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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING

ELECTRONICS AND COMPUTER SCIENCE DEPARTMENT

Doctor of Philosophy

Non-Invasive Multi-View 3D Dynamic Model Extraction

by Karl J Sharman

A non-invasive system is presented which is capable of extracting and describing

the three-dimensional nature of human gait thereby extending the potential use of

gait as a biometric. Of current three-dimensional systems, those using multiple

views appear to be the most suitable. Reformulating the three-dimensional anal-

ysis algorithm known as Volume Intersection as an evidence gathering process for

abstract scene reconstruction provides a new way to overcome concavities and to

handle noise and occlusion.

After analysis of the standard voxel-based three-dimensional representation, a

new data representation called 2.75D is suggested which allows the scene to be

analysed at the most appropriate resolution, avoiding further discretisation.

With a sequence of three-dimensional frames, another evidence gathering algo-

rithm is applied to extract and describe the motion of moving objects. No current

techniques have exploited the sequence as a whole during such an operation and in

this thesis, a method to incorporate successive frames, and therefore time, as an

additional dimension to the extraction process is described.

Results on synthetic and real images show that the techniques do indeed process

a multi-view image sequence to derive the parameters of interest, thereby provid-

ing a suitable basis for future development as a marker-less three-dimensional gait

analysis system. In particular, the parameters of a ball moving under the influence

of gravity are extracted with accuracy from a 3D scene. Also, a walking human

is extracted and overlaying the result onto the original images confirms that the

correct extraction has been made; the result is also supported by medical studies.
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Chapter 1

Introduction

Emerging work has highlighted the potential of human gait as a biometric [60].

Generalised application of gait recognition mandates research into the development

of a three-dimensional (3D) analysis system. This system must be able to handle

known traits, especially since gait is inherently self occluding: one leg can obscure

the other; arms (and apparel) can hide the legs. Further, for recognition to be of

application potential, the system is required to be non-invasive, without subject

contact. Finally, it is likely that recognition by gait will encounter images of poor

quality (such as surveillance videos) suggesting that the capability to handle noise

should be considered at the outset.

Having stated the motivation of this research, it is important to stress that the

intention was to produce a generic solution, with gait analysis being used simply as

an example. Indeed, in this thesis many other examples are described, including the

extraction of the acceleration due to gravity acting on a thrown basketball. There-

fore, it is not the aim of this thesis to debate the viability of gait as a biometric, but

merely to indicate a method in which gait patterns can be described and extracted.

Recently, a multi-view technique has been proposed for 3D moving object anal-

ysis. This uses Volume Intersection (VI) separately on each set of frames that are

taken at the same instance of time and then tracks the object through the sequence

[10]. We shall show that VI appears to bear close similarity to evidence gathering

procedures. This is of special interest since it is well known that evidence gather-

ing has performance advantages in respect of the practical factors discussed above,

namely the ability to handle noise and occlusion. By performing VI with evidence

gathering we will not only confer noise tolerance but also allow the accommodation

of image sequences in their entirety, removing the requirement for tracking.

We show how VI can be formulated in grey-scale, thus removing the need for

segmentation (a process called ‘voxel coloring’ [73]). We also show how image

sequences can be processed to extract moving 3D objects. However, as will be

discovered, three systems are actually proposed, with this grey-scale VI system
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being the basis of just one. The other systems include one that is based upon the

segmented 2D images without the requirement for 3D reconstruction techniques,

and also one that is based upon a novel representation that can analyse 3D scenes

with optimum fidelity. The complete systems will be contrasted and compared, and

their suitability for different scenarios evaluated.

1.1 Gait as a biometric

Today’s society increasingly needs reliable methods of identifying an individual.

Older systems rely on ownership, such as of documents but these have proved to

be too easily forged; futuristic plans involve implanting micro-chip tags, but this

would require a great deal of persuasion for social acceptance. Biometrics enable

naturally occurring physiological measurements to be the identifiers of the person.

For nearly a century, the assumption that fingerprints are unique has led to

it being used as a biometric in order to capture criminals, and more recently, for

access control. The other well documented ‘fingerprint’ is that of DNA which is also

considered to be a precise method for identification, except where identical twins

are concerned. There is, however, a requirement for more identifiers to be available,

especially for forensic use. For example, a thief would now more than likely wear

gloves, and obtaining the DNA of a bank-robber would be practically impossible,

given the large numbers of people that would have passed through the scene of the

crime.

Other biometrics that are being studied include face recognition, retina iden-

tification, hand geometry, voice patterns, and even vein patterns, all of which are

physical characteristics, and handwriting which is a behavioural trait. These are

all applicable for identification at close proximity, and thus can be used as methods

of access control. However it would be impossible to identify an individual from a

distance, which is just one of the advantages of gait analysis.

It has long been observed that gait can be used to identify a person, and Shake-

speare makes several such claims, for example, in Julius Caesar, ACT I, Scene iii

Casca

Cassius

Stand close awhile, for here comes one in haste.

’Tis Cinna; I do know him by his gait;

He is a friend.

However, for most cases, there are additional clues to the identity of the person

such as the sound of the shoes, the outline of the person, and the clothing. Psy-

chologists have devised experiments, commonly using dynamic point-light arrays,

that indicate that individuals can indeed be recognised by their gait. Nixon et al.

[60] discuss the validity of using gait as a biometric.
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1.1.1 Current methods of gait analysis

There are two lines of research regarding automatic gait recognition: model- and

statistical-based algorithms. A number of approaches have been reported [60] but

the work presented here focuses more on a model-based system [15]. By utilising the

robustness of the Velocity Hough Transform developed by Nash et al. [59], Cunado

et al. [15] fit an harmonic model to the upper leg. The variance in the harmonics

is used for identification, or more precisely the phase spectrum weighted by the

magnitude spectrum. In essence this project is a continuation of this work, adding

the third dimension so as to allow for the full range of motion.

1.2 Analysis of possible solutions

From the outset, four requirements were defined, having been specified by the future

application of extracting gait patterns suitable for use as a biometric:

1. Non-invasive: The system must not place any requirements on the dynamic

model being sought, nor must it invade the scene that it is witnessing.

2. Abstract scene capability: The system must attempt to handle real-world

scenes.

3. 3D temporal model: The only a priori information is a mathematical model

for the object being sought.

4. Noise handling: The system must be able to handle noise.

Note that, for the latter point, there are actually three sources of noise that must

be considered: those due to the initial image capture, those due to other objects

in the scene, and those inherent in the subject. Since human gait is used as an

example of the technique, it is important to note that gait is self-occluding, and

thus the model introduces its own form of noise. Noise can also be introduced by the

processing system itself, and as will be demonstrated, this can produce significant

effects.

As will be seen, these requirements place considerable restraints on the possible

systems that can be employed.

1.3 Acquiring 3D data

Although a 3D temporal model is to be used to describe the dynamics of the object

that is to be extracted, this does not rule out the possibility of using standard 2D

image sequences as the basis of the extraction of the object. A system that extends

the model described by Cunado et al. [15] (see section 1.4.1) to include the third

dimension can be envisaged. In fact, as will be seen, this research describes one such

system that is based solely upon 2D image sequences, although the use of multiple

image sequences really implies that it uses a 3D data source.
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A decision was made from the outset of this research: since 3D temporal models

were being used, for ease of interpretation it would be logical to analyse data in the

3D domain. This thus implied that a means of acquiring 3D data was required.

There are two distinct methods of capturing 3D data namely active and passive.

Active methods include using range scanners which project light onto a surface

that reflects it into a sensor, thereby triangulating the surface. Current methods

to acquire models by this technology have their emphasis on merging noisy range

data [17, 21, 31]. Depending on the nature of the range data, terms such as ‘height

field’ or 2.5D are often used; these latter terms cannot be used, for example, in

conjunction with the research by Hilton et al. [32] where a study was made of

range data that was not presented on a regular 2D grid. The term 2.5D, however,

indicates that a single scan is incapable of describing a full 3D world, but provides

depth information to a specific position that standard 2D data does not provide.

Medical imaging techniques such as ultrasound provide a (noisy) alternative method

of acquiring full 3D data, as explored by Carr et al. [11].

Unfortunately, such active methods are unsuitable for our application, falling

foul of the requirement for the system to be non-invasive; laser range scanners are

also reportedly poor for certain materials and over long distances. The alternative

is thus passive sensing, with CCTV cameras being an obvious and commonplace

sensing equipment. Indeed, it would be ideal if the proposed gait recognition sys-

tem could be used with the security CCTV cameras already in place around our

environment.

Since humans can infer 3D geometry with monocular vision, it could be con-

cluded that machines should also be able to do so. Cues such as texture [69], shading

[43], and focus [20, 72, 91] (a form of active sensing), are all being investigated [3],

however, extrapolation must be made using alternative prior information and ex-

pectation. This gives rise to a great number of optical illusions that even the highly

developed human vision system suffers from. Focusing also requires a more active

system where the individual camera properties can be adjusted in real time. The

use of expected information thus deems monocular vision using cues as unsuitable

due to the requirement to analyse abstract scenes.

Binocular, stereo, vision is another solution for constructing a 3D world, how-

ever, the discretisation of the sampling methods has shown that this is currently

infeasible. Many, including Blostein and Huang [8], quantify the errors involved,

given the correspondences between the two views. Das and Ahuja [20] formulated

the error when combining stereo vision with other depth cue methods, including

focus, to reduce the errors involved, however, these alternative methods are not

suitable, as discussed above. Since the application of biometrics requires a mod-

erate level of accuracy in the measurements, stereo vision is believed not to be a
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viable source for 3D data. Stereo vision is also prone to optical illusion, such as

the increasingly popular ‘magic eye’ posters where the eyes observe slightly differ-

ent views that force the perspective inferred. An alternative to stereo is used by

Rander et al. [67] and Kanade et al. [38] where 51 cameras were placed around a

scene and multiple pairs of these cameras were used to produce a reconstruction

that was better than that achievable from a single stereo pair. However, using so

many cameras restricts the use to only a handful of applications, and it certainly

does not lend itself to a practical surveillance solution.

An increasingly common choice for the construction of 3D data is to use the

more generalised description of multiple views, be it with multiple cameras taking

views at the same time, or a single camera that is repositioned around a static

scene. Beardsley et al. [7] presented a method of analysing video data of an object,

taken by a camcorder; the object was static, and thus the problem is actually not

monocular. Their method did not require the cameras to be calibrated and the

successful extraction of a building was demonstrated. However, the use of a form of

correspondence between images indicates that the algorithm will probably not be

successful for images other than those containing planar information. Algorithms

that use corresponding points and edges in corresponding images often are unable

to handle curved objects—examples include robots that can successfully navigate

rooms until they encounter a leg or a waste bin. The alternative to these algorithms

are those that work on segmented images; these are also known as silhouette-based

algorithms.

1.3.1 Silhouette-based algorithms

The advantage of silhouette-based algorithms over stereo algorithms is that no

registration is required between views, thus increasing the ability to handle abstract

scenes. Having said this, the assumption being made is that the object to be

described can be segmented from the background; as will be found in section 1.3.3

and chapter 2, this assumption can be obviated using colour-based algorithms.

Unfortunately, these silhouette-based algorithms require camera calibration in-

formation, for example the cameras’ positions and orientations in space, which has

often been shown to be unnecessary by the point- and line-based algorithms. This

information would not be hard to obtain from static or even dynamic surveillance

video cameras, due to the availability of camera calibration algorithms [87, 88], and

thus this is the one additional piece of a priori information that will be utilised.

The root of all the silhouette-based algorithms is Volume Intersection (VI), as

illustrated in figure 1.1. In this figure, two segmented images are seen, forming 2D

shapes that are the letters ‘V’ and ‘I’. These segmented images were formed from

the capture of some 3D shape with the capture process defined by a mathematical

5



Figure 1.1: Volume Intersection.

mapping. Therefore to calculate the original shape, a reverse mapping is used which

projects the segmented images back into the 3D space; it is the intersection of these

projecting volumes that contains the original 3D shape.

Much of the early work did not model the camera using a conic or perspective

projection (i.e., one in which objects appear smaller as they get further from the

camera), but with the cylindrical or orthogonal projection where an object appears

the same size no matter how far away it is from the camera. One of the reasons for

this was the emphasis on real-time results, which for these early systems resulted

in approximations being required. However, the other reason was that many of the

early approaches involved projecting the objects as polyhedra, often using rectilinear

parallelepipeds as a means of describing the reconstructed objects [54, 41]. Martin

and Aggarwal [54] used a three-layered tree structure to represent the object, with

the rectilinear parallelepipeds being the 3D equivalent to the pixels in the original

image, whereas Kim and Aggarwal [41] used varying sizes of parallelepipeds to

represent the object. Kim and Aggarwal [41] also only permitted the use of three

views of the object, and these views had to be mutually orthogonal.

These orthogonally projected systems have limited use, since most capture meth-

ods use a perspective projection, but using such contour-based methods for perspec-

tive projections increases the complexity of the shapes that need to be represented.

However, another representation has been suggested that would describe the scene

by regular cubes, comparable to the 2D pixel array used for images. Although this

was an approximation, the regularity was a great benefit, especially as the results

could be described using octrees. Octrees (cf. quadtrees in 2D), represent the object

by various sizes of cubes; if a large cube is known to exist solely inside or outside

the object, it can remain so, however, a cube that lies on the border is broken down

into eight smaller cubes. This is an efficient method for storing the necessary binary

data, and the initial approximation is dependent solely on how small the cubes are

permitted to become. Hong and Shneier [33] and Noborio [61] demonstrated the use

6



of such a structure, and, similar to the previous work, used edge data to calculate

the intersecting cubes, but also used a perspective projection.

Ahuja and Veenstra [4] and Chien and Aggarwal [13] returned to the orthogonal

projection and the use of restricted views, but unlike the aforementioned research,

no edge data was used, and instead the binary pixel image data was used for the test-

ing, which was in the form of 2D quad-trees or similar. However, it was Potmesil

[63] who described the simplest and most versatile method of octree-generation,

where perspective cameras from any direction were permitted. This algorithm dif-

fered from the others by the fact that the 3D octree was mapped onto the images,

instead of the images being projected through the space. To test an octree block

for inclusion, the pixels that the block would map to were tested; if all the pixels

were foreground or background, the block was allowed or disallowed respectively,

whereas if only some of the pixels were foreground, the block was broken down into

its eight smaller components which would then be tested individually. Similar but

later research by Szeliski [86] differed only in that sub-levels of the octree were only

checked after all of the views had confirmed the previous level, therefore offering a

possible speed improvement.

The method of perspectively projecting pixels into the 3D space and testing for

them individually has many hazards due to the discrete nature of both the images

and the 3D grid, as highlighted by the work of Kawato [39, 40]. The research

demonstrated the complications caused by the two problems associated with this

back-projection method: multiple ‘votes’ by a single pixel for a close voxel, and no

‘votes’ by a pixel for a distant voxel. This voting method of 3D structure generation

is likened to the Hough Transform, described in sections 1.4.1 & 2.3.

The VI algorithm is a simple yet effective method for the capture of 3D mod-

els. With a correct initial segmentation the object is known to exist within the

resulting volume. Turntable sequences combined with VI provide a cheap means to

produce such models, as demonstrated by Fitzgibbon et al. [24] who assumed no

prior knowledge of the system, such as rotation speed, camera position and cali-

bration. However, all of these techniques rely on the object having been segmented

from the background, which is not favourable for handling abstract scenes. The

binary segmentation also has implications for how well the original object can be

described; the object is known to exist within the volume of intersection, but this

volume will at best be described by the visual hull of the object.

1.3.2 The visual hull

The concavities that Martin and Aggarwal [54] realised would cause error in the

reconstructed object have been investigated and a feature known as the visual hull

has been defined by Laurentini [48, 49, 50] and Petitjean [62]. Figure 1.2 shows
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Figure 1.2: The visual hull’s inactive surface encloses a region that cannot be deter-
mined.

a 3D shape that has a region of uncertainty, represented by the light-grey wedge

shape, when it is reconstructed from silhouette images using VI. The content of the

grey region is not evident in any view and so will not be reconstructed with fidelity

in the 3D model. The visual hull therefore has regions that are part of the original

object which are enclosed within active surfaces, and regions that are not, which

are enclosed within inactive surfaces.

Laurentini [48] actually defined two types of visual hull, depending on the per-

mitted camera locations. For example, in most situations, the camera is at least a

small distance away from the object, and therefore it is outside its convex hull. The

convex hull of an object is formed by enclosing the object in a surface that is void of

concavities; for the example in figure 1.2, the convex hull would actually be a cube.

If the viewpoints are restricted to being outside the convex hull, the external visual

hull (or just simply the visual hull) is described, producing the response seen in

figure 1.2. However, if the viewpoints are permitted to explore positions inside the

convex hull, a different hull, named the internal visual hull, is formed. Laurentini

[48] defined a set of inequalities relating the described volumes:

O ≤ IVH(O) ≤ VH(O) ≤ CH(O) (1.1)

This thus indicates that the convex hull (CH) is the poorest approximation of the

object O, followed by the (external) visual hull (VH), and then the internal hull

(IVH). Note that even the internal visual hull cannot be guaranteed to describe the

original object; for example, a hollow object will always appear solid.

