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Force field energy functionals for image feature extraction
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Abstract

The overall objective in defining feature space is to reduce the dimensionality of pattern space yet maintaining discriminatory power for
classification and invariant description. To meet this objective, in the context of ear biometrics, a novel force field transformation has been
developed in which the image is treated as an array of Gaussian attractors that act as the source of a force field. The directional properties of
the force field are exploited to automatically locate the extrema of a small number of potential energy wells and associated potential channels.
These form the basis of the ear description. This has been applied to a small database of ears and initial results show that the new approach has
suitable performance attributes and shows promising results in automatic ear recognition. © 2002 Published by Elsevier Science B.V.
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1. Introduction

In the context of machine vision, ear biometrics refers to
the automatic measurement of distinctive ear features with a
view to identify or confirm the identity of the owner. In
many cases biometric studies are paralleled by forensic
ones and ears have been part of forensic science for many
years: a burglar was recently convicted of murder in the UK
on the basis of ear prints found at the scene of the crime [1];
and an ear classification method has been developed for use
in forensic science [2]. However, as a biometric it has
received scant attention compared with the more popular
techniques of automatic face, eye, or fingerprint recognition,
though one automated system for ear identification has been
developed recently [3]. There is also anecdotal evidence of
military interest in ear recognition, though no works have
appeared in the public domain.

An ear recognition system could be used just like other
biometric systems, say for access control. A database or
register would be prepared by processing images of the
ears of authorized personnel to extract a set of characteristic
features for each image. Personnel wishing to enter would
have their ears scanned at the entrance and the image would
be processed and compared for a match against the database.
The stored feature vectors would have to be sufficiently
distinct so as to be able to distinguish one ear from all the
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others and sufficiently robust so that the same vector would
be produced every time the ear is scanned. These are
conflicting requirements and present a challenge to the
system designer.

There are a number of techniques with potential to find
and describe a human ear by computer vision. Essentially,
we need to find an ear and describe it for recognition.
Clearly, there are application constraints, such as occlusion
by hair, but here we are concerned with basic technique.
Ear extraction could use an active contour [4] but with
initialisation problems which can be relieved by a dual
active contour [5] (though this still requires establishment
of inner and outer contours). The only published approach to
ear biometrics [3] modelled ears as an adjacency graph built
from a Voronoi diagram of its curve segments. Then, error
correcting graph matching was applied to remove false
curves, but recognition performance on a database was not
included. Techniques derived from fingerprint analysis or
texture classification could also be used to describe the folds
and ridges in a human ear. To give appropriate description
capability, a novel two-stage approach has been developed
to provide ear extraction and description concurrently in a
reliable and robust manner. The two stages are: image to
force field transformation; and potential well and channel
extraction [6].

The entire image is converted into a force field by assum-
ing, purely as a mathematical convenience, that each pixel
exerts an isotropic force on all the other pixels that is
proportional to pixel intensity and inversely proportional
to the square of the distance, i.e. the inverse square law.
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There is a potential energy surface associated with this force
field, which in the case of an ear can be likened to a small
mountain with a few peaks joined by ridges. We call these
peaks potential energy wells and extending the well analogy
we refer to the ridges that lead to the peaks as potential
energy channels.

The structure of the force field, as described by the field
lines, shows remarkable invariance in that if the initialising
position is translated or the image is scaled then the same
description will result. We also find that the process is very
tolerant of noise, due to its inherent averaging. We shall
describe the force field approach in Section 2, demonstrat-
ing its originality and its invariance properties. In Section 3
we will show how these performance attributes are satisfied
in images of ears, together with analysis of recognition
capability on a small database of ears, prior to further
work and conclusions.

2. Force field approach

Mathematical modelling techniques used in physics have
recently attracted the attention of researchers in computer
vision; for example Ref. [9] describes the use of vector
potential to extract corners by treating the Canny edge
map of the image as a current density. Another recent
approach [10] has used a potential field model in a medial
axis transform. The concepts underpinning the force field
transformation and the mathematics used to describe it can
be found in various introductory works on physics [7] and
electromagnetics [8].

