

 1

A lock-step synchronization algorithm for
logic simulation in a multi-solver

environment

 X. WANG, T. J. KAZMIERSKI and Z. MRCARICA

 Department of Electronics and Computer Science,

 University of Southampton,

 Southampton SO9 5NH,

 U.K.

 Tel. (0044)(703)(593116)

 Fax. (0044)(703)(593045)

 Email: wxg91r@ecs.soton.ac.uk

All appropriate clearance for the publication of this paper has

been obtained, and if accepted the authors will prepare the final

manuscript in time for inclusion in the conference proceedings

and will present the paper at t he conference.

Abstract

A mini-backplane for integrating logic simulators has been

developed. Solver synchronization is done by means of a novel

lock-step algorithm with no global time. This contribution

presents details of the synchronization and backplane

communication interface. The solver engines are linked into the

backplane to form a single executable process. The example of a

32-bit adder, partitioned between two instances of an identical

solver, illustrates the method.

Keywords

CAD/CAE Techniques and Methodologies as well as Application

 Simulation

 2

INTRODUCTION

The complexity of the simulation tools has led to the concept

of simulation backplane, where third party solvers can be

integrated and work on a single design, appropr iately partitioned

between the solvers. A general-purpose standard for simulation

backplane has recently been proposed by the CAD Framework

Initiative (CFI) [1]. The mini -backplane described here is not an

implementation of the CFI standard but it follows the CFI's

guidelines.

Part of the standard is an Application Programming Interface (API)

which specifies functions needed to integrate a simulator to the

backplane which is a common control program. The backplane is

responsible for controlling and synchro nizing the simulation.

A subset of the CFI API definitions has been developed to allow

integration of multiple logic simulators into the mini -backplane

and a future integration of the analogue engine of the behavioral

simulator ALFA [2].

SIMULATION MINI-BACKPLANE AND ITS API

The mini-backplane API is a collection of communication protocols

and formats that allow simulators to operate using their own

algorithms and to share data both during and after a simulation

run. Figure 1 shows a general model of the mini-backplane. Pending

the development of a user interface, communication with the users

is performed via simulators' own input processors and a

configuration file which contains data about the partitions. The

backplane creates a design data base whic h reflects the structure

of the partitions. The synchronizer controlling the simulation is

part of the backplane.

 3

The synchronization algorithm has been tested on logic simulation

engines but it has been developed with a view to work in a mixed -

signal simulation environment.

GLOBAL NETS AND SYNCHRONIZATION

The signals that pass between simulators are carried by glo bal

nets. These global nets might be resolved by more than one

simulator. If a global net is driven by more than one simulator,

this would require that the backplane resolve the global net as

a mixed-mode simulator. A solution method adopted here only allo ws

each global net to be able to connect two partitions (simulators),

one of which owns the net. This means that a general global net

is divided into two smaller terminal nets, called ports. The

resolution of a port is therefore performed within one and on ly

one simulator. The approach ensures that the backplane is only

responsible for the communication and synchronization between

simulators.

There are at least two kinds of algorithms for the synchronisation

 Figure 1 A General Model of the Simulation Backplane

 4

between a backplane and simulators. One, optimis tic simulation

allows each simulator to advance freely in time until all its

internal events have been processed. If an event from another

simulator is produced before the end of this optimistic time

interval, then all events generated after the event are discarded.

This means that optimistic simulator engines should have a

capability of backtracking.

An alternative approach, adopted in this paper, is the lock -step

synchronization. Each simulator generates a next event time but

only the simulator returning the smallest value of next event

time is allowed to advance until the smallest next event time

returned by other simulators. This approach ensures that no

results are thrown away and there is no need for backtracking.

Most existing logic simulators canno t backtrack and therefore no

fundamental changes are required if such simulators are integrated

to the mini-backplane.

Two API functions, aaisSendSimNextTime and aaisSimRunThruTime,

are very crucial for implementing the lock -step method. The

algorithm developed for the purpose of the mini -backplane can be

summarized as follows:

(1)The function aaisSendSimNextTime is called for each simulator,

sending the next activity time (next event time) to the

backplane.

(2)The minimum of the next activity time valu es is known as the

start_time. The simulator, with the time, is the next

simulator to be run. The target_time, defined as the next

smallest value, is also calculated. If more than one

simulator returns the same minimum value, the start_time is

the same as the target_time. The simulator, less recently

used, is chosen as a next one.