In this thesis, a further hull is described, that being the observed visual hull;

since the (external) visual hull is that which is formed, in general, by all possible

view points external to the convex hull, a means to describe the hull generated from

just the limited number of views was required. In most contexts, it is this hull that

is implied, however, in chapter 5 a clearer distinction will be required.

With such restricted viewpoints, a feature of the VI algorithm known as phantom

shapes become noticeable. Figure 1.3 illustrates the phantom shapes, showing the
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(a) (b)
(a) the original scene showing the field of view of two cameras and two subjects.
(b) the reconstructed scene which contains two phantom shapes.

Figure 1.3: Phantom shapes.

original scene containing two squares. As can be seen in figure 1.3b, these squares

are resolved to reside within the described intersecting volume, but also two other

disconnected blocks are described. Only with more views can these phantom shapes

be removed.

1.3.3 Non-segmented 3D reconstruction

There have been few efforts in reconstructing 3D scenes in a similar manner to

VI without using segmentation, although in the past five years, this has become

a popular research area. As will be seen, this research is mainly being performed

concurrently by two research groups, and the overlap between the two approaches

is extremely large, and at times the distinction is trivial.

Efforts have been made to produce such grey-scale or colour algorithms based

upon VI, stemming from research by Seitz and Dyer [73, 74] entitled ‘Voxel Color-

ing’. Here, construction of the scene was by depth order (starting at the closest) of

voxels in the resulting voxel space. Each voxel was determined to be either coloured

or transparent, and if coloured it would have occluding properties on later voting

hence the need to perform the sweep of the voxel-space in depth order. This research

has been continued by Prock and Dyer [65] who explored various approximations

that could be made to quicken the voxel coloring algorithm.

Eisert et al. [23] produced a similar result to Seitz and Dyer [73] without the

need for depth ordering, by using an iterative approach to the algorithm. The first

stage made multiple hypotheses about the shade of each voxel; for each combination

of images that could see a voxel, a hypothesis was made, dependent on the difference

between the two images’ proposed shade for it. Poor hypotheses were removed, for

voxels on the surface of the shape relative to a single view, and if all hypotheses

were ‘removed’, the voxel was removed. Also, Culbertson et al. [14] have described

the ‘generalised voxel coloring’ algorithm, which differs from the algorithm of Eisert

et al. [23] by the fact that a voxel only has a single hypothesis, determined by the

9



combination of all the views that can see it. Also, a Layered Depth Image (LDI) is

used to speed up the process between iterations: LDIs are discussed in section 3.12.

Bonet and Viola [9] have also recently created ‘roxels’—responsibility weighted

voxels. This reconstruction technique is similar to that of Eisert et al. [23], however,

the hypotheses are not binary, thereby permitting semi-transparent and opaque

structures to be modelled. Note is also made that occlusion can cause incorrect hy-

potheses in the first stage of reconstruction where the initial estimate of the scene

is made. The new 3D reconstruction algorithm in this thesis has many similari-

ties to the work of Culbertson et al. [14], but introduces the concept of sides of

voxels that are visible from different views. This prevents views that oppose each

other providing conflicting information since they are sensing rays that could not

have originated from the same surface. The commonality between the algorithms

outlined above and the one presented in this report was due to the latter being

developed independently and at the same time as that of Culbertson et al. [14] and

Eisert et al. [23].

Kutulakos and Seitz [45] have directly continued the work of Seitz and Dyer

[73, 74] and produced an algorithm termed ‘shape by space carving’. The general

case is not dissimilar to that of Culbertson et al. [14], but ‘hypothesis’ erosion (i.e.,

voxel carving) only occurs at the surface of the predicted object, thus, the algo-

rithm can be more conservative internally, as well as being slow since only a single

voxel can be properly carved per iteration. Methods to decrease the processing time

were presented, however, these rely on being able to place a depth order on vox-

els: if this cannot be achieved, six multiple-sweeps should be performed along the

different directions along each of the axes, with each only considering the relevant

subsets of cameras—in essence it could be concluded that this is providing a similar

contribution to the algorithm that voxels with sides could bring.

Non-segmented 3D reconstruction algorithms, as well as having an equivalent

visual hull, also suffer from the same limited region of study that VI is burdened

with when voxels or octrees are used; all the above non-segmented 3D reconstruction

algorithms are voxel-based. If the voxel array is not correctly positioned from

the start of processing, the fidelity of the reconstruction will be extremely poor;

also, scenes that are effectively limitless, will introduce a great deal of noise due

to accidental correspondences between pixels. Slabaugh et al. [81] attempted to

solve this ‘infinite domain’ problem by using an irregular voxel space where the

outer voxels were larger than the voxels around the estimated area of interest. In

chapter 3, a set of novel algorithms that do not use voxels (thus do not suffer from

incorrectly positioned voxel spaces) and do not suffer from the problems of the

infinite domain are presented.
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1.3.4 Alternative methods

One of the proposals on 3D reconstruction and understanding is the plenoptic func-

tion of the scene, introduced by Landy and Movshon [47], which attempts to model

the rays of light in a scene. This leads to a 5D space for a static scene, since there

are three degrees of freedom associated with the position in space, and two degrees

of freedom associated with the angle of the passing ray. Similar terms include the

lumigraph [27] and the lightfield [52].

Continuing their research, Seitz and Kutulakos [75] described a plenoptic func-

tion of a scene by simply using a variation of their voxel coloring algorithm, thereby

reducing the function to just 3D. However, Gortler et al. [27] and Levoy and Hanra-

han [52] both used the full plenoptic function definition, but by enclosing the shape

within a boundary (as found from the visual hull), they reduced the problem to

just four dimensions. This 4D space was subsequently filled by all the information

from the viewing cameras, obviating the requirement for correspondence matching.

The scene could then be rendered from ‘near’-novel views, i.e., from small pertur-

bations of one of the original camera angles. This is currently a computer graphics

technique, however, Kutulakos [46] has demonstrated a means of extracting shape

information from these structures.

A ‘quasi-static’ example is the algorithm described by Vedula et al. [90]. This

algorithm works in a similar manner to the space-carving and voxel coloring al-

gorithms described above, however, this algorithm uses two adjacent frames from

each camera sequence. The motivation behind this is that neighbouring frames

will not be that dissimilar and thus ruling out nonsensical results by studying, in

essence, flow should improve the reconstruction. The algorithm works using a 6D

space, with three dimensions used to indicate the position of the voxel in the first

frame and the other three to indicate the relative position of the voxel in the second

frame. However, once again, there is the requirement to perform the analysis using

depth-ordered pixels, and thus this would not be suitable for the general case.

The last example, which may be worth considering for future work, is that

described by Snow et al. [82] where the VI algorithm is reformulated as an energy

minimisation problem. The described energy function also deters discontinuities,

thus providing noise tolerance to the silhouette images. This added noise tolerance

can be of obvious benefit, however, the algorithm can no longer guarantee that a

general object lies within the described intersection.

1.4 Dynamic extraction

There is a plethora of algorithms available to extract the dynamic parameters of

moving bodies in both the 2D and 3D domains [12], with a large emphasis be-

ing placed on describing human motion [25]. There are two distinct categories
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of algorithms, those that use statistical methods and those that are model-based.

Statistical-based methods have currently shown promising results, although by not

properly modeling or understanding the scene and the object will undoubtedly lead

to problems when a more general solution is required rather than the, normally, re-

stricted scenarios that are used for demonstrations. As already indicated, this work

is based upon the use of models which, due to the increase in computing power and

descriptive capability, are becoming a more closely studied area of research.

In order to be able to describe the models, it is of course necessary to under-

stand the forms of models that may be encountered. Aggarwal et al. [1, 2] defined

a number of categories, including: rigid motion, articulated motion and elastic mo-

tion. Many of the motion algorithms [1, 2] require correspondences to be made

between successive images. As was emphasised in the previous section, using cor-

respondences places certain assumptions on the objects being viewed; for example,

many 2D correspondences will be corrupted by occlusion. The correspondences are

generally tracked from frame to frame, and thus they are assumed to move with

a fluid motion. The problems of poor correspondences have led to the use of low

pass filters and also estimators such as the Kalman filter, so that the object is more

successfully tracked [5, 19, 36, 44, 66, 68]. For such tracking algorithms, locating

suitable correspondences [78] and selecting the filter are paramount to the success

of the system.

The manner in which the object is modelled is very variable, ranging from

simple tracking of 2D points [57], to volumes such as that described by McInerney

and Terzopoulos [56] who used a representation similar to a 3D snake. One example

using VI was reported by Joshi et al. [35] who assumed a rigid 3D model and tracked

the intersection through a sequence, refining the fidelity of the intersection on a

frame-by-frame basis. Similarly, Bottino et al. [10] described an algorithm where

a 3D model was produced using VI and a skeletal model was fitted using a least

squares method. There was no explicit filtering performed except that a succeeding

frame was seeded from the skeleton described by the previous frame. However,

this algorithm was dependent on successful segmentation of the 2D images. The

research presented in this thesis is similar in aim, although it is phrased as an

evidence gathering technique, describing the object only once the entire sequence

(or selected sub-section) is analysed: the emphasis is on noise tolerance since real

data is to be analysed.

1.4.1 Evidence gathering: the Hough Transform and Template Matching

Evidence gathering, as the name suggests, is a means by which information is

accrued before a decision about any outcome is decided. The most noted algorithm

is the Hough Transform (HT) described by Hough [34], who devised it to locate lines
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in bubble tanks used in nuclear physics experiments. It is a transform as it takes a

segmented image and converts it into a parameter space, with this conversion being

reversible (although this may be a lengthy process).

The Hough Transform is based upon a voting mechanism, using an accumulator

space in which each cell describes the votes accrued to a particular set of param-

eters; each feature in the segmented image increments all the possible cells whose

parameters could have caused the feature to be present. For example, the formula-

tion described by Hough [34] was to locate lines in an image, with a line described

by two parameters, namely the gradient, m, and the y-intercept, c. For each feature

point in the image, all the possible combinations of m and c were calculated, and

the respective cells in the two dimensional (2D) accumulator, or parameter, space

were incremented. This resulted in lines that were present in the images voting for

a particular combination of parameters more than others, leading to peaks in the

accumulator space which could be searched for.

The original formulation, which was brought to the attention of the image pro-

cessing community by Rosenfeld [70], is hindered by the fact that the parameters

are unbounded, and thus the first major improvement to this was made by Duda

and Hart [22] who selected a more suitable parametrisation of the problem using

a polar coordinate system. Similarly, by changing the types of parameters, other

features were found to be extractable; for example circles [42] and even abstract

shapes using the Generalised HT (GHT) in which an object is described by a con-

tour model that can be scaled and rotated [6]. Both of these examples require that

the edges in the images are extracted by, for example, the Canny edge detector.

Problems, however, arise with the HT regarding the discrete nature of the source

data and parameter space. The discrete nature may cause peaks to be spread out

over several parameter sets, or a cell with a high vote may actually be caused

by many insignificant features; this thus makes the parameter space noisy. Some

have attempted to model this into the HT itself, for example the Analytic HT

[18], whereas a common method is to perform some form of smoothing filter to the

parameter space before the peaks are located. An excellent review paper of the HT,

its derivatives, and such post-processing filters was written by Leavers [51].

Bridging the domains, Vaz and Cyganski [89] demonstrated a method in which

the GHT is used to locate a 3D shape from a 2D image, by introducing rotation and

translation parameters. This is thus one method that could have been selected to

analyse 2D images, however, as will be seen, a more generic 3D modelling method

was selected. Interestingly, Hamano and Ishii [29] described an algorithm that used

the voting structure of the Hough Transform, but where the votes are related to the

presence of a 3D point. Multiple images from a moving camera were analysed, and

each feature in each image was in essence back projected through the accumulator
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space; this thus amounts to an alternative description of VI, as will be further

examined in chapter 2.

Bridging an alternative domain, there have been many recent analyses of HTs

that can be used to extract moving objects in a sequence of frames. It is this research

that can be used in place of tracking methods. For example, Nash et al. [59] describe

the Velocity HT (VHT), in which a circle moving with constant velocity is sought;

this was shown to have increased noise tolerance over that of extracting circles on a

frame-by-frame basis and then using regression to calculate the velocity. Similarly,

Grant et al. [28] described a Constant Velocity HT (CVHT) which is the temporal

extension of a form of the GHT. One of the novel areas of research described in this

thesis is a means to analyse abstract 3D objects temporally, but the form of the

source data is volumetric rather than surface- or line-based.

Probabilistic HTs

As HTs are used to analyse more complex models, the parameter space increases

exponentially in size, thus representing it becomes impractical. Research has been

made into probabilistic HTs whose aims are to reduce both the amount of processing

required to perform the voting and the size of the resources required to represent

the parameter space.

One method is to use a pyramidal or multi-resolutional HT where initially a

coarse resolution of parameters is selected, thus enabling an efficient method to

produce an estimate. Analysing this estimate, only the ranges of parameters that

correspond to the cells with a large number of votes are tested at a higher resolution.

This method is used, for example, by Silberberg et al. [79] who extracted a 3D object

from multiple orthogonal 2D images using line segments. However, such coarse-to-

fine algorithms must be used with caution since, especially for line data, the peaks

may be very narrow and thus could easily be missed in the original estimate.

Alternatives to this include the Randomized HT (RHT), developed by Xu et al.

[92] and extended by Kälviäinen [37], where it is assumed that if feature pixels in

the image are selected at random any significant line will be found since it should

have a dominating effect on the accumulator space. Their algorithm also selects

two feature pixels at one time and assuming a line exists between the two, hence

only one cell in the accumulator space is incremented rather than all the possible

lines that could go through one pixel. Also, the accumulator space is represented

as a sparse matrix to reduce memory requirements.

Unfortunately the RHT is unlikely to be successful for high resolution and high

dimensional parameter spaces, and thus a ‘guided’ random algorithm has become of

great interest to researchers in recent years. Genetic Algorithms (GAs), described

in detail in section 4.4, provide a method by which random points in the parameter

space can be analysed and if the votes for those points are relatively high, the
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neighbourhood may also be studied. Yin [94] and Ser et al. [76] used such methods

to implement the HT for circles and the GHT respectively; Yamany et al. [93] used

GAs with the HT to match a 3D surface model onto 3D object data, although

they also limited the range of parameters. Finally, Cunado et al. [15, 16] utilised

a GA-based HT to extract 2D gait signatures from people walking orthogonal to a

camera for use as a biometric, where a line with oscillatory motion was matched

against a thigh in an image sequence. It is upon this that the research presented

here is derived from, although the resulting formulation will be seen to be vastly

different.

Template Matching

GA-based HTs do not construct the accumulator space, but instead evaluate the fit-

ness of a particular parameter set, i.e., the fitness of an accumulator cell. Stockman

and Agrawala [85] and Sklansky [80] have shown that the HT-based algorithms are

in fact an efficient description of another algorithm known as Template Matching

(TM). This alternative algorithm is actually capable of producing the same accumu-

lator space, although it does this on a cell-by-cell basis, and hence TM is commonly

used to evaluate parameters for GA-based HTs; the algorithms, however, should

really be termed as GA-TM rather than GA-HT, although this misclassification is

due to the direction of the evolution of the research.

Since a cell in the HT accumulator space will sum up to the number of features

in the image that indicate the presence of the respective parameters, a single cell can

be evaluated with TM by testing all relevant features in the image. For example,

when seeking a straight line using the m and c parametrisation, TM will take a cell

in the accumulator space and then find all the pixels in the image that lie upon the

respective line. However, pixels on the template’s line may not actually be classified

as being features, and thus many extra comparisons are performed than in the HT

algorithm if the entire accumulator space is evaluated.

1.5 Systems

To meet the requirements listed in section 1.2, a number of possible systems was

considered as represented in figure 1.4. The systems are all non-invasive, using

only video information captured from multiple cameras. The systems also have

a good handling ability of abstract scenes since understanding the full scene or

even segmenting it is done on a frame-by-frame basis. The systems also share a

common method of subject extraction, using evidence gathering which is accredited

with good noise handling abilities. The evidence gathering algorithm makes use of

temporal 3D templates formed from the subject’s mathematical model.

The first system, figure 1.4a, initially extracts any movement by removing the

background, the results of which would be passed directly to the evidence gathering
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Figure 1.4: Appropriate systems for extracting 3D motion parameters.

algorithm which calculates the best fitness for the dynamic model in the scene.

The model is temporal and 3D in nature, but would be mapped onto the 2D static

images.

The second, figure 1.4b, would be to extract the moving objects in each of

the viewpoints, and then construct a 3D model, using a method such as VI. The

evidence gathering procedure would then analyse this 3D data. The results of this

method would, however, be similar to those of the first due to the projection of

the data being made before the analysis instead of as part of it. There are no

advantages over the first implementation, however, it could bring the disadvantage

of added noise as a result of the more discrete representation of the data if the voxel

representation is used, and if current computing limitations are to be noted.

The third, figure 1.4c, would be to analyse the viewpoints to produce a 3D

representation of the world, thus using shade and even colour for correspondence

purposes. As with the above methods, the analysis of the scene at this stage is

performed on a frame-by-frame basis. The dynamic information in this 3D scene
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would then be extracted by removal of the background, and the evidence gathering

procedure would then be used to parametrise the information. The advantage of

this is that understanding the nature of the 3D scene would enable localisation of

the subject to be performed more successfully. Since the first two methods yield

similar results, both can be claimed to be based upon VI, and as such both would

suffer from noise tolerance and also features of the algorithm such as the visual hull

and phantom shapes (see figures 1.2 & 1.3). This third method would thus produce

cleaner information for the extraction to be performed on.

