))(Dsim( 40, 41)D(vx(s0)) — D(vy(s0)))
+ (Vy(s1) = vy(50))(Qsim( 40, 41)D(vy(50))
+D(vx(s0))) = 0.

D(vx(s1))D(vy(50)) — D(vx(50))D(vy(s1))
— Quin(A0, 21 )(D(vx(50))D(vx(s1))
+ D(vy(50))D(vy(s1))) = 0. (16)

5.4. Parameters of the transformation

A shape’s rotation and scale can be obtained by
matching two points of the curve with two points in the
model. That is, for each pair of points 49, 4; € 1, and each
pair of points v(sg) and v(s;) such that Quim(4o,41)=
Osim(v(s0),v(s1)) and  Qin(A0, A1) = Ogim(¥(s0), ¥(s1)),

we can define a function of the form of Eq. (7) as
I (o, A1, v(50), ¥(51)) = {1, p|Qsim( 4o, A1)
= OQsim(f (1, p),¥(50)), (L, p),v(51)))}- (17)

By using the geometric properties of a pair of points,

it is possible to obtain an explicit form of Eq. (17) as
1 Ay — A
£ daav(s0) ¥ p=tan ™! (=5 )
A — Ax

N )

[v(s1) = v(so0)|’

(18)

— tan

—1 (Vy(sl) - Vy(So)) ’

ve(s1) — vx(s0)

5.5. Implementation and examples

In order to gather evidence for a model shape under
a similarity transformation, we can use the definitions
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in Egs. (14) and (17) in Egs. (8) and (9). Thus, ev-
idence can be gathered by using a pair of mappings
from the image space into two independent 2D ac-
cumulator spaces. In implementation, the evidence
gathering process can be divided into four steps: (1)
for each point in the image Ay chose another point 4,
and compute Osim(4o, A1) and O;,,(Ao, A1) according to
Egs. (12) and (13); (2) use these values in the system
of Eq. (16) to find all the points v(s¢) and v(s;) that
satisfy Eq. (14); (3) use the points 4y, 4;, v(so) and
v(s1) in Eq. (18) to find the parameters of the transfor-
mation and increment the associated element in the
accumulator space; finally, (4) compute the location pa-
rameter according to Eq. (8). The location accumulator
has the same resolution than the image. In our examples
the scale and rotation accumulators have half the size
of the image in the scale axis and one degree resolution
in the rotation axis. Since there are numerical errors
in the computation of the gradient direction (in our
implementation errors are about 0.2 radians) and thus
in the invariance, it is convenient to gather evidence
in a collection of cells determined using a Gaussian
distribution.

Even though each point can be characterised by tak-
ing only one other point, it is necessary to ensure that
both points belong to the same primitive. Accordingly,
the point 4; is only selected if it is within a specified
distance of 4¢. In our implementation, 4; must be closer
than one quarter of the image length. We develop the
curve v(s) as an orthogonal Fourier expansion as pre-
sented in Ref. [33]. In this representation, derivatives are
easily computed. An explanation of the use of elliptic
Fourier coefficients for model extraction can be found in
Ref. [34]. The system of equations in Eq. (16) can be
solved by using a successive approximation method. In
our implementation, we use an alternative approach that
finds a set of potential values of s and s; and then ver-
ifies that the relationships in Eq. (16) are true. Potential
values of 5o and s; are obtained by considering gradient
direction information. Based on gradient direction infor-
mation it is possible to obtain the pair of independent
equations

G(40)D(g(s0, p)) — D(h(s0,p)) =0,
G(41)D(g(s1,p)) — D(h(s1,p)) = 0. (19)

These equations depend on the value of p, thus each
possible value of rotation provides a potential value
of the parameters s¢ and s;. These potential values are
considered in Eq. (16). Fig. 2 shows an example of
the accumulation process for similarity transformations.
This figure contains a shape and a collection of random
dots. We use similar images to estimate the minimum
signal-to-noise ratio for which the maximum in the ac-
cumulator still yields the correct location of a shape.
Accordingly, the number of points that forms the shape

(d)

Fig. 2. (a) Example of an image where only 35% of the data
belong to the primitive. (b) Result of the extraction process.
(c¢) Location accumulator. (d) Scale and rotation accumulator.