(3)The backplane calls the function aaisSimRunThruTime for the

 5

next simulator, instructing the simulator to run from the

start_time to the target_time. The simulator can stop

executing before the target_time, if a global event is

produced by the simulator before this time. The event is

passed to another partition as defined in the configuration

file. This means that global events can reduce the

target_time and create a new target_time for the backplane

to avoid possibly backtracking. During the simulation

interval, signal changes on the traced signals are sent to

a display waveform tool by the backplane to be display ed

graphically.

Steps (1) to (3) are repeated until the event lists for current

target_time are exhausted or until the user -specified maximum

time is reached.

The lock-step synchronisation algorithm can be described in the

form of pseudo-code as follows:

 set idle_count for all simulators to zero;

 start_time <- 0;

 while (start_time <= end_time) do

 begin

 start_time <- INFINITY;

 target_time <- INFINITY;

 selected_simulator <- NONE;

/* this for loop selects one simulator to be run */

 for (i=1 to number_of_simulators) do

 begin

 calling function aaisSendSimNextTime to obtain

 next_activity_time;

 if (next_activity_time <= start_time)

 begin

 target_time <- start_time;

 start_time <- next_activity_time;

 /* find the minimum next activity time */

 6

 if(start_time < target_time or

 idle_count(ith_simulator) >

idle_count(selected_simulator)

 selected_simulator <- ith_simulator;

 end

 else if (next_activity_time < target_time)

 target_time = next_activity_time;

 end /* end of the for loop */

/* then execute the selected simulator */

 calling function aaisRunThruTime for selected_simulator until

 target_time;

 set idle_count for the selected_simulator to zero;

 increase idle_count for all other simulator by 1;

 distribute events on the global nets generated by the

selected_simulator to other simulators;

 end /* end of the while loop */

The lock-step algorithm can cause a deadlock, i.e. a situation in

which the simulation time can never advance, when two or more

simulators share a zero-delay path and generate unresolvable

events. In most cases, delta cycles caused by zero -delay paths

can be resolved but, in general, sharing zero -delay paths between

solvers should be avoided.

If the maximum allowed number of delta cycles is exceeded, the

algorithm treats this situations as deadlock and stops.

SIMULATION RESULTS

The mini-backplane has been written in C and tested on an 486 IBM

PC clone. An experimental logic simulator has been developed, two

instances of which have been into the mini -backplane. As an

example, a 32-bit adder with ripple carry is simulated by the

backplane and logic simulators. Figure 2 shows the 32 -bit ALU.

The circuit is partitioned into two halfs simulated by the two

engines respectively. The partitioned circuit is shown in figure

 7

3. First, the ALU adds the numbers 3 and 2 and then the result is

added to the number 3. The clock period is 200ns and the

accumulator register propagation del ay is 10ns (from the clock

edge). The simulation results are shown in figure 4. It can be

seen that the sum becomes 3 at 210ns, 5 at 410ns, and 8 at 610ns.

CONCLUSION

A simulation mini-backplane and a lock-step synchronization

algorithm has been developed. A one -to-one connection method is

used to describe global nets. The simulators are directly linked

into the backplane through function calls. The principle of the

simulation backplane has been demonstrated and a correct operation

of the synchronization algorithm has been shown. So far, only

logic simulators have been integrated and work is under way to

integrate the analogue engine of the behavioral simulator ALFA

[2] for mixed-signal multi-solver simulations.

 Figure 3 32-bit adder

 Figure 4 One Partition Instance (16 -bit adder)

 8

Figure 5. Simulation Results

REFERENCES

[1]T. Kemp, " A proposal for a modest prototype simulation

backplane interface", IBM, Revision 1.0, March, 1993.

[2]T. J. Kazmierski, A.D. Brown, K.G. Nichols, M. Zwolinski, "A

general-purpose network solving system", IFIP Transactions

A-1, VLSI'91, North-Holland 1992, pp.147-156.

[3]S. A. Szygenda and E. W. Thompson, "Digital logic simulation

in a time-based, table-driven environment", IEEE Computer,

March 1975, pp. 24-36.

[4]Z. Mrcarica, "The ALFA simulation backplane", Research

Report, University of Southampton, July 1993.