Two separate approaches have thus been selected for analysis. The first is based

upon a 2D representation, where the 3D model is mapped to the 2D space. This

is based upon a VI approach (figure 1.4a). The second approach, based upon the

figure 1.4c, was split into two distinct representations of the 3D space. These

different representations, presented in the following chapters, are a voxel-based

grey-scale 3D data representation, and a new 2.75D full colour data representation.

The latter two systems both require the reconstruction of the scene before the

dynamic objects can be extracted. The analysis of real world scenes is simplified

because no models will be used in the reconstruction; real information will be

studied, and producing models for all the information that is likely to be seen

in a real world scene is currently impossible. The technique must analyse the

information on a frame-by-frame basis; modelling the behaviour of the cloth in

trousers is a very difficult process, thus performing the analysis in this way means

that all objects can be studied—solid, liquid, elastic etc. Models are applied to

extract and describe the various objects in the second stage of analysis of the 3D

data.

There will thus be multiple cameras so as to allow the capture of 3D data,

and these cameras must also be in synchronisation. This last point is important

since conferring information between frames that are not synchronised would reduce

the fidelity of the system; the result of the absence of modelling during the 3D

generation stage of the algorithm is that there can be no compensation of out-of-

phase cameras. Note, however, that the 2D-based algorithm of figure 1.4a would

be capable of handling out-of-sync cameras, so long as the relative timings are

known. On a practical level, it is believed that, for security applications, obtaining

synchronised camera data is not difficult, and may in many cases be the default

arrangement for a surveillance system since this allows the data to be more easily

switched onto monitors and recording devices.

1.6 Contributions

The grey-scale 3D reconstruction algorithm is novel and is very timely, in view of

the current research of contemporaries, with its main differences being not only
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the use of sides of voxels but also the statistical nature of the scene generation.

The basis of the 2.75D representation presented shows a similarity with two other

representations that are currently being developed as will be seen in section 3.12.

However, unlike these other examples, it is mathematically formalised, and also the

non-segmented scene reconstruction algorithm using it is believed to be unique; this

gives the ability to examine abstract scenes with the highest fidelity and being able

to handle near-infinite fields of view.

All of the research into the extraction of 3D dynamic parameters from 3D dy-

namic data using evidence gathering in conjunction with constructive solid geometry

(CSG) is novel, and thus the three completed systems described are also novel.

1.7 Publications associated with this thesis

During the course of this project, three papers have been written, with the first

personally presented at Austin, Texas in April 2000, and the second presented at

Amsterdam, Netherlands in July 2000. The third has been accepted for a conference

in Padova, Italy in June 2002. The papers are:

K. Sharman, M. Nixon and J. Carter. Non-Invasive 3D Dynamic Object Anal-

ysis. Proceedings of the 4th IEEE Southwest Symposium on Image Analysis and

Interpretation (SSIAI), pages 214–8, 2000.

K. Sharman, M. Nixon and J. Carter. Towards a Marker-Less Human Gait Anal-

ysis System. Proceedings of the XIXth International Society for Photogrammetry

and Remote Sensing (ISPRS), Vol XXXIII, 2000.

K. Sharman, M. Nixon and J. Carter. Extraction and Description of 3D (Ar-

ticulated) Moving Objects. Proceedings of 3D Data Processing Visualization and

Transmission (3DPVT), pages 664-7, 2002.

1.8 Thesis structure

The new research into the 3D scene capture and 3D dynamic object analysis is

described in chapter 2. Chapter 3 introduces the current research into a new repre-

sentation for the reconstruction of 3D scenes. Chapters 5 & 6 compare and contrast

the three systems with analysis of static and dynamic scenes respectively. Finally

chapter 7 indicates possible areas of research for future exploration to improve the

systems described, and concludes this report.
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Chapter 2

Three-dimensional scene

reconstruction

2.1 Introduction

All of the systems outlined in chapter 1 require multiple cameras, and thus in order

for a 3D model to be produced by correlating their information, it is necessary to

explain the basis of the image capture, which performs the reverse process. This

chapter presents the matrix transformation of the camera model that was used

throughout the research. The new voxel-based reconstruction algorithm is also de-

scribed, with its roots being shown from the model-less method, Volume Intersection

(VI). However, the results presented are for visual analysis only; chapter 5 provides

a more thorough analysis of this algorithm having described a suitable manner for

doing so in chapter 4.

2.2 Transformations

The underlying mathematics used in the capture of images by a camera is the

projective transformation; a synonym of this is the principle of collinearity. In this

section, this projection is described, starting with a basic model and then developing

it into a more descriptive and generic model.

2.2.1 The pin-hole camera model

The basis of the data capture is the pin-hole camera model. Figure 2.1 illustrates

how a point in 3D space is mapped onto the 2D image plane. This uses the math-

ematics of similar triangles, and can be described by:

x = f X
Z

y = f Y
Z

(2.1)

where x = (x, y) is the image coordinate, X = (X, Y, Z) is the point’s 3D

coordinate, and f is the effective focal length of the camera. Figure 2.1 also describes
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Figure 2.1: The pin-hole camera model.

the optical centre of the camera, the point through which all rays pass, and the

principal axis, which lies perpendicular to the image plane and which passes through

the principal point (the image centre).

This equation can be rewritten to show the mapping of the 3D point to the 2D

image point, with the use of matrix multiplication only:

Z

[
x

1

]
= Z


x

y

1

 =


fX

fY

Z

 =


f 0

f 0

1 0



X

Y

Z

1

 (2.2)

The increased number of dimensions for the image coordinates enables the factor Z

to be removed from the left-hand side of the equation, and instead a proportional

factor, λ can be introduced:

λ

[
x

1

]
= λ


x

y

1

 =


f 0

f 0

1 0


[

X

1

]
(2.3)

λ can be calculated from the equation yielded by the third row of the image vector,

and will later not be equivalent to Z.

2.2.2 Intrinsic parameters

Intrinsic parameters are those that arise as a result of a camera property, for example

the focal length f in equation 2.2. They need only be calculated for a particular

camera once, assuming that altering the focus does not affect them and that the

camera has a fixed focal length. Taking equation 2.3, the camera projection matrix

can be formalised, and a 3 × 3 matrix extracted that will be used to describe all
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of the intrinsic parameters:

λ


x

y

1

 = P

[
X

1

]
(2.4)

where the camera’s projection matrix, P is:

P = K
[
I|0
]

(2.5)

and where I is the 3 × 3 identity matrix, 0 is the 3-element null vector, and the

matrix K, commonly known as the camera calibration or intrinsic factor matrix, is

given by:

K =


f

f

1

 (2.6)

This matrix will now be generalised further by adding another intrinsic param-

eter, the principal point offset. For all cameras it is very likely that the lens will

not be completely parallel and central to the sensing array. Thus an offset would

be present for every 2D point, yielding:

K =


f px

f py

1

 (2.7)

where (px, py) is the camera’s principal point, defined as an offset in the 2D image

pixel array.

Up to now, it is assumed that the pixels are square, however, for CCD cameras

and for scanning-beam cameras this is not necessarily the case. Adding a scale

factor allows rectangular pixels to be described, but for certain types of camera,

the pixels may actually be parallelograms, and thus a shearing factor should also

be incorporated:

K =


f σf px

κf py

1

 (2.8)

where σ is a measure of skewness, and κ is a measure of the aspect ratio of the

pixels. This can be simplified by allowing the camera to have two focal lengths, one

along each of the axes of the image plane:
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K =


fx σfx px

fy py

1

 (2.9)

For CCD cameras, skewness is rarely an issue, and thus σ can be ignored.

2.2.3 Extrinsic parameters

The model so far has not allowed the camera to be placed at arbitrary points in

the world—it has been viewing the world from its own camera, or local, geometry.

Extrinsic parameters enable a global geometry to be realised by introducing the

3D location for the camera’s centre, (x0, y0, z0), and rotation factors for the image

plane in the 3D space, (θd, θe, θr), with the latter being described in figure 2.2.

These can be incorporated into equation 2.5, thus:

P = K R
[
I| −T

]
(2.10)

where T = [x0, y0, z0]T is the translation vector, and R is the 3 × 3 rotation matrix

given by multiplication of the individual rotation matrices:

R = Rd Re Rr (2.11)

θd
x
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z

θe

y

x-z plane

(a) (b)

θr

Line of latitude

Direction to the north pole

Top of view

(c)
a) the angle of direction equivalent to longitude, b) the angle of elevation, equivalent

to latitude, c) the angle of camera rotation.

Figure 2.2: The rotational angles of a camera.
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2.2.4 The complete projection

There are further camera parameters that cannot be represented using this matrix

mapping, including radial distortion where an image point is offset by an amount

proportional to its distance from the principal point. However, the camera’s pro-

jection matrix P, containing 6 extrinsic parameters and 5 intrinsic parameters, can

be summarised as:

P = K R
[
I| −T

] [ X

1

]
(2.12)

where:

K =


fx σfx px

fy py

1

 (2.13)

R = Rd Re Rr (2.14)

and T = [x0 y0 z0]T.

The matrix P is a projective transformation and thus has the properties that it

is an invertible mapping, and straight lines are mapped to other straight lines.

In this report, the projection matrix P is often extended to be a 4 × 4 square

matrix in order that the inverse can be easily evaluated and other manipulations

performed. The only effect this has is that image pixel coordinates must be rep-

resented by a 4D vector, with the additional element having the value of 1. Note,

however, that even after manipulation, the resulting matrix can still be represented

by a 4 × 3 matrix.

Finally, the local ‘intrinsic’ 3D geometry representation of a camera is defined to

be similar to a camera’s local geometry, but the 3D space is also affected by the in-

trinsic parameters, i.e., the entire projection matrix P is used for the manipulation,

not just the extrinsic part, R
[
I| −T

]
. Thus with such a representation, the image

plane is located at a distance of 1 in the z-axis, and is a regular grid comprised

of square pixels. Hence to obtain a pixel’s coordinates from a 3D point in such a

representation, all that is required is for the x and y coordinates to be divided by

the z coordinate.

These and further mathematical relationships regarding the projective, affine

and other transformations may be found in Hartley and Zisserman [30].

23



2.3 The 3D Hough Transform and VI

The 3D Hough Transform (3D HT), like VI, operates on silhouette images, where

the segmentation of the object has already been performed. It is thus only feasible

to act on images in which the object to be described can be separated from others

in the scene, and hence it is common to look only at one object in a scene, with

a background that can easily be removed. Both algorithms also require that the

cameras are calibrated prior to the combination of the information.

In essence, both methods project the source images through a 3D space. Where

the projections intersect with each other, a shape is formed. This can be seen

in figure 1.1 where one view sees the letter ‘V’, and the other the letter ‘I’. By

projecting these away from the cameras through the 3D space, an intersection is

produced. The 3D HT represents this intersection and also the projecting regions

in a 3D space represented by volume elements called voxels (cf. picture elements are

pixels). VI can use a voxel space, or additionally use an octree, where the space is

described by a tree structure with up to 8 possible branch nodes; the latter is not

of concern here.

However, projecting the image through the space is problematic for two reasons.

The first is that voxels ‘close’ to a camera will receive many more votes than those

far away because many more pixels will be able to vote for them. For example,

a voxel directly in front of a camera will receive the number of votes equal to the

number of pixels in the foreground of the respective image. This factor, though,

does not affect VI, only the 3D HT. The second is that as voxels get further away,

the voting will get sparse. More distant voxels appear smaller in the image, and

may actually be smaller than a source pixel. When this occurs, pixels need to vote

for more than one voxel at a given depth.

To alleviate these problems, the mapping is more simply performed in reverse,

i.e., mapping the voxel space onto the images. This introduces its own similar

difficulty, when a voxel maps onto several pixels. If this occurs, an average of the

area in the image that the voxel maps to must be calculated.

The 3D HT and VI constructs the object within an accumulator of voxels in

virtual space. This voxel space must be positioned, rotated and scaled as required

so that it covers the entire region of interest. Then, for each voxel in the voxel

space, mappings are made to all of the source images, using equation 2.4, taking

a corner of the voxel as its 3D point in space. These mappings will thus indicate

pixels on the images that correspond to that position in space. In VI, the voxel is

set to the value of 1 only if all of these pixels indicate that the point in space is 1.

In the 3D HT, a voting system is used, and thus the voxel accrues the value of the

number of views that have pixels that indicate that it is valid. This can be seen in

the pseudo-code listings 2.1 & 2.2.
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Initialise accumulator array with the value of 0
For each voxel (accumulator cell),

For each view
Map voxel onto an image pixel
If it maps to a valid pixel

If image pixel is set
increment accumulator cell

Listing 2.1: 3D HT pseudo-code.

Define an accumulator array
For each voxel (accumulator cell),

transparent = false
For each view

Map voxel onto an image pixel
If it maps to a valid pixel

If image pixel is not set
transparent = true

accumulator cell = NOT transparent

Listing 2.2: VI pseudo-code.

If the 3D HT algorithm also recorded the maximum possible number of votes

a particular voxel could achieve, i.e., increment another accumulator array without

testing to see whether the pixels are set, then a ratio of the number of votes to the

maximum number of votes possible could be calculated for each voxel. If the results

of this ratio were thresholded at the value of 1, they would yield the same binary

results as VI. The accumulator cell nature has been used by many without noting

its correspondence with the HT; for example, Snow et al. [82] describe, for use as a

comparison, a heuristic algorithm with improved noise tolerance over the standard

VI.

Concavities cannot be resolved by either method, as they lead to a visual hull—

volumes within the object that cannot be observed. Evidently both are constrained

to indicate existence only, although the Hough Transform has marginal noise toler-

ance since the resulting space need not be thresholded at the ratio value of 1.

2.4 The new voxel-based algorithm

2.4.1 The hypothesis and overview

To increase descriptive capability, grey scale can be incorporated into a new voting

process. The motivation behind this is that as humans can see into the visual

hull and interpret the shape within by using colour or just grey scale information,

then, by introducing grey scale, a machine should be able to do similarly. However,

for a model-less algorithm, such as will be described, a priori knowledge is not
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Figure 2.3: Flow chart of the new algorithm.

introduced, thus unexpected results can be produced. For example walls which we

assume to be flat, may not actually be predicted to be flat. It is due to the lack of

information that the algorithms predict the unexpected—with more cameras such

errors could be removed. However, this lack of a priori knowledge is of advantage

as the algorithms would not suffer from optical illusions which foul our own vision

system.

In VI, 2D points are projected as lines through a 3D space, and it is their

intersection that describes the visual hull which contains the object. This is thus

an attempt to invert the process of the original data capture. Our hypothesis is that

rays from a point in 3D space will be of a similar level of intensity. The assumption

being made is that the surfaces are Lambertian; these surfaces reflect light with

equal intensity in all directions, and thus appear equally bright from all directions.

Hence they only exhibit diffuse reflection and do not produce any mirror or specular

effects. This also implies that translucent non-diffuse materials are assumed not to

be present in the scene.

Figure 2.3 illustrates the iterative nature of this algorithm, with each successive

iteration being affected by those preceeding it due to the effects of occlusion, as

will be seen in section 2.4.4. The confidence measure is described in the following

section, and the manner by which voxels are selected is described in section 2.4.3.
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2.4.2 The confidence measure

For each voxel, information regarding its shade, and the confidence in the shade is

calculated from the rays that pass through it, based upon a statistical measure m,

where:

m =
σ2 + k1

n+ k2

(2.15)

where σ2 is the variance of the grey level of the n contributing rays. k1 and k2

adjust the weight of voting for more views (section 2.4.7 describes these and other

constants in more detail). This measure, based upon the variance, is suited to the

reduction of additive noise, and increases as confidence decreases.

An initial estimate of the scene can be acquired by calculating this measure for

every voxel in the space. However, an improved estimate can be made by refining

this result by multiple passes, taking into account occlusion by other voxels.

2.4.3 Voxel selection

With each iteration, a selection of voxels is deemed to be suitable to fit the observed

data. The voxels selected are those chosen from the pool of voxels that have not

previously been selected, and are picked due to their high confidence value (a low

value of m). Selecting just the voxels with the highest confidence level would be

time consuming, since each pass would yield perhaps a single new voxel, thus a

band of levels is permitted, given by the equation:

mmin ≤ m < mminkmult + kadd (2.16)

where kmult and kadd are predefined constants. Hence the scene is improved until

all of the voxels have either been selected or been concluded as being transparent.

2.4.4 Shade, occlusions and transparencies

The actual shade assigned to such a selected voxel is not the mean of the n con-

tributing rays, but is calculated by averaging the values of pixels that lie closest

to the mean of all of the rays. This is performed so that rays that clearly do not

contribute the same information about the voxel do not influence its shade. Thus

if a ray has a shade whose value is greater than a distance of kreject from the mean,

it is deemed to be too different and must not contribute to the final value. For

example, in figure 2.4a, three camera sources are present, with two indicating a

black pixel and the other a white pixel. The camera with the white pixel will not

contribute to the resulting colour of the voxel, and thus a black voxel is produced.