The image is transformed by assuming, purely as a
mathematical convenience, that it consists of an array of
N attractive particles that act as the source of a force field.
Each pixel is considered to generate a spherically symmetric
force field so that the force F;(r;) exerted on a pixel of unit
intensity at the pixel location with position vector r; by any
other pixel with position vector r; and pixel intensity P(r;) is
given by

T, —T;
Fi(r) = P(ri)ﬁ (D

|1't -r j|
This equation shows that the magnitude of the force is
governed by the inverse square law and that there is also
direction: the force is a vector, not a scalar. The units of
pixel intensity, force, and distance are arbitrary, as are the
co-ordinates of the origin of the vector field. The total force
F(r;) exerted on a pixel of unit intensity at the pixel location
with position vector r; is the vector sum of all the forces due
to the other pixels in the image and is given by
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In order to calculate the force field for the entire image, this
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Fig. 1. Force field calculation at a single pixel position.

equation should be applied at every pixel position in the
image. This calculation is illustrated graphically for the
total force acting at a typical pixel position in Fig. 1.

There is a spherically symmetric scalar potential energy
field associated with the force field generated by each pixel
where E;(r;) is the potential energy imparted to a pixel of
unit intensity at the pixel location with position vector r; by
the energy field of any other pixel with position vector r; and
pixel intensity P(r;), and is given by

P(r;
(r;) | 3)

|1'i - I

Ei(r)) =

The defining equation is simpler than the force field
equation but the concept is less intuitive. If an exploratory
unit test pixel is moved around in the force field generated
by a given pixel, energy will be exchanged if the net effect is
to change the distance of the test pixel from the given pixel.
Thus, in the image plane, the field consists of concentric
rings of equal potential energy known as equipotentials. If
the test pixel moves to a different location on the same
equipotential ring, no energy is exchanged. If it moves to
a different equipotential, an amount of energy will be
exchanged equal to the difference in potential energy
between the two rings. The potential energy function of a
single isolated pixel is shown in Fig. 2.

Now to find the total potential energy at a particular pixel
location in the image, the scalar sum is taken of the values of
the overlapping potential energy functions of all the image
pixels at that precise location and is given by

Ery= Y y A 4

Ei(r) = e, —r,
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This summation is then carried out at each pixel location to

Fig. 2. Isolated pixel potential energy function.
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Fig. 3. Potential energy surface for a human ear.

generate a potential energy surface, which is a smoothly
varying surface due to the fact that the underlying inverted
vortices have smooth surfaces. The potential energy surface
for an ear is shown in Fig. 3.

In application, an array of unit value exploratory mobile
test pixels is arranged in a closed loop formation surround-
ing the target ear. Each test pixel is then allowed to follow
the pull of the force field so that its trajectory forms a field
line and it will continue moving until it reaches an
extremum in the potential energy surface. The gradient is
zero at an extremum so no force is exerted and no further
movement is possible. Since the force field at a point is
unique, all field lines that arrive at a given point will follow
the same path from that point onwards thus forming
channels. This process is illustrated in Fig. 4 where an
elliptic array of 50 test pixels is placed in the force field
and iterated to produce field lines as shown. The most strik-
ing example of the channel formation process is seen at the
top of the ear where 14 field lines combine to form a channel
which flows rightwards following the contour of the ear-rim.
The locations of the minima (or wells) are extracted by
simply noting the coordinates of the clusters of the test
pixels eventually form. These locations are shown on the
right of Fig. 4, superimposed on the force field magnitude.

For the approach to be of practical use, we require to
show initialisation and scale invariance. If we can show
scale invariance then initialisation invariance follows
naturally since test pixels will trace out the same field

lines albeit scaled-down versions. Accordingly, we will
show that should the image be scaled by a given scale factor
then the force and energy fields scale by the same factor. By
the nature of the underlying equations, we can analyse one
property and the results generalise naturally to the other.
Should the image be scaled by a factor s then we have that
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We see that scaling the image distribution not only results in
a scaled force field distribution but, as expected, larger
distances imply weaker forces as the denominator is propor-
tional to scale. As such, the resulting force and potential
fields are invariant to scale.