is reduced in the same proportion to the increase in
noise points. In the example in Fig. 2(a) 65% of the
data correspond to noise. Fig. 2(b) shows the result
of the extraction process superimposed on the original
image. Fig. 2(c) shows that the location accumulator
contains a well-defined peak. (In our experiments the
technique can actually provide an accurate extraction
when almost 90% of image points are noise. With this
percentage it is difficult even to locate a shape by visual
inspection.) Fig. 2(d) shows the accumulation obtained
by gathering evidence of the scale and rotation param-
eters. The peaks in the accumulators define an accurate
value of the parameters of the shape. In this example,
gradient direction was not computed from the image,
but from the analytic definition of the curve. This al-
lows us to quantify only the error due to clutter and
occlusion.

Fig. 3 shows an example of the accumulation pro-
cess on a real image. The model shape was ob-
tained from a binary image of 128 x 128 pixels.
Fig. 3(a) shows the image model and the parame-
terised model. This parameterised model was used to
accumulate evidence for the edge information com-
puted from the image in Fig. 3(b) and shown in
Fig. 3(c). In this image the number of points that
do not belong to the primitive is significantly more
than the model points and some edge data of the
shape have not been detected. The result of the ex-
traction process is presented in Fig. 3(d) and super-
imposed as a thick black border. Fig. 3(e) shows the
final accumulator for the centre parameters, and Fig.
3(f) shows the final accumulator for the rotation and
scale parameters. The parameters given by the peaks
of these accumulators were used to define the shape
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Fig. 3. Shape extraction. (a) Model shape. (b) Raw image. (¢)
Image edges. (d) Result. (¢) Location accumulator. (f) Scale
and rotation accumulator.

superimposed in Fig. 3(d) which matches with the image
data.

6. Affine transformations
6.1. Parametric model

Although similarity transformations constitute a
useful description for shape extraction, more general
transformations are required to model the changes in
position and orientation of a shape in three-dimensional
space. Affine transformations are defined by a linear
mapping and can provide an accurate approximation of
the three-dimensional orientation of a planar shape when
the depth of an object is insignificant compared to the
viewing distance. Since this type of transformation is
more general than similarity transformations, it contains
more parameters and the geometry of the definition of
the invariant features is more complex.

A parametric model for an affine transformation can
be obtained by multiplying a model shape v(s) by a

linear transformation. Thus, Eq. (2) can be defined by
the four transformation parameters a =(4,B,C,D) for
the orthogonal components of the parametric model in
Eq. (10) defined as,

Wi(s,a) =Avi(s) + Bv,(s),
wy(s,a) = Cvi(s) + Dv,(s). (20)

6.2. Geometric invariance

The family of shapes defined by affine transformations
is a linear combination of point coordinates. Thus, ge-
ometric relationships based on properties computed on
a pair of parallel straight lines, such as slope and dis-
tance ratio, remain invariant. Although affine invariant
features are defined by properties of straight lines, this
does not mean that the extraction process implies the use
of primitives of polygonal shapes. That is, in a manner
analogous to the inclusion of invariance under similar-
ity transformations, invariance under affine transforma-
tions can be defined by considering a collection of points
that forms a particular geometric arrangement. The dis-
tance ratio between two parallel lines can be defined by
four points, thus an invariant characterisation of a point
w(so,a) in the parametric model can be obtained by con-
sidering three additional points. If the two points w(so, @)
and w(s),a) define a parallel line to the line formed by
the points w(s,,a) and w(ss,a), then the distance ratio
invariant for a point w(sg,a) can be defined as

Ourr(w(so, a), w(si,a), w(sz,a),w(ss,a))

_ wi(s1,@) — wx(s0,@) _ wy(s1,@) — wy(S0,@)
wi(s3,a) — wx(s2,@)  wy(s3,a) — wy(s2,a)

1)

For completeness, the proof of this invariance is given
in Appendix B. Although Eq. (11) defines a unique in-
variance, it is possible to consider alternative information
in the image to define the four points in the geometric
arrangement. Fig. 4(a) shows a geometric arrangement
wherein the four points that define the parallel lines are
points of the shape. The arrangement in Fig. 4(b) re-
duces the number of points required to define the invari-
ant feature in a manner analogous to the reduction pre-
sented in Fig. 1(c). In this case, only three points are on
the shape, whilst the fourth one is determined indirectly
by using gradient direction information. In Fig. 4(b), the
point w(s;,a) is defined by the intersection of the tangent
lines to the points w(s,a) and w(s3,a).