For rays that are not believed to contribute to a voxel, it is then predicted that

another voxel must lie between the respective source view and the selected voxel,

in order for it to have acquired the shade indicated. Therefore the ray should not

attempt to project beyond this voxel—it is thus occluding the ray (figure 2.4b).
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White source pixel

Black source pixel

(a) (b) (c)
(a) 3 sources, producing 2 contributing rays and 1 non-contributing ray to a voxel.
(b) Voxels occluded to the non-contributing source.
(c) Transparent voxels.

Figure 2.4: Contributing and non-contributing rays.

For rays that contributed to a voxel’s shade, it is predicted that all voxels be-

tween the respective source views and the selected voxel are transparent. The source

of such rays is then no longer able to produce any further contribution to the re-

construction. In order to be fair, voxels are selected in a batch, and then processed

so that there is no weighting to the first voxel found in the space.

The consequence of these rules is that for each image a depth map is produced,

in order that the information regarding how far a pixel can project into the space

is retained. Such maps are initialised with a large depth value for each pixel, and

are gradually eroded.

2.4.5 Anti-aliasing blocks

As previously described in the 3D HT algorithm, for a voxel that lies close to a

view, there may be several pixels that correspond to it. The projected ray must

therefore be constructed from the average of the possible contributing pixels in order

that the voxel does not under-sample the source image, or conversely, the image

oversample or alias the voxel space. For speed, an approximate solution has been

implemented where a bounding rectangle of the voxel, taking into account all of the

voxel’s sides, is found, and the pixels contained within are averaged. This can be

seen in figure 2.5 where the dark grey pixels represent the true region that should

be considered for the voxel, and the light grey pixels represent the approximated

rectangle. Use of bounding rectangles is discussed by Steinbach et al. [83, 84] who

use the colour reconstruction algorithm of Eisert et al. [23].

If rays from such blocks are occluded, then all of their respective depth maps

must be affected accordingly. Similarly, if a pixel in such a block has a maximum

projected depth that does not permit it to detail information regarding a voxel,

it must not be included in the production of the anti-aliased ray to that voxel.

28



Figure 2.5: Approximate method for the anti-aliasing of rays.

(a) 4 cameras looking in the same plane
from these angles will not correlate any

information.

(b) 4 cameras looking down at the scene,
however, will correlate information.

Figure 2.6: Suitable camera positions.

The maximum projected depth limit for such pixels will not be affected because

they will of course be less than the distance to the respective voxel. Note that the

approximate bounding rectangle will produce a degraded result as pixels will be

incorrectly associated with depths, however, this will only be noticeable at sharp

boundary points since otherwise the depths will be similar.

2.4.6 Voxel sides

Returning to the hypothesis, it becomes apparent that rays from opposite directions

falling onto a voxel can neither vote against each other nor vote with each other.

This is as a result of the voxel being of a finite size—if the voxel was a singular point

in space then this would not be an issue. The hypothesis thus also dictates suitable

camera positions—placing four cameras equispaced around a plane containing the

object would not lead to any correlation between views; however, if all four cameras

were to look down onto the object, then a correlation can be made as all views would

be able to correlate information regarding the tops of voxels. This can be seen in

figure 2.6.

Hence, during the search, voxels are allocated six sides, and thus rays must

actually fall onto a side from the correct direction in order for them to contribute
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Figure 2.7: Visibility of a voxel side.

to it. The final result, however, for simplicity of later analysis, allocates the voxel

with the shade and confidence of the side that has greatest confidence.

To calculate the rays that fall onto, for example, the right-hand side of the voxel

(x0, y0, z0), another corner of the voxel (x1, y1, z1) = (x0 + w, y0, z0) is considered,

where w is the width of the voxel. Converting both of these to the respective

camera’s local geometry, using only the extrinsic parameters in the camera model,

yields the 3D points p′0 = (x′0, y
′
0, z
′
0) and p′1 = (x′1, y

′
1, z
′
1).

Figure 2.7 illustrates the scenario of a side being at the limit of visibility of a

view. In order for the shaded right-hand side of the voxel to be in this state, the

face must be directed towards the camera centre, which lies at the origin. Using

Pythagoras at this limit yields:

|p′1|2 + w2 = |p′0|2 (2.17)

and adding the correct inequality, the condition for the testing of the right-hand

side is:

|p′1|2 + w2 < |p′0|2 (2.18)

Similarly, the inequality for the testing of the left-hand side is:

|p′1|2 > |p0
′|2 + w2 (2.19)

2.4.7 Constants

There are five constants that can be adjusted in this algorithm, namely k1 and k2,

which are used for calculating the confidence (defined in section 2.4.2), kadd and

kmult, which are used for the selection stepping (defined in section 2.4.3), and kreject

(defined in section 2.4.4).
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k1 is required in the confidence measure otherwise voxels that are only in the

view of one camera will have a measure of 0 as the variance of one value is 0. The

constant thus allows voxels that are in view by more cameras to have a more equal

possibility of being selected even though their variance may be higher. Hence it

encourages correlation between views instead of favouring the object to be described

in regions where there is no correspondence due to only a single camera being able

to view that region. It also aids the making of decisions regarding whether voxels

must be occluding other views. Voxels in which a number of views produce the

same prediction, would have a higher confidence (lower measure) than those in

which fewer views can see. Although this effect is required, being able to affect

the balance is useful, hence the constant k2. For example, if all the possible rays

passing through a voxel saw similar shades, then σ2 would be small. In this case,

k2 would be used to reduce the distinction in the denominator of the confidence

measure, between the case when, say, there were five rays and when there were

four rays passing through the voxel; it would be unfair to greatly favour the case of

five rays over that of four rays, given that all of the rays that are being combined

indicate a similar shade.

Ideally the constant kreject should be very small, however, this assumes that the

cameras are calibrated in terms of colour, and that the scene does not exhibit any

specular effects. This constant thus introduces a level of noise tolerance.

The stepping constants kadd and kmult must be selected by the balance of three

factors. First, larger values encourage a solution to be found more quickly. Second,

smaller values encourage a more accurate solution, and third, too small values pro-

duce shell like results as only the surfaces of objects produce correspondences. Their

values are also dependent on the range of the statistical measure in equation 2.15

and thus also the range of the pixel values.

The values of k1 = 800, k2 = 2, kreject = 5, kadd = 1.00 and kmult = 1.02 are used

throughout this thesis, having been found by trial and error to be the most suitable

for all of the data tested. For more than three cameras these values would need to

be amended. k1 is relatively large as it must be significant compared to the variance

of the colours. The worst case value of σ2 is 16256 (127.52); a standard deviation

of
√

800 = 28 is also approximately 10% of the colour scale. For the situations

encountered, k2 is comparable to the number of views used in these trials, and

kreject has been selected for estimating the required noise tolerance in real world

data—kreject should ideally be 0 for synthesised data, although a larger value would

be preferred due to anti-aliasing effects. Finally, it would be appropriate to select

a range of values depending on the magnitude of the best confidence value, i.e.,

kadd = 0 and kmult > 1. However, a problem exists if the best confidence is 0, as

was common with some initial test data, as the range is then all 0. Hence kadd

31



Figure 2.8: Open-box source images.

must also be non-zero. The resulting confidence values for all of the experiments

performed frequently were within the range of (0, 500).

2.5 Three dimensional reconstruction results

2.5.1 The visual hull

The 3D reconstruction algorithm, being influenced by the brightness of the pix-

els from the various views, enables the visual hull problem of the silhouette-based

VI algorithm to be overcome. In the example in figure 2.8, the foreground and

background can be easily segmented, thus the VI algorithm can be applied. Fig-

ures 2.9a & 2.9b show the result of VI, and figure 2.9c demonstrates that this new

algorithm, by using shade, can see into the concavity, highlighted by the fact that

the small box in the concealed corner is visible. However, from novel views, fig-

ure 2.9d, it can be seen that a few other voxels were deemed to be present outside

the shape. These are present in the images in figure 2.9c but appear to be cor-

rectly positioned. However, they are located in regions where not all of the views

can see them, and thus confidence in their presence is lower. Figure 2.9d also in-

dicates protrusions into the inner box; these are as a result of a visual hull that

is present for like-coloured objects. From the original images, there was no infor-

mation that would enable the predication that the walls of the open-box were flat,

and this colour visual hull has thus caused these walls to be estimated in incorrect

regions. Filtering the confidence levels of the voxels that are to be plotted yields

figures 2.9e & 2.9f, with the latter no longer showing the extraneous voxels visi-

ble in figure 2.9d. However, it is apparent in these figures that the voxels on the

boundaries of the different shaded regions have also been removed. This is because

they were formed from ‘anti-aliased’ rays as described above, and over larger dis-

continuities, their shade will be affected by even small differences in positioning.

For such voxels, the variance in the rays is thus relatively high, and thresholding

at a confidence level may also remove these. The confidence of such voxels can

be greatly affected by adjusting the constants k1 and k2 in the confidence measure

equation.
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(a) Result of VI, with added shading.

(b) Result of VI from novel views.

(c) Result of the new algorithm.

(d) Result of the new algorithm from novel views.

(e) Result of the new algorithm with filtering.

(f) Result of the new algorithm with filtering from novel views.

Figure 2.9: Open-box resulting scene views.
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(a) Three more source views of the object.

(b) Result of the new algorithm from the original views.

(c) Result of the new algorithm from the new views

Figure 2.10: Additional open-box source images, which provide conflicting informa-
tion, and resulting scene views.

2.5.2 Conflicting images

Using VI, as the number of views increases the fidelity of the visual hull also in-

creases. Laurentini [50] discusses the maximum number of images required to re-

construct a visual hull. The same, however, is not true of this grey-scale algorithm,

which is also noted for the algorithm by Bonet and Viola [9]. In the above example,

only three views were used to reconstruct the volume; in figures 2.10b & 2.10c the

effect of adding the conflicting views of figure 2.10a can be seen. The conflicting

views are those that cannot see into the shape, and thus do not predict the presence

of the box, nor other sides. As still more views are added, the result tends to favour

the information from the direction that most cameras face, as would be expected

due to the weighting towards more cameras and only selecting a single voxel side.

2.5.3 Phantom shapes

The other well documented feature of VI is the presence of phantom shapes, as

illustrated in figure 1.3. Using different shades for the two cubes in that illustration,

the results from VI and from the new algorithm can be seen in figure 2.11. As can be

seen, the new algorithm has not suffered from the phantom shapes, however, it has

not correctly realised that the shapes are box cubes, although this is due to a lack of

information in the images. For the case where the two cubes are the same shade, the
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(a) Source images.

(b) Results with VI, from an original position and from above.

(c) Result of the new algorithm, from an original position and from above.

Figure 2.11: Phantom shape results.

new algorithm also produces phantom shapes, but there is no information from the

input data regarding the presence or lack of presence of such features. There is also

an equivalent source of ambiguity in grey-scale scene reconstruction, as described

by Seitz and Dyer [73], which can only be removed by increasing the number of

views.

2.5.4 Real data

The previous examples are artificial, and as such the algorithms had to be informed

that black was the background; without this a priori information, interpreting the

results is made more difficult. Figure 2.12a demonstrates a real scene where there is

no such problem, and thus this shows the strength of the new algorithm as a whole

since there is now no segmentation performed. The sequence is taken from an inside

data capture session, more fully described in section 6.3, in which a basketball can

be seen to have been thrown across a room. Studying the first and last images of

figure 2.12b, the voxel space can be seen to be rectangular in shape as its limits are

clearly defined within these images. Note that the right-hand door is not properly

rendered in the first view of figure 2.12b due to the fact that only this view can

see it and thus there is ambiguity over its reconstruction; the radiator, window and

left-hand door have been correctly reproduced as they are visible in all three views.
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Also apparent in figure 2.12b is the large fluctuation in the shade of the back-

ground wall. The cause of this is the selection of the kreject constant in the algorithm.

Since the cameras were not calibrated for colour, and fluorescent lighting was used,

the shading on the views of the wall differs slightly, and in fact the latter effect

actually introduces bands of intensity moving along the wall. Although voxels are

on the whole composed from anti-aliased rays, and thus averaging is performed,

with these differences the constant kreject must be set to a lenient, i.e., high, value.

The filtering used in figure 2.12c is the background removal filter, which is

described in chapter 4. The ball can be seen to have been defined in the voxel space,

although there are many anomalous voxels that obscure it from certain angles. In

figure 2.13 a further threshold filter is applied to the shade, thus the ball is more

clearly visible.

2.6 Conclusion

In this chapter, the algorithm known as Volume Intersection (VI) has been shown

to be similar in nature to the 3D Hough Transform (3D HT). The latter is an

evidence gathering algorithm, and thus accrues optimal noise performance—a ne-

cessity for the study of real world information. The steps to develop the 3D HT into

a grey scale 3D reconstruction algorithm have been demonstrated. This new recon-

struction algorithm allows arbitrary scenes to be described without the need for

segmentation. By removing the segmentation stage, effects such as the visual hull

have been removed for images with shading information; segmentation, however,

can instead be performed in the 3D domain if required.

The new algorithm is one of the stages in a possible system whose goal is to

extract 3D dynamic models from arbitrary scenes. Chapter 4 continues with the

second stage and chapter 5 performs analysis of the results of this algorithm, using

the method discussed during the development of the second stage. However, the

following chapter presents a novel and improved representation for the reconstructed

scenes.
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(a) The three source images of a basket ball that has been thrown across the scene.

(b) The unfiltered reconstructed scene from the same positions.

−160◦ −120◦ −80◦

−40◦ 0◦ 40◦

80◦ 120◦ 160◦

(c) Filtered reconstructed scene from novel positions around the ball.

Figure 2.12: Real scene voxel analysis results.
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−160◦ −120◦ −80◦

−40◦ 0◦ 40◦

80◦ 120◦ 160◦

Figure 2.13: Filtered and shade-thresholded reconstructed scene from novel positions.
The grey scale has been stretched for clarity.
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Chapter 3

The 2.75D projection

3.1 Introduction

Voxels are an inherently poor approach to 3D reconstruction. For a regular spaced

voxel grid, voxels near to the camera’s view may cover a large number of pixels,

and hence information regarding an object in the foreground will be discarded as

the contributing pixels are merged into a single voxel. For distant objects, there is

the possibility of many voxels representing them, however, there is less information

regarding such objects, and thus they may be over-sampled.

Although over-sampling is not a problem in 3D reconstruction algorithms, (al-

gorithms including those described earlier), under-sampling certainly is as it may

produce correspondence problems and will certainly degrade the fidelity of the sys-

tem. One simple approach to overcome this is to increase the resolution of the voxel

grid, however, this will increase the oversampling of the distant objects and make

the voxel grid highly inefficient.

P1

P2

P1

P2

P1

P2

(a) The standard voxel
mapping.

(b) The ‘ideal’ voxel
mapping.

(c) ‘Ideal’ mapping from
the side.

Figure 3.1: The poor sampling aspect of voxel spaces. Points P1 and P2 are used as
an aid to show the orientation of the grid.
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Figure 3.1a shows a simple voxel grid mapped onto the 2D page. As is apparent,

the closer voxels take a large proportion of the paper; the distant voxels take a

smaller proportion of the paper. An attempt to produce an ideal grid could be

formed by warping the grid so that near voxels are as well represented as more

distant ones, as shown in figure 3.1b. This will only be suitable, however, if the

cameras are ‘close’; for other orientations this warped grid will degrade the result,

as shown in figure 3.1c which is the view from a perpendicular direction.

An indication of the failure of the voxel space is that the original source image

data is rarely recoverable, thus information is being lost during the reconstruction

process. Such losses are certainly not desired for reconstruction algorithms and

therefore, this shows the fault in the representation. The ideal space is one that

has the sampling structure of the grid indicated in figure 3.1b with respect to all

of the views, not just one. This requirement has also been recognised by Slabaugh

et al. [81] who indicated that the ideal but unobtainable goal for the voxel space is

for each image, voxels should project to the same number of pixels, independent of

depth; this was described as the ‘constant footprint property’. Confined to using

the voxel representation, Slabaugh et al. [81] researched a warped grid in an effort

to represent near-objects and far objects in a fixed size voxel grid. However, their

representation relies on the grid being carefully placed, otherwise it could result in

an even poorer reconstruction if cameras were to be placed at arbitrary positions.

The representation that is presented in this section achieves this constant foot-

print property, enabling distant and near objects to be correctly interpreted, and

can be demonstrated not to lose data for all systems where there is no conflicting

information between views.

3.2 The new representation

The new representation stems from 2.5D images, or depth or height maps, such

as shown in figure 3.2, where each pixel has a single associated depth. However,

the restriction to just one depth per pixel shall be removed, and thus each pixel

may have many associated depths, as indicated in figure 3.3. This increases the

flexibility, allowing the representation of data in a similar manner to that previously

described by the grey-scale voxel-based reconstruction algorithm. We call this new

representation the 2.75D image. On their own, 2.5D and 2.75D images cannot fully

describe the 3D world; only by combining the multiple views with a union operation

can this be achieved.

Figure 3.4 shows a pixel from the source image being cast through the unbounded

and near-infinite resolution space that is representable in 2.75D. The casting of the

pixel forms a ray that covers all of the space that could have caused that pixel to be

present in the image. The aim is to project this ray onto the other images and find
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(a) The depth image. (b) The surface plot.