Next we seek to demonstrate tolerance to noise. Given
that the image is corrupted by additive zero-mean Gaussian
noise v we have that

P(r;)) + v,
Em)= > E@m)= ) ﬁ
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Given that the noise v is zero-mean then the energy field is

(a) Initialisation

(b) Channel formation

(c) Well positions

Fig. 4. Extraction of potential wells and channels.
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unaffected by noise, so long as the noise is mean-zero over
the image. Naturally, noise with high variance will violate
this assumption so it appears possible to add extreme noise
and the technique will fail, as expected. This is the
averaging inherent in the transformation, as referred to
earlier. Should the image intensity be scaled by a factor k
then we have that

kP(r;)
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We see that scaling the image intensity does not alter the
resulting force field distribution but, as expected, only scales
the energy intensity by the same factor. As such, the result-
ing force and potential fields are invariant under multi-
plicative changes in illumination.

Similarly, change in overall brightness by addition gives
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This suggests that addition of k brightness levels to each
pixel results in an increment to the steepness of the surface
shown in Fig. 3. This will have the effect of a slight non-
linear scale stretching of the feature distribution, but other-
wise will preserve its form. Naturally, the force field will be
affected by localized changes in illumination.

3. Invertible linear transform

We show that the force field transform is a linear trans-
formation by developing its matrix representation. The form
of the matrix is illustrated for a trivial 2 X 2 pixel image. It is
easily verified that this represents the application of Eq. (2)
at each of the four pixel locations. This equation multiplies a
column vector of pixel intensities, P;, by a matrix of inverse
square displacement vectors d;; to give a column vector of

forces, F;. We have

0 doyy dpp diz\ [P Fy
do 0 dyp diz || P F,
= (&)
dy dy; 0 dy || P F,
dy, d3 dy O P F;
where
r— l'i
dj=——3
|1'j - 1'i|

This is a skew-symmetric matrix: the leading diagonal of
zeros reflects the fact that no pixel attracts itself and the
skew symmetry is accounted for by the fact that we are
dealing with a fully connected network but with a pair of
directed edges connecting every pair of nodes.

There is a corresponding representation for the potential
energy transformation since the vector force field and scalar
potential energy fields are related by the fact that the force at
a given point is equal to the additive inverse of the gradient
of the potential energy surface at that point,

F(r) = —grad(E(r)) = —VE(r) (10)

Since the representation matrices are square it is of
theoretical interest whether they are invertible or not. If
they are invertible then the original image can be recovered
for example from the potential energy surface. This implies
that all the information in the original image is conserved by
the transformation, which is an important result. In practice
the representation matrices for images of even modest size
are very large, for example a 10 X 10 image has a matrix
with 10,000 elements. However, we have tested the poten-
tial energy representation matrices for all square images up
to 32 X 32 pixels and all non-square images up to 7 X 8
pixels and have found them to be invertible. These results
suggest that the potential energy transform is indeed inver-
tible for most image sizes and aspect ratios. Even if there are
some particular combinations of aspect ratio and size that
yield singular matrices, this should not detract from the
overall conclusion that all of the information is conserved
by the transformation.

Anwd = 1.16, wdir = 4.19

(a) lower

anwd = 1.16,wdir = 4.20
(b) upper

anwd = 1.15,wdir = 4.20

(c) image perimeter

Fig. 5. Initialisation invariance.
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(a) high - 261x176 pixels

(b) medium - 154 X100 pixels

(c) low -77x 50 pixels

Anwd = 1.16, wdir = 4.19

anwd = 1.15,wdir = 4.20

anwd = 1.17,wdir = 4.21

Fig. 6. Scale invariance.

4. Ear analysis by force field transformation

Having demonstrated how field lines can be employed to
extract potential wells and channels, we now demonstrate
that the new technique is robust. We do this by demonstrat-
ing that the technique can indeed exhibit initialisation, scale,
and translation invariance, as predicted. We also show that
the descriptions derived from positions of the wells are
unique for different ears, and show requisite performance
attributes described earlier. To assess difference between the
descriptions, we shall use a measure of the average normal-
ised distance of the well positions anwd, together with the
accumulated direction to the position of each well-point
from a chosen reference point, wdir. For W wells at points
w;, these measures are:

w
Z |wil
i=1

and
w
wdir = > (w)) (12)

i=1

Fig. 5 demonstrates initialisation invariance, confirming the
result of Eq. (5). The measures are shown for each different