The invariance properties of the lines in Fig. 4(b) can
be proved by extending the results in Appendix B. By
denoting my, and m,, as the gradient direction in the
point w(sg,a) before and after the transformation, and



1092 A.S. Aguado et al. | Pattern Recognition 35 (2002) 1083—1097

(a)

wis;.a)

(b)

Fig. 4. Arrangement of points to define two parallel lines. (a) Four point definition. (b) Three point definition.

by considering the definition in Eq. (20) we have that

; wiy(s0)  Cvi(so) + Dvi(so)  C + Dmy,
T wi(so)  AVi(so) + BVi(so) A+ Bmy,

(22)

According to the results in Appendix B the slope of
the line formed by the points w(sy,a) and w(ss, a), after
the transformation is

C + Dmy,,
A+ Bmg,,

ml, sy = (23)

Since the gradient direction and the slope of the line are
equal before the transformation, then my,s, = my,. Thus,
according to Eqgs. (22) and (23) mj,;, = m}, which means
that the lines are parallel after the transformation.

6.3. Local matching

By considering the arrangement of points in Fig.
4(b), and according to Eq. (6), the collection of points
W (4o) is composed of all the points v(sy) for which the
relationship Qaff(}\-O, ).2, 13 ) = Quff(v(So ), V(S2 ), V(S3 ))
holds. The invariant function Q,s/(-) in this relationship
can be developed as a particular case of Eq. (21) defined
according to the geometric relationships in Fig. 4(b).
That is,

0wyl i) = 5225,
0wy (450 ¥(52), ¥(s2)) = 2N =2 20) (24)
for
2oy = (Ayy — Ays + G(43) A, + G(40) 7y )/(G(43)
+Gi0)) A
=(G(43)G(40)(Axs; — 2xy) + G(43) Ay
—G(30)i)/(GUis) + Gldo)) 25)

and v(s;) is defined in a similar fashion. By considering
the second part of Eq. (21) we obtain the invariance
definition,

, _ Ay — Ay
Ourr(ho,hr, 43) = ﬁ,
0L/ (v(50). ¥(s2), ¥(s3)) = 1251 = Va(50) (26)

vy(s3) = vp(s2)

Thus, W (/o) is defined by all the points in the
model such that the invariant features Q,rr(4o, 42,43)
and Q; ﬂ»(/lo,/lz, A3) computed from an image are equal
to the invariant features Q,r(v(so),v(s2),v(s3)) and
O 77 (v(s0),¥(52),v(s3)) on the model shape. That is,

Wagr (2o, 22, 243) = {v(50), v(52), v(53)| Qu 7 (Ao, A2, 43)
= Qurr(v(s0),v(s2),v(s3)),
Ousr(hos day A3) = Ol rr(¥(50), ¥(52), ¥(s3))}. (27)

This equation and the geometry of the distance ratio
define a system of three simultaneous equations. That is

(Qarr(Aos A2, 43) ) (vx(s3)—vx(52))—va(s1)+vx(s0) =0,
(Qasr (Ao, A2y 43))(vy(53)=V(52))=Vy(s1)+V(50) =0,
G(v(50))(vx(53)—Vx(52))=Vy(53)+Vy(52) = 0.

(28)

The first two equations constrain the two orthonormal
coordinates of the curve. The third equation ensures that
the arrangement of points forms two parallel lines. That
is, the gradient direction at the point 4y equals the slope
of the line which joins the points 4, and 43.