Figure 3.2: Example of a 2.5D image.

Figure 3.3: The 2.75D representation.

all the possible correspondences it may have. The correspondences are no longer

limited to reside within the cubic element structures of voxel spaces.

The ray will be a straight line, due to the normal camera projection models,

and will thus also appear as a straight line on the other views (if it appears at all).

In figure 3.4, one such source pixel ray can be seen, as can a second view that will

provide the correspondences that will indicate the 3D nature of the scene. The

ideal 3D model will be one that will make comparisons with the second view at

every point along that line. However, that line is discretised due to the nature of

images, and thus there is a finite number of points along that line that need to be

sampled in order to correctly represent the underlying nature. This is indicated in

the diagram by the small perpendicular lines on the ray, which correspond to the

limits of the pixels on the second image.

Therefore there is an optimum rate at which the line must be sampled, although

note must be made that this rate is not constant but dependent on the current

position along the line. This optimum rate will thus ensure that the line is sampled

the least number of times but that no pixel along it is missed. This is discussed in

section 3.4.
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Source view

Focal point

Source pixel ray

Focal point
Optimum steps for projection

View to be compared
Pixel’s domain

Figure 3.4: Ray casting and the optimum steps for projection of a pixel.

As previously indicated, this new representation allows multiple depths per pixel

to be represented. These depths are the orthogonal distances to points on the line,

not the actual length along the line, and are efficiently stored in groups, i.e., ranges

of depths. The ranges are necessary, otherwise a discrete nature would have to

be introduced into the representation. For example, representing all the depths

between 1.1 ≤ z < 1.9 would be impossible.

3.3 Formalising VI

The method by which information is gathered and reconstructed using VI in 3D

and the new 2.75D representation will now be formalised. The general definitions

are first presented, and for completeness, the manner in which the original 2D

images are created from the real 3D world is discussed. The voxel-based VI is then

formalised and finally the 2.75D VI is described.

3.3.1 Definitions

Let:

S = {s1, s2, ...sNS} S ⊆ R3 (3.1)

be the set of all points in the subject under study.

Given n cameras that witness the subject, each camera will form an image that

is segmented into pixels that are and are not part of the subject, labelled ‘1’ and ‘0’

respectively. Thus there are n binary images, I
1
, I

2
, ...I

n
, where the jth image has

dimensions (wj, hj). Each image is described by pixels, with image I
j

consisting of

the array of pixels:

I
j

=
{
i0,0, i1,0, i0,1, ...iwj−1,hj−1

}
(3.2)
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Thus a particular pixel in the jth image will be referred to by ip ∈ I
j
, or more

concisely,
(
I
j

)
p

where p = [p0 p1], 0 ≤ p0 < wj, and 0 ≤ p1 < hj.

Each camera will effectively project the 3D world into the respective image. Let

the transformation performed by camera j be called Pj(r) = p, where r is a 3D

point in the real world and p is the 2D integer vector that is used to index the pixels

in the image. Pj is equivalent to a projection by the matrix that was defined in

equation 2.4 but with the scaling by the respective λ already performed. Note that

λ is used in this chapter in a different context, although its actual interpretation is

similar.

Finally, let there be a function U such that Uj(p, z) = r that, for a given pixel

index p in image j, gives the 3D point r at an orthogonal distance of z from the

camera.

3.3.2 The projection into the camera

The analysis of the image formation shall now be made. To form the binary images

in the camera, it can be stated that:

(
I
j

)
p

=

∣∣∣∣∣ 1 iff ∃ e ∈ S st p = Pj (e)

0 otherwise
∀ p st

{
0 ≤ p0 < wj

0 ≤ p1 < hj
∀ j st 1 ≤ j ≤ n

(3.3)

It is important to note that this process is not reversible, i.e., S is not recoverable

due to the many-to-one mapping Pj. This indicates that the reconstruction process

can only estimate the original subject, as would be expected when reconstructing

using a single view.

3.3.3 The voxel-based VI

Volume Intersection (VI) is in essence the extraction of the intersecting volumes that

are formed by projecting the binary images. The result is commonly represented in

a 3D matrix, M whose dimensions are (p, q, r). The elements, m, in this matrix will

be referenced using the 3D integer vector ψ = [ψ0 ψ1 ψ2]T. Elements, or voxels, in

this matrix that are part of the intersection are labelled ‘1’, whilst those that are

not are labelled ‘0’. Hence the matrix elements m are Boolean values.

It has been discussed previously (see section 2.3) that it is simpler to test the

individual voxels for their inclusion in the intersection, rather than actually project-

ing the source images. This is possible since no additional information is required

to project a voxel onto a pixel, whereas this is not true for a pixel projected to a

voxel. Again, this is due to the many-to-one mapping Pj.

Before formulating the algorithm, two further definitions will be made. Since

the matrix is referenced by a 3D integer vector, it would be impossible to change the

resolution of the result unless an alternative transformation function was considered
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that automatically scaled the matrix space. The transformation function P ∗j (ψ) will

be used to indicate an alternative camera transform function that can be described

by:

P ∗j (ψ) = Pj(Wψ) (3.4)

where W represents a 4 × 3 matrix that is capable of altering the orientation, scale

factors and origin of the reconstruction matrix space. For example, for adjusting

the scale factors and origin only, this would be equivalent to:

P ∗j (ψ) = Pj([ψ0ζ0 + δ0, ψ1ζ1 + δ1, ψ2ζ2 + δ2]T) (3.5)

where ζ is the vector that describes the scale factors, and δ allows the matrix origin

to be arbitrarily positioned.

For each voxel mψ, let there be an associated set vψ that describes the views

that can contribute to it, i.e.:

j ∈ vψ iff

{
0 ≤ p0 < wj

0 ≤ p1 < hj
where p = [p0 p1]T = P ∗j (ψ) ∀j st 1 ≤ j ≤ n (3.6)

This ‘reverse projection’ VI algorithm can now be described by:

mψ =

∣∣∣∣∣∣ 1 iff
(
I
j

)
p

= 1 where p = P ∗j (ψ) ∀ j ∈ vψ, vψ 6= ∅

0 otherwise
∀ ψ st


0 ≤ ψ0 < p

0 ≤ ψ1 < q

0 ≤ ψ2 < r

(3.7)

This process will rarely be reversible: recovering I
j

is dependent on the rela-

tionship of the discretisation of M, and all of the images I and projections P . This

would be when the matrix M has dimensions that do not permit the representation

of the data in any one of the images in sufficient resolution or coverage. A trivial

example of this would be a matrix consisting of just one voxel attempting to rep-

resent a subject that could not be construed as being cubic from any of the views.

Another trivial example would be when the matrix is not in view from any image,

i.e., the images cannot contribute anything towards the reconstruction. Note, how-

ever, must be made that this does not indicate that all views must be used for the

intersection.

3.3.4 The 2.75D projection

With this projection the matrix M will now be redefined as a vector whose elements

are matricies:

M = {M
1
,M

2
, ...M

n
} (3.8)

M
j

= {m0,0,m1,0,m0,1, ...mwj−1,hj−1} (3.9)
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Here M
j

is a two dimensional matrix of dimensions (wj, hj) that corresponds

to image j. Each element m ∈ M
j

is used to represent how each pixel i in I
j

is

reconstructed. This is achieved by allowing each element m to be the set of all

orthogonal distances that could be in the original subject. The distances are the

actual real values (∈ R), thus there is no additional loss of information due to

discretisation. The elements m will be infinite in dimension, except for a special

case discussed later, when it is possible for an element m = ∅.
The algorithm projects each image pixel i so that it forms an infinite sheared

square-based pyramid. Its cross section at an orthogonal distance of z is then tested

for inclusion in subject pixels in all of the other views. If any of the other views

indicate that the cross section is not completely within the subject, that orthogonal

distance z is not included in the pixel i’s respective depth set m. If one of the

other views cannot contribute to the projected pixel at the depth of z because it

lies outside the bounds of that view, it is not permitted to indicate the suitability

of the depth z for that pixel. It is possible for a pixel to be projected and for no

depth to be within the bounds of any of the other views, in which case all depths

are allowed, i.e., µ ∈ m ∀µ > 0 µ ∈ R.

For simplicity the equation below does not test for the cross-section being com-

pletely within the subject pixels in all of the other views, but just evaluates one

point in the cross-section. The full test can be achieved by testing the pixels that

contribute to the quadrilateral formed by the projection of the four corners of the

source pixel. This is discussed in section 3.5.

The algorithm can thus be demonstrated by evaluating the set of depths of each

pixel p in image j:

z ∈
(
M

j

)
p

iff
(
I
k

)
q

= 1 ∀ k st

{
0 ≤ q0 < wk

0 ≤ q1 < hk
where q = Pk(Uj(p, z))

(3.10)

This process is reversible except in certain special cases, i.e., the images can

usually be recovered. Reconstructing the images from the data is achieved by testing

which
(
M

j

)
p
6= ∅. The special cases are when one pixel is projected completely

within the projection cone of another view. An instance can be envisaged where

a view’s information is tested with and contradicts another view even as z → ∞.

For all other instances there is at least the opportunity as z →∞ that a pixel will

not be projected into the viewing area of another camera, and thus the depth be

allowed.
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3.4 Ray casting: the optimum rate

3.4.1 The approximate method

Having shown the viability of this representation to describe intersecting volumes,

it is necessary to analyse it so that an efficient algorithm can be produced. As

described, the algorithm projects each image pixel through space. As an approxi-

mation, this projection can be thought of as a line growing from the source camera.

By projecting this line onto a target view, another is also obtained (see figure 3.4).

In this figure the dotted lines denote the limits of each pixel’s ‘domain’ in the second

view. Thus it is only necessary to compare the source view with the other view

once within each domain.

The projection of this line can be represented by the vector equation:
x3d

y3d

z3d

 =


a

b

c

+ λ


d

e

f

 (3.11)

where a, b, c, d, e, f are constants formed from the mapping of the views, and

the scaling of λ can be chosen so that it is identical to the projected depth rela-

tive to the source image pixel. Hence, [a b c]T is the source camera’s origin, and

[(a+ d) (b+ e) (c+ f)]T is a point on the ray whose z value is 1 unit from the

source camera, both points having been transformed into the other camera’s local

intrinsic geometry (as defined in section 2.2.4), i.e.:

[
a b c

]T

= P
1
P−1

0

[
0 0 0 1

]T

(3.12)

where P
0
, P

1
are the projection matrices for the source view and destination view

respectively, as defined in equation 2.10, but having been turned into a 4 × 4 square

matrix to enable the matrix manipulation, and:[
(a+ d) (b+ e) (c+ f)

]T

= P
1
P−1

0

[
pT 1 1

]T

(3.13)

where p is the source pixel coordinate vector.

A 3D point on the line is mapped onto the destination image by the following

equation: [
x

y

]
=

1

z3d

[
x3d

y3d

]
=

[
a+λd
c+λf

b+λe
c+λf

]
(3.14)

noting that there is no focal length appearing in the equation as this is accounted

for in the camera’s local intrinsic geometry.

Thus as λ increases, various pixels on the destination view are visited. However,

it is required that all pixels are visited the minimum number of times. By analysing
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these equations the amount by which λ must increase, δλ, can be formulated. The

equation for the required change in λ along the image’s x-axis is:

δλ =

∣∣∣∣∣ (c+λf)2

|(af−cd)|−f(c+λf)

∞
for

cd 6= af

cd = af
(3.15)

A similar equation for the image’s y-axis can also be formulated, and for a given

λ it is the minimum of the two that should be selected. These equations therefore

yield the optimum rate by which λ, and thus the projected depth of the source

image pixel, must be increased. For multiple views, it is the minimum change in λ

over all of the possible destination views that is selected.

3.5 Removing the approximation

Although not yet implemented, a non-approximate method has been envisaged.

Instead of the projection of the line, the true square-based pyramid is projected

through space. The number of calculations will unfortunately increase four-fold,

one for each vertex of the pyramid. It is the cross-section of the pyramid that is

projected onto the view to be compared, thus now comparing with an area, not just

one pixel.

In figure 3.5, as the source ‘pixel’ is projected (forming a triangle in 2D) its

two sides intersect the destination image at different points for the same orthogonal

distance. Over certain depths, both sides of the ray will be projected onto the same

destination pixel, and for these regions, the comparison to make is as described for

the approximate method. However, for certain regions two destination pixels are

required to make contributions, and thus as a form of averaging, a linear combina-

tion of the two is required. The contribution at a point along one of the regions is

given by:

v =
aP0 + bP1

a+ b
(3.16)

where the a and b are the two lengths as indicated in figure 3.5, which change

linearly at these boundary conditions as the orthogonal distance increases, and P0

is the shade of the respective pixel in the destination view.

For VI, these segments can be split into two regions, one being that which the

probability of the pixel being in the image is greater than 50%, and the other being

the contrary. Unfortunately when using such a method in the grey and colour

algorithms below a non-thresholded value is required. This indicates that there

are not a finite number of values, and therefore steps, in these regions. Therefore

it is proposed that if there are no other views to segment the space, the region

should remain intact and take the value equal to the above equation evaluated at

its mid-depth point.
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b

View to be compared
Pixel’s domain

destination pixel.
Regions with 1 corresponding Source view

Region with 2 corresponding
destination pixels.

Value to be compared is a linear
combination of the 2 pixels.

Figure 3.5: The non-approximated method.

3.6 Implementing VI

Combining the formalised definition of 2.75D and the optimum rate equation, the

approximate 2.75D VI algorithm can now be described using pseudo-code, as shown

in listing 3.1.

It is apparent that two constants are required for this algorithm, namely the

ranges that λ is allowed to traverse. Starting λ at the value of 0 is not advised due

to the singular nature of the mappings at this depth, thus the minimum value of

λ allows this to be overcome. For the examples shown below, an initial value of

1 was selected. The maximum value of λ does not have to be restrictive as it can

be defined as the highest value that can be represented. However, restricting the

maximum value may be useful especially when there are two views that are nearly

co-linear, and thus may continue to produce correspondences beyond that which is

required.

It is important to note that although two constants are required for this al-

gorithm, this compares favourably to the many that are required for voxel-based

algorithms; the 3D size of the voxel space must be defined, as must its position,

orientation and scaling in space, i.e., 12 constants. The selection of the 2.75D

constants is trivial.

The implementation of the pixel depth storage uses a singularly linked list for

efficiency as it is only required to be traversed in the one direction. Also for ef-

ficiency, the linked lists are actually stored in large arrays, otherwise the memory

allocation overheads for the many small entries would be very high.
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For each pixel, in all of the views, that is selected,
clear respective pixel’s depth linked list
λ = predefined minimum value
need new depth = true
while λ < λmax
λnext = λmax
transparent at this depth = false
calculate where the pixel at a depth of λ maps to in 3D space
over all of the other views,

if this 3D point is visible in this other view,
calculate the pixel coordinates
if pixel is not set

transparent at this depth = true
need new depth = true

predict λ’s change for this view
λnext = min(λnext, prediction + λ)

if transparent at this depth = false
if need new depth = true

create a new linked list entry
entry’s minz = λ
entry’s maxz = λnext
need new depth = false

else
last entry’s maxz = λnext

λ = λnext

Listing 3.1: The basis of the 2.75D VI algorithm.

3.6.1 Complexity analysis

Consider the case where there are n views, with each being represented by p pixels.

Let the number of pixels along the diagonal of the image be d. A ray is projected

from a source pixel onto a destination view. The worst case is for the projection

to lie along its diagonal since this will yield the most comparisons. As the ray

is projected, its next position is calculated from its current one, but this next

position does not necessarily lie at the border of the next pixel, just at some point

within it. Thus if another destination view was to be considered in parallel with

correspondences that interleaved perfectly with the first destination view, there

would be no increase in the number of cells tested. The worst case is if the second

destination view was described such that all of its correspondences lay within a

single cell of the first destination view. In this case there would be 2d depth cells

for the ray, of which half of them would require to be compared with two views,

whilst the others with only one. In general, the worst case is (n−1)d cells for a ray,

and a total of 1
2
n(n − 1)d comparisons. A common case would be more similar to

the interleaving example, with thus just d cells, and a total of (n−1)d comparisons.
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This is because each pixel along the diagonals will only be tested once unless a

cell is further segmented by another view’s contribution. Each cell will need to be

compared with all the views that can see it. Thus the overall order is given by:

O(Worst case 2.75D VI) = O (np · dn(n− 1)) ≈ O(p1.5n3) (3.17)

O(Common case 2.75D VI) = O (np · d(n− 1)) ≈ O(p1.5n2) (3.18)

(3.19)

where d ≈ √p.
Analysing listing 2.2, it is clear that the order of processing for the 3D voxel-

based VI algorithm is:

O(3D VI) = O(nv) (3.20)

where v is the number of voxels.

It is thus apparent that the 3D voxel-based VI algorithm has a much more

favourable order of processing for large n, even though, for a value of n = 2, the

2.75D algorithm can yield an order as low as O(pd) which will commonly be more

favourable than O(v). However, it is believed that if the resolution of the 3D voxel

space was increased so that it could properly represent the object, the processing

time of the 3D voxel-based VI algorithm would be very much higher than that of

the 2.75D algorithm. The choice of the resolution of the 3D voxel space is thus both

a compromise in computing memory resources and processing time.