starting point, and show that very similar measures are
achieved, reflecting visual analysis of these results. The
centre of the ellipse has been displaced downwards in the
left hand image and upwards in the middle image. The force
field structure is essentially preserved across the three
images and the location of the potential wells is the same
in each case. The rightmost image shows an initialisation
along the borders of the image at intervals of 20 pixels.
Naturally, it is chance whether the ellipse starting points
coincide with one of the field lines. This is illustrated in
the central image where a left hand well is formed from
three field lines, as opposed to two for the other initialisa-
tions. Clearly the result could vary with the number of
ellipse points, especially if the number was very small
where wells naturally would be omitted as no field lines
would converge to them. This suggests simply that the
number of initialisation points should be sufficiently large
and widely distributed so as to ensure that all wells will be
extracted.

Fig. 6 demonstrates scale invariance, confirming the
result of Eq. (6) (but note that quantisation effects were
not included in the earlier analysis). The descriptions of
the wells produce very similar results. The structure of the
force field is preserved when an image is captured and
transformed at lower resolution. The images decrease in
resolution from left to right, being 261 X 176, 154 X 100

Medium Noise

Severe Noise

Fig. 7. Illustration of noise tolerance.
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anwd = 0.88,wdir = 5.88

anwd = 0.92wdir = 8.17

anwd = 0.75,wdir = 4.58 anwd = 0.95,wdir

anwd = 0.86,wdir = 4.02

Fig. 8. Uniqueness of well and channel descriptions.

and 77 X 50 pixels, respectively. This is important since it
implies that scale space techniques can be employed so that
a low-resolution image could be used to locate a target’s
position and a higher resolution version could then be used
to refine feature information.

Noise tolerance is demonstrated in Fig. 7 where it is seen
that the force field structure is essentially preserved in the
presence of Gaussian noise. Notice that even though
the channels begin to break up into individual wells in the
presence of severe noise, that the channel outline is still
clearly discernible. By this, an analysis of the position of
the wells is inappropriate here, but a description of the
channels is likely to produce similar results, for the same
ear, when the noise increases.

Fig. 8 demonstrates that nine different ears produce
quite different feature vectors and that potential chan-
nels and well locations are unique to each image.
Further, the measures are quite different to those for
Figs. 5 and 6 (which are those for a different ear),
which show that this small database can indeed be
discriminated by these measures. Clearly, a richer selec-
tion of measures will emphasise this effect. Note that in
the lower right part of the ear, channel formation
appears to behave with medial axis properties; the chan-
nels’ course being influenced both by the corner of the
notch and the rim to the left.

Future work, on a large database, will aim to confirm the
potential for this technique in ear recognition aiming not
only to use the positions of the wells, but also to investigate
the potential of channel description for recognition
purposes. Clearly, using ears as a biometric is at an explora-
tory stage and further work will seek to develop a database
that includes variation in sex, age, ethnic origin, jewellery,
hair and other factors.

5. Conclusions and further work

We have developed a new feature extraction technique,
targeted primarily at ear biometrics, with remarkable
invariance to initialisation and scaling, and which demon-
strates good noise tolerance and promising recognition
capability. The beauty of this technique is that an explicit
description of the ear topology is not necessary and extracting
the ear biometric is simplicity by itself—merely follows the
force field lines and observe eventual -clustering of
coordinates. Taking account of the channel shape and ulti-
mately the underlying shape of the energy surface will increase
the level of detail in the description to meet any demand.

Whilst the force field transform has been demonstrated in
the context of ear biometrics, we feel that it is an important
new development in its own right. We aim later to investi-
gate its potential in other application domains. An important
aspect of the transformation is the fact that it is similar to a
natural process, namely the formation of electric fields in
the vicinity of electric charge distributions, suggesting the
prospect of a solid state device with direct image to force
field conversion in real time. Naturally, as the present
approach is computationally demanding we already aim to
develop means to improve its computation.

We have shown that the force field transform can be
applied in two dimensions to assist with ear recognition.
However, since the formulation is couched in vector form,
the concept could generalise to higher dimensional
problems. Whilst the two dimensional case is easily
depicted, the N-dimensional case can only be interpreted
numerically. Full field solutions have been used to date to
establish a reliable baseline against which approximate
solutions can be compared and we aim to investigate its
generalisation capability to higher dimensions.
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