6.4. Parameters of the transformation

The matching of three points in the curve to three
points in the model is sufficient to obtain the parameters
A, B, C,D of the transformation. The solution of the pa-
rameters of the transformation is defined by the function
in Eq. (7), and can be developed in a manner analogous



A.S. Aguado et al. | Pattern Recognition 35 (2002) 1083—-1097 1093

to Eq. (17). In this case the parameters are obtained by
the system

S (Ao, b, 43, ¥(50), ¥(52), ¥(s3)):

Ay = Ay = A(vx(50) = va(52)) + B(vy(s0) — vy(s52)),

g — Ay = A(vx(50) — vx(s3)) + B(vy(s0) — vy(s3))s

Ayy = Ay = C(Vx(s0) — vx(2)) + D(vy(s0) — vy(s2)),

Ayy = Ayy = C(Vx(s0) — vx(s3)) + D(vy(s0) — vy(s3)).
(29)

This system defines a gathering process in a four-
dimensional parameter space. This space can be reduced
by using the information of the position of a shape. Thus,
after the location parameters have been obtained, we can
gather evidence of the transformation parameters by us-
ing the known shape location. This two-stage approach
simplifies Eq. (29) into two independent systems of two
equations. That is, the gathering process can be per-
formed in two 2D accumulators. The simplification of
Eq. (29) by including the location parameters is given by

S (o A2, ¥(s0), v(52)):
Jog — @0 =AVvx(s0) + Bvy(s0),
Zyo = bo=Cvx(s0) + Dvy(s0),
Aoy — ag =Avx(52) + Bvy(s2),
s — by = Cvi(s52) + Dvy(s2). (30)

6.5. Implementation and examples

The definitions presented in Egs. (27) and (30) can be
used in Egs. (8) and (9) to develop an evidence gather-
ing process for affine transformations. Evidence can be
obtained by considering the invariant properties of three
image points. The definition of Egs. (27) and (30) in
Egs. (8) and (9) define three mappings from the image
space into three 2D accumulator spaces. According to
these definitions, the process of evidence gathering can
be divided into five main steps as follows: (1) for each
point 4¢ in the image choose a pair of points 4, and 43
such that the line which passes through the points has
the same slope of the gradient direction of the point 4.
From these, compute the value of Q,sr(4¢,42,43) and
Q"lff(lo, Ay, A3) according to Egs. (24) and (26), respec-
tively; (2) use these values in the system of equations
in Eq. (28) to find all the points v(sg), v(s2) and v(s3)
that satisfy Eq. (27); (3) use the points 4g, 42, 43, v(s9),
v(s2) and v(s3) in Eq. (29) to solve for the parameters
A, B, C,D; (4) compute the location parameter according
to Eq. (8) and increment the associated element in the
corresponding position in the accumulator space; finally

Eq. (5) after all evidence has been gathered and the
location parameter is known, repeat step Eq. (1) and
use the points in the system of equations in Eq. (30) to
solve for the parameters of the transformation. Based on
these parameters increase the corresponding element in
the accumulator that represents the parameters 4 and C,
and in the accumulator that represents the parameters B
and D. The values of these parameters are unbounded.
In our implementation, we used the atan function
to transform the values of 4, B, C and D to values
between 0° and 360°. Thus, the accumulator has a
resolution of 1°. A more efficient and accurate imple-
mentation can be achieved by using multiresolution
techniques [35].

In this implementation, the solution for Eq. (28) im-
poses significant computational load since it contains
three unknown values. In our implementation, we reduce
the complexity by considering that the point 4, can only
be chosen from a selected collection of landmark points.
Landmark points are identified by their high curvature.
Thus, for each point 4y we consider a point 4, in the
image with a high curvature. In order to select the point
/3 from the image, we search for it on the trace of the
straight line which passes through the point 4, and whose
slope is equal the slope of the point 4. In order to solve
the system in Eq. (28), we consider each point v(s,) with
high curvature in the model. We find the point v(so) by
considering that G(v(s¢)) = G(4¢) + p for fixed values
of p. Thus, for each combination of v(s;) (i.e. for all the
curvature points) and v(sp ) (i.e. all points whose gradient
is G(Ag) + p) we determine the point v(s3) that satisfies
the last relationship in Eq. (28). This triplet of points is
used to gather evidence only if the two first conditions
in Eq. (28) are satisfied.