3.7 2.75D VI results

Figure 3.6 demonstrates the results of VI using both the 3D voxel-based and the

2.75D methods. The results from this new representation are similar to the 3D

voxel-based solutions, except that they are analysed at the most suitable level of

resolution. As can be seen, especially around the edges of the cone, the level of

detail in figure 3.6c is much closer to the original data. If the test for depths on

each projected pixel is performed as outlined above, it produces exactly the same

data as found in the source image. However, figure 3.6c is not identical to figure 3.6a,

and although a source of error in the images is the inaccuracy of the rendering of the

2.75D data, the ray-casting approximation of this method is a major factor in the

differences. To produce the image, the ray is projected as a square-based pyramid,

and though its centroid may be correctly placed within the original source data,

the extremities may not be.

The 2.75D VI algorithm suffers from the problems of the visual hull and phantom

shapes that the normal voxel-based algorithm is known to be hindered by (see

sections 2.5.3 & 2.5.1). This should be expected as it is only the representation
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(a) The three source images containing a cube, sphere and cone.

(b) 3D representation from the same views.

(c) Results of the new 2.75D representation.

Figure 3.6: Comparison between VI and the new representation.

of the data that has changed. The visual hull can be seen in figure 3.7 where the

source images are not understood in the manner in which we perceive them.

3.8 Grey scale and colour implementation

There are many similarities between the new algorithm using this new represen-

tation and the new voxel-based algorithm discussed in chapter 2. However, the

restriction to just six sides can now be removed. The purpose of the sides was to

incorporate an understanding of the cooperation between rays, providing a suit-

able solution to the hypothesis that only rays from the same surface should be

combined. In this new representation, the dot-product between projection rays

provides a weighting or cooperation factor w:

2w − 1 = cos θ =
rs · rd

|rs||rd|
(3.21)

≈ sign(cos θ) cos2 θ = sign(rs · rd) · (rs · rd)2

|rs|2|rd|2
(3.22)

where rs is the vector from the source view to the 3D point and rd is the vector

from a destination view to the 3D point. The approximation is used so that the

rather costly square root operation can be avoided.
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(a) Source images.

(b) The 2.75D VI from the same views.

(c) The 2.75D VI from novel views.

Figure 3.7: Open-box resulting scene views showing the visual hull.

Thus w = 0 for rays in opposition, indicating that no information can be gained

from combining their pixels, w = 1
2

for rays that meet orthogonally, and w = 1

for colinear rays, indicating that there is 50% and 100% probability respectively of

the rays originating from the same surface (assuming that there is no occlusion, of

which the handling is described below).

As with the voxel-based algorithm, there is a confidence measure for each 3D

point. This new measure appears to be the same as that in equation 2.15, except

that n is no longer an integer representing the number of views, but the sum of

cooperations:

m =
σ2 + k1

n+ k2

(3.23)

σ2 =

(
1

n

v∑
i=1

(wip
2
i )

)
−

(
1

n

v∑
i=1

(wipi)

)2

(3.24)

n =
v∑
i=1

wi (3.25)

where v is the number of views, wi is the weighting of the pixel from view i, and pi

is that pixel’s shade.
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It is also feasible to incorporate colour into the measure:

m =
σ2
red + σ2

green + σ2
blue + k1

n+ k2

(3.26)

As with the voxel-based system, this is an iterative algorithm with several stages.

The first is to analyse the best confidence levels, using equation 3.23, for each pixel,

i.e., each pixel is projected through the space and its best confidence level is noted.

However, the projection of pixels is further complicated by occlusions from other

views. Once a pixel’s set of depths has been decided, it has priority over those that

are to be decided, thus when projecting undecided pixels, the decided pixels must

be noted. A problem arises when the ‘decided’ pixel (from a destination view) is not

of the same colour or shade as the projected pixel from the source view. If the pixel

is similar (i.e., within a range kreject—see below), then the ‘decided’ pixel makes a

standard contribution. However, if the pixel is not similar there are two scenarios

depending on the depth set of this ‘decided’ pixel, as illustrated in figure 3.8. In

essence, either the source ray or the destination ray attempt to occlude one another.

A previously decided depth along the destination ray is able to occlude the source

ray, and thus the source ray is prevented from progressing any further. Such an

occlusion only occurs if the source and destination pixels are of a different colour—if

they are the same, then the source ray is permitted to continue since the occlusion

would have been partly caused by the source ray’s previous assessment for the

destination ray’s depth. However, the second case, is for the source ray to attempt

to occlude the destination ray that is of a different colour; the source ray is not

permitted to occlude the destination ray since the destination ray has previously

been decided. Therefore over such a region, the source ray is not permitted to have

any associated depths—it must remain transparent.

The constant kreject rejects pixels because of their shade (in grey-scale analysis)

or individual colour component (in full-colour analysis) being different from the

source pixel. The destination pixel is not rejected if its value vd lies within the

range:

vs − kreject ≤ vd ≤ vs + kreject (3.27)

where vs is the value of the source pixel. The choice of this constant, kreject, should

be to keep its value small. However, note must be made of the noise in the images,

both local noise, such as specular effects, and global noise, such as contrast; larger

values can reduce the wrong correlations that such errors introduce. Also, note

that this rejection principle is different to that of the voxel-based algorithm: in the

latter, a ray will not be compared if it is a value of kreject from the mean, but in

the former, a ray will be used no matter what its value if it has not already been
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Source view

View to be compared

Source pixel ray
(occluded)

Source view

View to be compared

transparent
Forced

region

(a) Occlusion by a block from another
pixel of a different colour.

(b) Force transparency at a depth due
to a lack of a depth block from another
pixel of a different colour.

Figure 3.8: The occluding and transparency factors when comparing with a decided
pixel of a different colour.

decided.

As with the voxel-based system, each iteration permits select depths (cf. voxels),

to be predicted, according to their confidence. The range is defined by two con-

stants, namely kmult and kadd, which describe the same range relationship as those

in the voxel algorithm:

mmin ≤ m < mminkmult + kadd (3.28)

Thus the best confidence level, i.e., lowest value mmin, must first be found. There-

fore, for each undecided pixel, the respective ray is projected, and the best confi-

dence level along that ray is recorded. The best confidence level over all the pixels

in all of the images is thus also available, and hence the range of confidence levels,

similar to that used in the voxel-based algorithm, is calculated. By having noted the

best confidence levels of each of the pixels, only those that have a best confidence

level within the necessary range need to be re-analysed. This re-analysis re-projects

the respective rays, to produce depth lists that describe all the depths, not just the

best for the pixel, whose measure of confidence lies within this range. The entire

process is then re-iterated until all pixels have been decided.

To increase the efficiency of the first stage, on the subsequent iterations of the al-

gorithm, only pixels that could be affected by the selection of pixels in the previous

stage are recalculated; this is performed by setting a flag for the destination pixels

that are tested by a selected pixel. Also note that pixels that are selected in a batch
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must not be influenced by the order in which they are processed, otherwise unex-

pected occlusion effects will occur; the test for occlusion must note whether the des-

tination pixel has only just been decided. Hence each pixel actually has four states,

namely undecided, decided, selected, undecided-but-requires-recalculation. Only after

all of the selected pixels have been processed do their states get changed to decided,

and the undecided-but-requires-recalculation get subsequently recalculated and reset

to undecided.

3.9 Grey scale results

Figure 3.9 demonstrates a selection of results produced with this 2.75D grey scale

algorithm. During the construction of these images, the reconstruction algorithms

were informed that black pixels were background (transparent); without this, this

abstract data becomes difficult to comprehend, especially from alternative view-

points.

Figure 3.9b compares favourably to the new voxel-based algorithm whose results

are shown in figure 3.9a, when viewed from the source angles. Similar to the voxel-

based algorithm shown in figure 3.9c, the 2.75D algorithm can be seen in figure 3.9d

to introduce artifacts into the reconstruction. Many of these can be removed by

using the confidence level as a filter, as shown in figure 3.9f, as they are rays that

have failed to confer with any other view and hence are represented in regions

that can only be seen by the source view. They are thus rays that stretch to

infinity in this case, although for the rendering, this limit is obviously clipped.

Figures 3.9e & 3.9f show the filtered voxel and 2.75D results. All of the problems

regarding the aliasing around the sharp colour gradients can be seen to have been

removed, shown by the lack of a black border around the various coloured regions.

Both figures, however, show an identical visual coloured hull, for example in the

first image the base can be seen to protrude into the region of the box, and in the

second and third, the two sides can be seen to do the same.

As with the voxel-based algorithm, problems arise when the views provide con-

flicting images. In fact this can be seen in the 2.75D example where the bottom left

of the main structure in figure 3.9b has not been rendered. A further example of this

is shown in figure 3.10 where an additional three views are combined. These results

have already been filtered at an appropriate level to remove the rays and voxels that

are formed from just a single view. It can be seen in these figures that although

the conflicting information has produced irregular results, the 2.75D algorithm has

produced a more favourable representation. Unfortunately, the results of both al-

gorithms, are heavily dependent on the selection of their constants. Summarising,

in the 2.75D algorithm these constants are k1, k2, which are used for the fitness

rating of a point, the confidence step constants, kmult and kadd, and the rejection on
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(a) The new voxel algorithm.

(b) The new grey 2.75D algorithm.

(c) The new voxel algorithm from novel views.

(d) The new grey 2.75D algorithm from novel views.

(e) The new voxel algorithm from novel views with filtering.

(f) The new grey 2.75D algorithm from novel views with filtering.

Figure 3.9: Open-box resulting scene views.
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shade constant kreject. For all of the three camera situations the values are 500.00,

−0.50, 1.02, 100.00 and 10.00 respectively. For the six camera scenario, k1 is set

to the value of 5000.00 to obtain the best results. These values differ slightly from

the voxel-based algorithm. For example k2 is very much reduced, but this is as a

result of the variable n not being the same in both algorithms. In fact k2 is actually

negative to make the contributions of other views more significant—each ray will

have a guaranteed condition of n ≥ 1 since the rays own self-contribution produces

a value of n = 1. Other contributing views whose additional value to n will be

less than 1 will thus not always be significant, and hence the negative value of k2.

kadd is also larger in the 2.75D implementation to encourage less shell-like results.

The resulting confidence values for all of the experiments performed for the most

part were within the range of (0, 1000), which is of the same order to that of the

grey-scale 3D algorithm, being (0, 500).

3.10 Colour results

Figure 3.11 demonstrates the results obtained from real data using the colour 2.75D

algorithm. The clarity of the reconstructed scene is clear in figure 3.11b, compa-

rable to that of the source images in figure 3.11a. These results demonstrate a

considerable improvement over the voxel-based reconstruction shown in figure 2.12,

with both smaller features and no limitations on the size of the scene that can be

reconstructed; for example, both the radiator pipe-work and right-hand door are

properly rendered. However, streaks can be seen across the images which are as a

result of the choice of the stepping and rejection constants. Due to the poor source

image quality, which is further discussed in section 6.3, the rejection constant had

to be kept at the previously indicated value. Having small step constants with these

poor images results in only small, or even singular, regions of each ray to be located,

yielding almost a wire mesh. Although this does produce results with an improved

appearance, it is not suitable for the next stage of the analysis, which is discussed

in the following chapter.

Figure 3.11c shows a set of novel views of this reconstructed scene with its

background now having been removed (the background removal is also discussed in

the following chapter). The lines on the basketball are actually visible from many

of these novel views. The ball, however, is not predicted to be spherical—a result

of the colour form of the visual hull, and also poor correlations due to the image

quality, and specular and lighting effects on the surface. These reconstructions also

show degrees of discretisation, but these are solely due to the original discretisation

of the source images.

These results indicate that although the VI algorithm is, on the whole, loss-

less with regards to information, the colour and grey scale algorithms remain lossy.
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(a) The three additional source images.

(b) The 2.75D algorithm’s results, from the 6 camera viewpoints.

(c) The voxel algorithm’s results, from the 6 camera viewpoints.

Figure 3.10: Open-box scene views with conflicting cameras.

However, this loss is now the fault of only the algorithm; no longer does the under-

lying 3D representation introduce a major contributory degradation factor.

3.11 Future work

The above examples seem to be very distant from the regular voxel grid structure,

however, a predictable structure does lie beneath. Although it was not implemented,

it would not be unreasonable to represent each pixel’s depth ranges as ‘cells’ (for

they can no longer be called voxels). Cells would become the equivalent to the

volume elements that would be described by the small jumps in λ. The cell’s

depth (λ) range and the pixels that they would have to correspond to in the other

images can all be calculated just once. For the images that are used in this work
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(a) The three source images.

(b) The unfiltered reconstructed scene from the same positions.

−160◦ −120◦ −80◦

−40◦ 0◦ 40◦

80◦ 120◦ 160◦

(c) Filtered reconstructed scene from novel positions around the ball. The resulting
grey-scale has been stretched for clarity.

Figure 3.11: Colour 2.75D analysis results.
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(348 × 280 pixels), this structure would take approximately 0.5 Gb. Once these

calculations have been made, the comparisons could be made more quickly, and in

fact it would be more comparable in time to the voxel space.

Other future work on this topic should include exploring the relationship be-

tween the constants as it is known by experiment that there are dependencies be-

tween the step size constants (kmult and kadd) and the measure constants (k1 and k2).

There are also other suggestions that are also common with the voxel algorithm,

which are discussed more fully in chapter 7.

3.12 Related work

Although this work is novel, there are two related works, although it could be

interpreted as the rectilinear parallelepiped described by Kim and Aggarwal [41] and

Martin and Aggarwal [54] under a perspective projection and taken to the extreme.

The most similar work is that described by Matusik et al. [55] who described ‘Image-

Based Visual Hulls’. In essence, this is very similar to the 2.75D VI algorithm

described above, although it compares views with a source view one at a time, rather

than the above method where a projected depth is compared against all views for

inclusion. However, Matusik et al. [55] also described a colour algorithm, but this

is actually not a reconstruction algorithm, but merely a means to colour map the

original images onto the VI visual hull. Thus, their algorithm is not capable of

non-segmented scene reconstruction. However, the fact that such research is being

performed is indicative that there is interest in the potential of such techniques.

The other related work is a computer graphics technique called ‘Layered Depth

Images’ (LDIs), as presented by Shade et al. [77]. Its main purpose is to provide

an efficient method to describe complex 3D objects by projection of an image. Like

the 2.75D algorithm, each pixel can be described by many depths, but unlike the

2.75D algorithm, the pixel can have a different colour at each depth since only one

projection is used. However, this representation is unsuitable since each pixel is

still treated as a planar object when it is projected—it does not have an associated

volume. A reconstruction algorithm is described using just image data but it is

lossy since if two depths are similar for a pixel, they are merged together in an

effort to reduce the quantity of data. This is not required in the 2.75D algorithm

due to the depth ranges that are used. There is also a problem regarding holes for

when the distance between neighbouring depths become too large. It is concluded

that the algorithm is more suitable for rendering photo-realistic 3D models than

for reconstructing them: in fact emphasis in the work of Shade et al. [77] is on

using ray-traced images with depth information. Also, the non-solid nature of this

representation would be unsuitable for the evidence gathering procedure that is

discussed in the following chapter.
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3.13 Conclusion

The chapter has introduced the new representation for reconstructing 3D data and

has described suitable VI, grey and colour reconstruction algorithms. No informa-

tion is lost during this transform, unlike the voxel representation, and there is no

need to specify what the limits of the reconstruction are as a ‘near-infinite’ space

can be represented; this is required for voxel-based systems where the voxel space

must be placed, scaled and rotated into the correct orientation for the region of

interest.

The only noted drawback is the order of the processing time as it is considerably

more mathematically intensive; the order of the algorithm is unpredictable as it is

dependent on how the views are arranged. As an indication, the reconstruction of

the real-world sequences in the following section takes approximately two minutes

per frame, as opposed to thirty seconds for the voxel-based algorithm, on a 1.4 GHz

machine; the images from all three cameras in these sequences are 348 × 280 pixels.

As with the voxel-based algorithm, the 2.75D algorithms are highly suitable for

parallel processing, and thus video-rate scene generation is conceivable.
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Chapter 4

Three-dimensional dynamic model

extraction

4.1 Introduction

This chapter describes the manner in which objects, whose dynamic nature can be

mathematically modelled, are extracted and parameters defined. This thus explains

the background removal stage and the parameter extraction stage of the processing

for all of the three systems discussed in chapter 1. Basic models are used as illus-

trations of the techniques; further models and also results of synthetic and real data

are to be found in chapter 6 where the three systems are compared and contrasted.

Two examples are given to demonstrate the means of 3D dynamic model extrac-

tion. One such model should be suitable for the purposes of 3D gait recognition;

this model is used to analyse real data in chapter 6.

The implementation of the parameter extraction greatly influenced the solution

that is described herein, and thus occasional references are made to this as an

illustration of the motivation.

4.2 Background removal

All three systems require the background to be removed from the original data.

Although this is actually not essential for the 2.75D and 3D systems since the

additional possibility of transparent regions (free-space) has been found to provide

a useful segmentation tool, it assists the final stage of object extraction. In the 2D

system, removing the background is the core of the segmentation of the image into

the dynamic parts which are of interest and static parts which are not.

4.2.1 2D background removal

In order to remove the background from 2D images, the entire sequence must be

used, and pixels from different frames but the same position are compared. A

simplistic approach to background removal would be to deem pixels as background
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if all of their three colour components lie within a specific distance, k1, of the means

of the three components of the pixels that reside at the same image coordinate in

the sequence.

However, the mean is a poor measure for background removal since foreground

pixels will have a large influence on its value. For instance, if, for a particular pixel

position, 40% of the pixels were white (value of 1) and 60% of the pixels were black

(value of 0), the mean would be 0.4. Therefore, although the values of the black

pixels lie closer to the mean than that of the white pixels, the difference is not

very significant. The ideal measure is the mode, and in the above example this

would produce the required result as it would yield the value of 0, however, the

range of pixel values that will actually be encountered compared with the relatively

low number of images, makes the mode unsuitable and extremely variable in noisy

conditions. The median, which in this example also evaluates as 0, is a more

suitable measure in such cases, and provides a more ideal solution than the mean

(occasionally the truncated median is used as an approximation of the mode for

such examples).

It is common to have regions of images with high turbulence. For example, an

outside sequence may contain trees with leaves blowing in the wind. The trees will

produce significant fluctuations but are not of interest. Therefore the background

removal can be improved further by using the standard deviation, σ, as a measure

of turbulence. For regions with high turbulence, the standard deviation is higher,

and thus the determination of the background should be not just dependent on

the distance measure k1, but also on σ. Hence the leaves would be ignored, but

objects moving occasionally through other parts of the image would be registered

as foreground. The use of the variance also enables regions of high specular noise

to be ignored.

The resulting binary image can thus be described by:

r(x,y,t) =

∣∣∣∣∣ 0 if |p(c,x,y,t) −median(c,x,y)| < max(k1, k2σ(c,x,y)) ∀c ∈ {1, 2, 3}
1 otherwise

(4.1)

where k2 is a scaling constant for the variance, and p(c,x,y,t) describes the source

image’s colour component c, and pixel position x, y at sequence number t.

There are more advanced methods of background removal, however, this is suf-

ficient for the purposes of this research and performs excellent segmentation. For

example, in the later examples, it can be seen to extract both the object and its

faint shadow.
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4.2.2 2.75D background removal

The masks, i.e., binary images, obtained from the 2D background removal are used

to mask the 2.75D data. This thus does not truly mask the result to the visual

hull formed from the segmented images, but to an approximation of it. However,

the 2.75D algorithm has interpreted the scene using full colour, and has made an

improved estimate of the contents of the true visual hull, thus this masking has

yielded a possible better-than-hull result.

4.2.3 3D background removal

The method selected to remove the background in the voxel algorithm is similar

to that used in the 2D system described above, but with only a shade component

for each voxel, not a three-colour component. It is complicated, though, by the

additional feature of free-space, or transparent, voxels which are in essence, value-

less. The algorithm, therefore, must take into consideration the amount of free-space

at a particular voxel position throughout a sequence. If there is more free-space

than voxels with shade, then those voxels with shade are immediately part of the

foreground. However, if there is less free-space than voxels with shade, then the

algorithm used for the 2D background removal is applied, but only for the voxels

that are not transparent.

This algorithm successfully removes the background from the 3D voxel se-

quences, although as will be seen, real scenes produce relatively noisy results since

they were generated from the noisy source data. An alternative method, as outlined

in chapter 7, would be to use a method similar to the 2.75D background removal,

i.e., restriction of the data to the visual hull.

4.3 Extraction

4.3.1 Introduction

The manner by which the parameters of an object’s mathematically described model

are extracted and described is now presented. The basis of this is evidence gathering,

or more specifically, the Hough Transform (HT) and Template Matching (TM) as

introduced in section 1.4.1. These algorithms are explained in the following section,

and subsequently, the method by which the models are described is presented.

4.3.2 Evidence gathering

The basis of both the 3D generation algorithm and the motion analysis algorithm

is in evidence gathering, with, as explained in section 1.4.1, this technique’s most

noted algorithm being the HT [34]. The algorithm uses a resulting accumulator or

voting space to gather information from the source image. The algorithm can be

described by the pseudo-code listing 4.1.
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for all foreground pixels in the source image,
for all possible lines that could have caused that pixel,

increase vote for the particular line.

Listing 4.1: HT for lines pseudo-code.

Peaks in the accumulator space correspond to the lines that are most likely to

exist. The initial implementation by Hough [34] was made by describing lines using

a Cartesian parametrisation, in terms of the gradient m, and y-intercept, c; the

problems of infinities led to an improved parameter space in terms of the polar

representation, θ and ρ [22].

The result of the HT is the same as for TM, which is also known as the Hough

Transform by back-mapping, but the former can have improved performance since

not all of the parameter space will be tested. The TM algorithm can be described

by listing 4.2.

for a particular line to be tested,
for all foreground pixels along that line in the image,

increase vote for the particular line.

Listing 4.2: Template matching for lines pseudo-code.

TM does not require an accumulator space to record the parameters of the most

suitable line. Thus TM is advantageous when the dimensions or resolution of the

result to the problem prevent the use of a HT accumulator space.

The Velocity HT (VHT) was developed by Nash et al. [59] in which moving

objects, particularly circles, were sought in a sequence of images. The analysis

of all of the information has huge performance advantages in detecting moving

objects than using the more common tracking methods where the first frame is the

seed for all subsequent frames. The VHT is also much more resilient to occlusion

than tracking, which would have to use predictive methods if the loss of tracking

was detected. However, the drawback is that the VHT has a greater processing

overhead. In fact both the HT and TM are not possible as the number of parameters,

and thereby the combinations of the different values of the parameters, increases.

This problem was alleviated in the work of Cunado et al. [15] by the use of the

approximate parameter searching method that is Genetic Algorithms (GAs—see

section 4.4) used in combination with TM; it is this combination that was also used

during this research.

4.3.3 Mathematical models

In order to perform TM on data, a fitness function is required. This evaluates a

set of parameters for an object, yielding a fitness value. Thus, when searching for a
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Figure 4.1: The implemented evidence gathering technique, with numbers indicating
the order the information is passed through the system. This shows the three separable
blocks, where the top two blocks, in essence, perform a template match for a set of
parameters. The bottom block is the searching algorithm; for example a grid search
algorithm across the whole parameter space, or a Genetic Algorithm.

(limitless) line in a 2D image, two parameters are passed to this fitness function. In

the VHT, a circle moving with constant velocity, sought in a sequence of images, is

used as an example; in this case, the fitness function would be passed five param-

eters, these being the circle’s image coordinates at time t = 0, the circle’s velocity

components, and the radius.

The models presented here are sought in a similar way; the parametrisation

complicated mainly by the addition of the third dimension. For example, a moving

sphere is sought using a fitness function with seven parameters, in much the same

way as that of the 2D VHT example, although the method of voting will be shown

to have added complications.

However, the manner in which they are described in this implementation’s frame-

work allows more abstract objects to be sought with relative ease in the design of

models. Also, as will be later explained, performing TM on complicated models is

not appropriate, and thus other approximate searching methods are used, although

these will use the same fitness function as the TM algorithm. This implementation

removes the modelling from both the searching method and from the representation

of the underlying data, be it 2D, 2.75D or 3D sequences, as shown in figure 4.1.

The motivation behind this was to ensure that the models used would be identi-

cal, and thereby prevent the possibility of producing errors between the different

implementations of the same model. However, it also produces an elegant model

description.
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Figure 4.2: The four basic shapes.

4.3.4 Modules, basic shapes and CSG

The use of ‘plug-in’ modules is a key part of the implementation whereby a model

can be used without knowledge of the underlying structures. These modules de-

scribe the model by the use of basic shapes; these are the sphere, the cylinder,

the cube and the cone (see figure 4.2). The basic shapes can be warped by use of

4 x 3 matrices, thus allowing rotation, translation, scaling, and even shearing. For

example, the basic sphere shape contains the volume described by a unit sphere

located at the origin; the sphere can be scaled and translated, allowing a sphere of

a specific size to be placed at a specified position. Such distorted shapes can also be

intersected with each other thus enabling the generation of even more complicated

shapes. It is important to note that the objects are solid, and are thus akin to

constructive solid geometry (CSG) which is used extensively in computer graphics.

The function provided by each of these modules in essence describes the location,

and orientation (etc.) of basic shapes. In addition, the special temporal parameter,

i.e., time, is passed too; as well as indicating temporal information, it also governs

which frame in the sequence the model is to be compared with. However, time is

not deemed part of the parameter description of the model itself; it is simply an

additional dimension that enables the model to be described for a particular frame

in the sequence.

Thus for a moving sphere, eight parameters are required, which describe the

sphere’s starting position, velocity, and radius, and also the time for which the

model is to be evaluated. The function then calculates where the sphere would be

located at a given time, and produces a description of a single basic shape, that

being the translated and scaled sphere. This description is then evaluated by the

underlying structure, depending upon the representation of the data.

Summarising, each module provides a function, model, with the syntax

model(parameter list, time), which returns a description of a template for the par-

ticular set of parameters, in terms of basic shapes, at the specified instance of time.
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Since for different models, a different number of parameters is required, another

task to be performed by a module is to indicate the number of parameters required

and validate the range of values that each of the parameters can take.

Therefore, the underlying representation must interpret the set of basic shapes

and produce a measure of fitness; this is now explored.

4.3.5 2D basic shape evaluation

A model has produced a set of basic shapes, with respective warping matrices, for

a particular set of parameters, and from these a measure of fitness, or suitability,

must be obtained. Thus this stage, in combination with the model module, will

evaluate the fitness for a set of parameters, and hence is equivalent to the fitness

function that is used during TM.

As a simplified overview, it can be interpreted that shapes are mapped, one at a

time, onto each of the binary images (they are binary as they have been segmented

to indicate either foreground or background). From this mapping, an intersection is

produced, and it is the summation over all of these pixels that produces a manner

of voting. It is the addition of the summations over all of the images for a particular

frame, and over all frames for a particular parameter description of the model, that

produces the complete measure of fitness for a template, i.e.:

fitness(parameter list) =
F∑

frame=0

f2d (model(parameter list, t(frame)), frame)

(4.2)

where t(frame) converts a frame number into a value indicating a useful measure

of passing time, and where f2d(basic shape list, frame) is a function that evaluates

a set of basic shapes for a particular frame. Later, it will be shown (see section 4.5)

that two measures are actually produced for each model, which are then combined

to produce a more suitable fitness function.

The function f , the one related to the formation of the intersections and the

voting in general, is now discussed followed by the full analysis of the sphere basic

shape.

Overview

Contrary to the description above, the mapping is actually performed in reverse, i.e.,

the images are mapped onto the object. This is performed for simplicity. Similar to

the 2.75D reconstruction algorithm, rays are projected from the cameras. For every

pixel in an image from a particular camera, irrespective of whether the pixel is in the

foreground or not, such a ray is cast through the space. If this ray intersects at some

point with the basic shape, then the pixel has caused a potential vote. If the source

pixel is actually from the foreground, then the pixel has also caused an actual vote.
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Figure 4.3: Projecting a ray and testing its intersection with a basic shape.

These two voting accumulators will be combined according to section 4.5. Figure 4.3

illustrates projecting a ray and intersecting it with the sphere.

The Sphere

The ray for the pixel ppx,py is projected from the origin of the camera, but using

a representation of the space that yields a unit sphere at the origin. This is per-

formed by producing a matrix M which is the result of multiplying the matrix that

transforms the described sphere to a unit sphere (the inverse object’s matrix) by

the camera’s projection matrix P. The matrix M is a 4 x 3 matrix.

Thus the line is described by the vector equation: x

y

z

 = X = X0 + λX1 (4.3)

where:

X0 =

 x0

y0

z0

 = M


0

0

0

1

 (4.4)

and:

X1 =

 x1

y1

z1

 = M


px

py

1

1

−
 x0

y0

z0

 (4.5)

This thus specifies λ as a measure of the unit orthogonal distance from the

camera of the projected pixel. For a solid unit sphere, a pixel will be in the object

if and only if:

x2 + y2 + z2 < 1 (4.6)
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The values of λ for which the line enters and leaves the sphere are now sought, i.e.:

(x0 + λx1)2 + (y0 + λy1)2 + (z0 + λz1)2 = 1 (4.7)

Expanding this yields:

0 =
(
x2

0 + y2
0 + z2

0 − 1
)

+ 2λ (x0x1 + y0y1 + z0z1) + λ2
(
x2

1 + y2
1 + z2

1

)
(4.8)

=
(
|X0|2 − 1

)
+ 2λ (X0 ·X1) + λ2 |X1|2 (4.9)

and solving for λ gives:

λ =
−X0 ·X1 ±

√
(X0 ·X1)2 − |X1|2

(
|X0|2 − 1

)
|X1|2

(4.10)

It is important to note that if the denominator is 0, the ray can be interpreted as

not actually being projected. This should not occur with any of the transformations

available, either in the camera matrix definitions, or in the matrix describing the

object. For example, scaling an object by the value of 0 is not a reversible operation,

and thus is prohibited.

If there are to be solutions, i.e., points at which the projected ray meets the

sphere, then the contents of the square root must be greater than, or equal to, 0.

Also, at least one of the solutions to λ must be greater than 0, otherwise the object

is behind the camera; this is checked by testing whether X0 · X1 < 0 or whether

|X0|2 < 1, where the latter can be interpreted as the camera being located within

the unit sphere and thus guaranteeing a solution. Such checks are performed so

that only the full calculation is performed when it is required.

The Cylinder, Cube and Cone

The other three basic shapes derive similar ranges for λ. However, for example, in

the cube, a range of λ is calculated for the x-axis, then a second range for the y-axis,

and a third for the z-axis; these are then combined producing an intersection of the

three ranges. The complete set of shape descriptions are shown in table 4.1.

Shape Restrictions

Sphere x2 + y2 + z2 < 1

Cylinder x2 + z2 < 1, −1 < y < 1

Cube −1 < x < 1, −1 < y < 1, −1 < z < 1

Cone x2 + z2 < (1− y)2, 0 < y < 1

Table 4.1: Restriction equations on λ for the basic shapes.
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Using the limits of several objects, intersecting objects can easily be accom-

plished. This involves calculating the intersecting range of λ between all of the

different objects. More complicated operations can be envisaged, such as union or

difference operators, however, these were not implemented during the course of this

research.

Voting

If pixels have passed the tests required, then they will exist within the required

intersection. In these cases, as already mentioned, a counter indicating the potential

vote is incremented and if the pixel happens to be in the foreground another counter

indicating the actual vote is also incremented. These are combined as described in

section 4.5.

Streamlining

In the above description, the matrix that warps the space from the global geometry

to the basic shape’s local geometry has been described. However, the matrix that

enables the basic shape to be projected back into the global space, and from whence

into a camera’s local geometry, is also part of the shape’s definition. This enables

the limits of the 3D shape to be mapped onto a camera’s 2D image plane, thereby

restricting the number of pixels that should be tested. For example, the sphere

exists within a cube defined by: −1 < x < 1, −1 < y < 1, −1 < z < 1 when

described in its local geometry. The eight vertices of the cube are mapped into

the global space and then to the local intrinsic geometry of a camera, producing

up to eight points on the camera’s image (there may be less if points are mapped

to behind the camera). Comparing the coordinates of these points, a bounding

rectangle is produced, and only pixels in this rectangle are then tested for their

intersection with the object, as shown in figure 4.4.

If the camera exists within the shape, then it is debatable whether the object

should be ignored since this would be an ill-posed problem—the camera could not

be physically placed within the solid object for it to be of use; the implemented

algorithm permitted the camera to exist within the shape and hence tested for the

volume although this instance did not occur in any of the trials.

4.3.6 2.75D basic shape evaluation

There is great deal of similarity between the 2D and the 2.75D methods, with these

methods differing mainly in their voting manner. For each shape, it is the range of

λ that is sought, not just the presence of one solution. The 2D method has already

indicated how two values of λ, and hence the range, can be calculated.
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Figure 4.4: Reducing the searching area for a shape using a bounding box formed
from the mapping of the object onto the image.

Voting

The voting method is now performed using volumes rather than areas or pixels.

The range λ, denoted by λ0 ≤ λ < λ1 corresponds to a volume in the 3D space. It

is this volume that is compared with the 2.75D data.

First, considering a two dimensional case, the area of the projection will now be

studied. Figure 4.5 shows the area that is being studied; it is a sheared rhombus.

λ0 λ12dx

f

top

base

Figure 4.5: 2.75D voting as considered from a 2D framework.

Considering the lengths of the horizontal lines:

base =
x2d + 0.5

f
λ0 −

x2d − 0.5

f
λ0 =

λ0

f
(4.11)

top =
x2d + 0.5

f
λ1 −

x2d − 0.5

f
λ1 =

λ1

f
(4.12)
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(4.13)

where f is the focal length of the camera.

A sheared shape has the same area as the original, and thus the area of the

object can be simply stated as:

area =
1

2
(λ1 − λ0)

λ0 + λ1

f
(4.14)

Increasing the number of dimensions, the volume is thus described by:

volume =
1

2
(λ1 − λ0)

(λ1 + λ0)2

fxfy
(4.15)

Note that there is no need for the other intrinsic parameters, namely skew and

the principal point offset, to be included in the calculations, as these will not affect

the result. However, if the evaluation is performed upon a λ represented in the local

intrinsic space, then fx = fy = 1, thus the equations are further simplified.