Fig. 5 shows an example of the evidence gathered for
affine transformations. Fig. 5(a) shows the model shape
used in this example. Points of high curvature are de-
fined as the zeroes of the derivative of the tangent angle
of the Fourier expansion and they are marked with small
circles. To quantify which percentage of points is nec-
essary to obtain evidence that can locate the shape we
generated a collection of synthetic images containing a
transformed version of the model and random noise. The
number of points that form the model shape was reduced
in proportion to the amount of noise points added to the
image. In our experiments we maintained three points of
high curvature in correct positions (those which lie on
the shape), whilst the other five were positioned at ran-
dom. In the example shown in Fig. 5, the model shape
is composed of 35% of the points (i.e., 65% outliers).
Fig. 5(c) shows the result obtained by the gathering pro-
cess superimposed on the edge image. The accumulator
presented in Fig. 5(d) shows a well-defined peak that
defines the location of the centre of the shape. The accu-
mulators presented in Fig. 5(e) and () correspond to the
parameters of the transformation. In our experiments, if
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(a) (b)
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(e) (®

Fig. 5. (a) Model shape. (b) Example of an image where
35% of the data belong to the primitive. (¢) Result of the
extraction process. (d) Location accumulator. (e) Result of the
accumulation of the parameters 4 and C of the transformation.
(f) Result of the accumulation of the parameters B and D of
the transformation.

we can locate at least three points of high curvature in
their correct position and if the point in the shape, then
an accurate value of the parameters of the primitive in
the image can be obtained when almost only 15% of data
actually belong to the primitive. Similar to the example
in Fig. 2, gradient direction was computed from the an-
alytic definition of the curve.

An example of the extraction process applied to a real
image is presented in Fig. 6. The model used for the
extraction process is the same one used in Fig. 3. In
this model, we identified four points of high curvature.
We apply the extraction process to the image shown in
Fig. 6(a). In this image, the object suffers a transforma-
tion which changes its relative orientation. The edges of
this image are shown in Fig. 6(b). Small circles indicate
land-mark points, those with high curvature. Only some
points in the model can be identified and one is actually
in error (the one in the centre of the shape). The result
of the extraction process is shown in Fig. 6(c) superim-
posed as a thick black border on the original image. The
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(e) (f)

Fig. 6. Shape extraction. (a) Raw image. (b) Image edges and
high curvature points. (c) Result. (d) Location accumulator.
(e) Accumulator for the parameters 4 and C. (f) Accumulator
for the parameters B and D.

parameters of the shape are determined by the maxima
of the accumulators in Fig. 6(d)—(f). These accumula-
tors show that the formulation can provide an effective
evidence gathering process, since there is a good match
between the result and the primitive in the image, and
the accumulator peak is well defined.

7. Conclusions

In this paper, we have developed a formulation and
methodology for including invariance in a general form
of the Hough transform. This formulation extends the
definition of the HT in two ways. First, it includes a pa-
rameterised model shape composed of a model shape and
a transformation. Second, it includes invariant properties
of the transformation to reduce the dimensionality of the
HT mapping. The basis of our methodology is a continu-
ous shape description which affords immunity to the dis-
cretisation effects usually experienced with tabular shape
representations. The invariant characterisation studied in
this paper is based on the local geometry of the points on
the shape. The advantage of this characterisation is that
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it significantly reduces the uncertainty associated with
the use of higher level primitives such as lines or curves.

We have considered parametric models defined by
similarity and affine transformations. For these trans-
formations there exists an established theoretical deve-
lopment for the generation of invariant features. We
capitalise on these concepts to develop several alternative
arrangements of points that can be used to characterise
a shape for invariant evidence gathering. Invariance re-
duces the complexity of the HT, and it is possible to
compute the location of a shape using a 2D accumulator
space independent of the complexity of the shape and
the generality of the transformation. However, the com-
plexity of determining corresponding arrangements of
points in the model and in the shape is directly related
to the generality of the transformation.

For affine transformations, we have included charac-
teristic points defined as points of high curvature to re-
duce the potential solutions in the local matching process
that identifies image points and model points. An effec-
tive strategy that reduces the number of correspondences
between the model and the image is indispensable since
the generality of the transformation increases the geo-
metric complexity of the features identified in the shape.
The inclusion of features that reduce the number of po-
tential correspondences between local data on the image
and the model, can include other local curve descriptors
or features such a colour or texture. We have shown that
the technique can obtain adequate results when some fea-
tures are generated by background objects or are missed.
Thus, the presented approach can provide an adequate
way of combining the geometry of the model with other
features in the model.

tions

where
U = (vx(s1) = vx(80)), Uy = (vy(s1) — v(50)),

U, = (Vx(52) = ¥2(50)), vy, = (Vy(52) = v(s0))-

By algebraic manipulation, Eq. (A.2) can be
simplified to,

UxyUy; = Uy Uxps (A3)

which is independent of rotation.
In an analogous way the denominator can be
written as

(vx, c0s(p) — vy, sin(p))(vy, €OS(p) — vy, sin(p))

+ (vx, sin(p) + vy, cos(p))(vx, sin(p) + vy, cos(p)),

(A.4)
which can be reduced to,
Uxy Uxy + Uy Uy - (A5)
Consequently,
UxyUy) = Uyp Uy
Osim(W(s0, @), w(s1,a), w(s2,a)) = ——————,
' Uxy Uxy =+ Uy Uy,
(A.6)

is independent of rotation and scale.

Appendix B. Invariance under affine transformations

Invariance under affine transformations implies that the
slope of the lines through the points v(s¢) and v(s;) and
a parallel line through the points v(s;) and v(s3) is the
same after transformation. Since these lines are parallel,
then

_vy(s1) = vy(so) _vy(s3) = vy(s2)

Appendix A. Invariance under similarity transforma- Msgs; = V) —aGs0) T T (s3) — ()
(B.1)
By considering the definitions in Eq. (10), Eq. (11)
can be developed as,
Osim(W(s0, @), w(s1,a), w(s2,a))
_ P((Ru(52,p) = Re(50, ))(Ry(51, ) = Ry(50,£)) — (Rx(51, p) = Rx(50, P))(Ry(52, p) — Ry(50, p))) (A1)

 P((Ru(52,p) = Re(50, p))(Rx(s1, p) = Rx(50, p)) + (Ry(51, p) — Ry(0, p))(Ry (52, p) — Ry(50,0)))’

for R.(s,p)=vrcos(p) — v,sin(p) and R,(s,p)=
visin(p) + vy cos(p).

This means that the function Qgim(W(so,a), w(si,a),
w(s,,a)) is invariant to scale. We can show that Eq. (A.1)
is invariant to rotation by considering the terms in the
division separately. The numerator can be developed as

(vx, cO8(p) — vy, sin(p))(vx, sin(p) + vy, cos(p))
— (vx, cos(p) — vy, sin(p))(vx, sin(p) + vy, cos(p))
(A2)

After an affine transformation the lines are defined by
the points w(sg, @) and w(s;, a), and by the points w(s,, a)
and w(sy,a), respectively.

The slope of these lines is given by

- — COx(s1) = vy(50)) + D(vy(s1) = vy(s0))
A1) = vx(s0)) + B(vx(s1) — va(s0))

m = COp(s3) = vy(52)) + D(Vy(83) = vy(s52))
R A(a(s3) — vx(52)) + B(vx(s3) — vx(s2))

(B.2)
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or
/ C + Dmssl / C + DmSZSS
T A By T A4 By O0)

and since mys, = My,s;, then the lines after the transfor-
mation are parallel. That is, ml, = m.,,.

Invariance of the distance ratio under affine transfor-
mations is defined by do/d| =d,/d3, where d, is the
distance between the points v(sy) and v(s;), d; is the dis-
tance between the points v(s;) and v(s3), d, is the dis-
tance between the points w(so,a) and w(s;,a), and d3 is
the distance between the points w(s;, a) and w(s,,a). We
can express the first distance ratio as

do _ [ (a(s1) = vx(50))* + (Vy(s1) — vy(0))?
d (vx(s3) = vx(52))2 + (vy(s3) — vy(s52))?"
(B.4)

By considering the definition in Eq. (B.1),

do _ vx(s1) = vx(s0) do _ vy(s1) — vy(s0)

di - v(s3) = va(s2) di vy(s3) = vy(s2)’

(B.5)
Analogously,
dy _ wi(s1,a) — wi(so, @) or
ds  wi(s3,a) — we(sz,a)
dy  wy(si,a) — wy(so,a)
ds wy(s3,a) — wy(s2,a)’ (B.6)
That is,
dy _ AQ(s1) = va(s0)) +BOMs1) = (50)) )
dy  A(vx(s3) = va(52)) + B(vy(s3) — vy(s52))
and according to the definition in Eq. (B.1),
dy  vx(s1) — vx(s0) (B.8)

d73 N vx(s3) — Vx(SZ).

Consequently, the distance ratio dy/d, and d,/d; have
the same value.
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