Equation 4.15 demonstrates how a range of λ is converted into a volume, and

hence in order to calculate the potential (i.e., the maximum possible) number of

votes, no changes are required. However, each projected pixel may not have depths

defined for the entire size, and thus the various depth entries must be compared

and clipped to the required volume under test. Thus the resulting actual vote is

incremented with the sum of all the possible sub-volumes.

Streamlining

The same bounding box method as used in the 2D algorithm to streamline the

testing, is employed.

4.3.7 3D basic shape evaluation

The 3D system is the simplest to perform as no mapping is required to particular

cameras, because once the scene has been reconstructed, it exists solely within the

global voxel space. The voxel space is warped by the inverse shape matrix, and

then voxels are tested for inclusion in the various objects.

Voting

Voting is done on a voxel basis—either a voxel is in the foreground or it is not.

Again, a maximum possible total is noted, as well as the actual total number of

voxels found.

Streamlining

Similar to the 2D and 2.75D methods above, the other matrix supplied with each

shape is used to restrict the number of voxels that are to be tested.
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4.4 Genetic Algorithms

4.4.1 The choice of algorithm

As indicated in section 4.3.2, it is impossible to construct and search the Hough

parameter spaces for models that have a high number of dimensions or even those

whose result must be calculated to a high level of accuracy. There are several meth-

ods available including the multi-resolutional HT, Simulated Annealing, Gradient

Ascent/Descent and Genetic Algorithms. All of these methods are aided by wide

peaks in the voting domain.

The multi-resolutional, or pyramidal, HT is mainly suitable for few parame-

ters, but its resolution can be gradually increased to the required amount. It can

unfortunately select the wrong peak from the outset.

Simulated Annealing attempts to guarantee that the global maximum of the

voting domain will be found, although it might take an infinite amount of time to

reach it. Multi-start Simulated Annealing would of course be preferable so that

many regions can be tested in parallel.

Gradient Ascent attempts to improve upon its estimate of the peak by analysing

the peak’s immediate neighbourhood and calculating which the preferential direc-

tion to move in would be. It, however, can get impeded by local maxima, and once

again a multi-start algorithm would be preferable. Unfortunately, the searching of

the local space would be costly as the number of dimensions increase.

Genetic Algorithms (GAs) have been used before by, for example, Cunado et al.

[15] and Yin [94], to locate peaks in the HT’s accumulator space, due to their

effectiveness at handling high dimensional space. It is the success these have had

that made GAs the method of choice in this research.

4.4.2 Overview

In essence, GAs search parameter spaces by attempting to maximise a fitness func-

tion associated with a set of parameters. Searching accumulator spaces of the HT

is an ideal application for such a system, as the function is the TM fitness function.

Thus this is advantageous over the HT because the accumulator space does not

need to be constructed, as the algorithm makes use of the HT-TM dual.

The algorithm implemented is based upon that described by Goldberg [26],

however, it uses Gray coding to encode the parameters. This is also discussed by

Goldberg [26] stating that it is believed to have advantages due to the unit distance

between successive numbers, but no evidence for this has been given.

GAs are obviously based upon biological processes, and are thus described using

biological terms. They work initially on a random population, where each member

of the population has a chromosome composed of genes that encode the being’s
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Figure 4.6: GA definitions.

individual parameters (see figure 4.6). The chromosomes are commonly a concate-

nation of all of the binary digits that are required to represent the different genes.

For example, if a parameter can take any even value in the range (4 < 14), then

the respective gene is 3 bits in length as there are 8 possible values. It is important

to note that with this representation, the number of possible values for a particular

parameter must be a power of 2. Other representations exist where the genes are

indivisible units which are simply the standard computer representation of their

respective value.

For each population member, the parameters are extracted and passed to the

function that is to be maximised. For example, in this context, the function is

related to the template fitness function described in equation 4.2. The fitness of

the population member is based upon this function.

Once the fitness of each member of the population has been calculated, the

individual beings are then mated, or allowed to survive. This is performed by

picking a pair of beings from the population and from these parents, two children

are formed. The selection process is performed using a weighted roulette wheel.

The wheel has the number of segments equal to the number of members in the

population, but the spacing of this wheel is irregular, resulting in making fitter

members more favourable for selection that less fit members. The actual spacing

need not be directly proportional to the level of fitness; often a small bias is added

to ensure the population is kept reasonably rich in values. It is entirely possible, and

indeed common, for the same being to be picked twice from the pool, to form the

two parents for two new children—the selection process does not remove members

from the pool once they are selected.

A random variable is then tested, which thereby decides whether the selected

pair are to survive or are to be mated. If a selected pair are to be mated, a random

crossover point in their chromosome is chosen. The next generation from such a

pair is created by using the first section of one of the beings with the latter part of

the other being (see figure 4.7). A similar being is created from the remaining two

sections. Since crossovers will commonly occur within a gene, children, although

based upon their parents, will also have the potential of representing new values

that were not originally within their parents’ parameter set.
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Figure 4.7: GA’s cross-over.

To increase the richness of the resulting new population, random errors, or

mutations, are allowed to occur during the mating process. If a selected pair are to

survive without mating, their genome is also subject to the same random process

of mutation.

A further rule, which was implemented, is to keep the member whose fitness is

best, thereby ensuring that the system’s population will never degrade.

With the new population formed, the process is then iterated until there is

sufficient convergence on a particular value. This latter point, however, is subject

to the choice of many of the probabilities and scale factors used within the algorithm,

and thus it is common to have a stop criterion based upon the number of iterations.

Such a criterion was used in this research, and a grid search was then performed

on the local neighbourhood afterwards in order to locate the peak in the parameter

space more quickly.

4.4.3 Choice of parameters

The Gray coding was used for the parameters as it was believed that by placing

subsequent values within a single bit change, the small mutation errors could enable

the traversal of the local neighbourhood around the different population members.

There are, however, further issues that must be considered when using parameters

under a GA.

The first issue is that cyclic parameters should be avoided; cyclic parameters

are those that can encode angles. They are hazardous because, for example, 0◦ is

very similar to 359◦, and without a special encoding of the parameter they would

be placed far apart in the voting domain. Highlighting this:

fitness = f(r, φ, t) = g(r cos(t+ φ)) (4.16)

the above equation would be poor for this reason, however:

fitness = f(a, b, t) = g(a cos t+ b sin t) (4.17)
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where a = r cosφ and b = r sin−φ, provides exactly the same model, but without

the aforementioned problem.

Second, although it is obvious that parameters should be orthogonal, there are

sometimes hidden dependencies. For example a simple moving object could be

described with a start point and a velocity. However, should the start point be

varied during the maximisation of the fitness function (as is likely), the trajectory

could be completely altered and the end point of the sequence would no longer be

reached without a change in the velocity as well. This has become apparent from

watching the results of the GA battle with moving the start point and then adjusting

the velocity to compensate so that the appropriate end point can be reached once

again. Although a different encoding is often unnecessary, it is worth pointing out

that specifying a start and end point may aid convergence to a quicker solution.

4.4.4 Increasing the size of the peak

Increasing the complexity of the mathematical models exponentially increases the

size of the accumulator array, thus constructing the accumulator space is infeasi-

ble, except for basic models. However, GAs provide a means to search such large

dimensional spaces, without the requirement for the space to be represented or con-

structed, and although their approach is inherently random, with careful use they

will converge on or near the peak of the accumulator. This can be aided by ensur-

ing that the peaks of the accumulator array will be wide; peaks can be widened by

either blurring the source data, or by searching for volumes rather than edges.

The narrowness of standard HT peaks is due to the data using edges not areas.

The first advantage of this is that there are of course reduced computational costs.

If, however, areas were used, the peak becomes much wider. In figure 4.8, three

lines indicate three different methods of locating a circle using a circle.

The narrowest peak belongs to seeking an edge detected circle with a circle

outline. It can clearly be seen to have many local maxima to the sides of the main

peak. The curved line indicates searching for an edge detected circle with a filled

circle template, or, searching for a filled circle with an outline circle template. The

first of these combinations would be prone to noise, as it would quickly seek out

regions of high change. The latter of these interpretations would produce a poor

response if the template had a larger radius than that of the object being sought;

it would suffer the same problems as the last of the graphs. This last graph is

seeking filled circles with filled circle templates. The main problem with this is that

as there is no edge information, a circle can easily be found lying within a square.

If, however, the circle is allowed to expand, then using an appropriate measure, as

discussed below, even though a circle may be found within a square, a circle would

match another circle much more preferably.
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Figure 4.8: Voting spaces resulting from the search for circles of unknown position.

This is thus the reason solid objects are sought, rather than areas, in these

3D analyses. The emptiness of the surrounding space of objects separated them

sufficiently that edge information was not required and the templates were able to

‘grow’ into the required bodies.

This theory is further illustrated by studying the results of Yamany et al. [93]

who researched fitting 3D surfaces to reconstructed objects. One of the examples

given demonstrates only a small 15% match, but the description actually appears

to yield a good solution. It is thus unsurprising that the parameter ranges for

the extraction were restricted. It could be concluded that noise would thus be a

significant problem for such systems.

A further method to add edge information is discussed in chapter 7. This was

not implemented as the emptiness of the 3D world in the experiments was sufficient

for the parameter extraction. However, for further, noisier, analyses this alternative

method may prove to be preferential.

4.5 Model weighting

4.5.1 The problem

When dealing with volumes in 3D, or areas in 2D, a template fitness function that is

solely dependent on the actual number of votes va for a particular template cannot

be used if the parametrisation allows the size of the subject to be altered. If, for

example, in 2D a circle of unknown radius is sought, the best solution would be the

biggest circle that can be represented since it would encompass the greatest area

78



and thus increase the possibility of receiving votes due to noise. This is further

illustrated in figure 4.9a where the black circle is sought. The circle in figure 4.9b

would receive the same number of votes as the circle in figure 4.9c although it would

appear the latter should be the better choice since all of the possible pixels vote

for it. To overcome these problems, the number of votes could be divided by the

potential number of votes the template could gain, vp, thus the circle in figure 4.9c

would now be preferred since all of the possible pixels in the circle are represented.

Also big circles would not be preferable because the ratio of the number of votes

to the maximum number of votes would reduce to the level of the noise. However,

simple division cannot be performed since the best match would become the smallest

circle allowed since this reduces the possibility of erroneous values inside the true

data reducing the fitness.

(a) (b) (c)

a) the original image b,c) two possible circles that have equal numbers of votes.

Figure 4.9: Non-weighted voting for circles.

To overcome this, the suitability function is defined as:

w =
va

vp + k
(4.18)

where k is a constant related to the level of noise expected.

4.5.2 Suitable values for k

The selection of a suitable value for k is now investigated by expanding upon the

example for the search for the circle. We shall say that there is some vote density di

that exists for the area enclosed inside a circle of radius R, and some vote density

do for the area beyond. The condition di > do is assumed, otherwise there would

be no reason to be searching for such a circle.

We wish to choose k so that equation 4.18 is a maximum for the circle of radius

r = R.

The number of votes given to a circle of radius r is given by:

va(r) =


diπr

2 r < R

diπR
2 r = R

diπR
2 + doπ(r2 −R2) r > R

(4.19)
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and the potential number of votes is given by the area, i.e.:

vp(r) = πr2 (4.20)

Let us now say that k = πR2. This thus yields:

w(r) =


diπr

2

πr2+πR2 r < R
di
2

r = R
diπR

2+doπ(r2−R2)
πr2+πR2 r > R

(4.21)

This produces the results shown in figure 4.10 where the circle radius has been

normalised (R = 1), as has do. The graph shows that for di > 2do, a peak clearly

exists at the required radius.
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Figure 4.10: The template match of various radius of the template with various
relative noise levels of the inside of the circle to outside the circle.

More generally, introducing an area function a(r), the weighting function can

be defined as:

w(r) =


dia(r)

a(r)+a(R)
r < R

di
2

r = R
dia(R)+do(a(r)−a(R))

a(r)+a(R)
r > R

(4.22)
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Figure 4.11: The template match of various radius of the template and various
constants k, but with a fixed source noiseless circle template.

It can thus be derived that:

dw(r)

dr
=


dia(R) da

dr

(a(r)+a(R))2 r < R

0 r = R
(2do−di)a(R) da

dr

(a(r)+a(R))2 r > R

(4.23)

Since, for a meaningful template, da
dr
> 0, as long as di > 2do, a peak is ensured in

the weighting function.

In practice, the value of k is estimated to have a comparable value to that of

the maximum values expected. An estimate is sufficient since for values close to

the peak, the fact that di could be less than the local surrounding 2do would cause

a natural expansion into the required area. This can be seen in figure 4.11, where

the source radius has been fixed at the radius R = 1, but the template size and the

constant k are allowed to vary; the vote density within the circle of radius 1 is fixed

at 1, and the density outside the circle is 0. This graph clearly indicates that the

peak is located at the correct radius of R = 1 for such a noiseless example, for any

value of k except for k = 0. Large values of k can be seen to be a poor choice as

the regions neighbouring the peak are less distinguishable; small values are poor as

they could become less significant than any noise that may be present.
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4.6 Examples

Two examples are outlined below that demonstrate the varied use of models, with

the first drawing together all of the techniques discussed.

4.6.1 Moving ball

If it is required that a moving sphere be extracted from a sequence of images from

multiple cameras, then a representation must first be specified, i.e., whether 2D,

2.75D or 3D data is required. For the latter two, this would involve analysing the

scenes on a frame-by-frame basis, thereby producing a 2.75D or 3D sequence of

frames, as explained in chapters 3 & 2 respectively. For all three representations,

the data would then be passed through the appropriate background removal filter,

as described in section 4.2. The choice of the representation is governed by factors

that will become apparent in chapters 5 & 6.

Having the appropriate sequence, a pre-defined model for the moving ball is

utilised to give the positions of the basic shapes required.

The model

The moving ball is a sphere that moves at a constant velocity, with its radius also

constant but unknown. Therefore there are seven parameters that describe the

model. These are described in table 4.2

Parameter Description
x0, y0, z0 The ball’s position at time t = 0
vx, vy, vz The ball’s velocity

r The ball’s radius

Table 4.2: The 7 parameters required for the moving ball model.

From these it is apparent that the model will require only the basic shape of the

sphere, which would be scaled and then translated, giving the two matrices required

for the shape’s description:

T
shape to global

= translate
(

[x0 + tvx y0 + tvy z0 + tvz]
T
)

scale
(

[r r r]T
)

(4.24)

T
global to shape

= translate
(
− [x0 + tvx y0 + tvy z0 + tvz]

T
)

scale

([
1

r

1

r

1

r

]T
)

(4.25)

where the functions ‘translate’ and ‘scale’ produce suitable matrices, and thus ma-

trix multiplication is present thereby indicating the ‘right-to-left’ order of evalua-

tion.
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The value of t is passed along with the other parameters, and thus for a particular

point in time, and hence frame, for a particular template, the basic shape structure

has been defined.

Parameter ranges

Having produced a model, the range of the parameters that describe it must be

defined, as must the stepping increment. For example, seeking a ball approximately

the same size as a basketball, the range of the radius could be restricted to 100 mm <

r < 140 mm, and 5 mm steps might be an appropriate discretisation. However, the

larger the range, and the smaller the steps, the more possible combinations there

are, and thus the GA would take longer to converge.

Evaluation of the model

The GA produces a set of parameters that are required to be tested. The potential

vote counter and the actual vote counter are set to 0, and then the model is evaluated

over all of the frames, with each frame requiring a new set of matrices for the basic

shape.

The shape’s description is passed to the function appropriate for the dimension-

ality of the representation. For the 2D and 2.75D systems, the shape is evaluated

for each of the camera views. The matrix P
i
T
shape to global

, where P
i

is the pro-

jection matrix defined in equation 2.12 for the ith view, is used to map the eight

corners of the cube, which encloses the sphere, onto the respective view; each of

the pixels that lie within the bounding box formed from these eight mapped points

are evaluated. The pixels are first tested to see whether they will intersect with the

object, using the matrix T
global to shape

P−1

i
to map the local geometry of view i into

the local geometry of the shape. If they do intersect with the shape, the values of λ

are calculated, checking that at least one of these will lie in front of the camera. In

the 2D system, if these tests have passed, then a potential vote is generated, and if

the pixel was actually selected, an actual vote is produced. In the 2.75D case, the

range of λ is used to calculate the potential vote, and again if the pixel was actually

selected, the subsections of the range of λ for which the pixel is defined for are used

to produce individual increments to the actual vote.

For the 3D system, the matrix M
global to voxel

T
shape to global

is used to map the

eight corners of the cube, which encloses the sphere, onto the voxel space, where

the matrix M
global to voxel

performs the necessary scaling and translation of the

voxel space (cf. W−1 defined in section 3.3.3). All of the voxels that lie within the

bounding region of the voxel space are then tested for inclusion in the object. The

voxels are mapped onto the shape using the matrix T
global to shape

M−1

global to voxel
,

and if they exist within the object, using the test that the resulting x, y, and z fit

the equation for a unit sphere located at the origin, they produce a potential vote.
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If the voxels are also in the foreground, they produce an actual vote. These votes

are accumulated over all of the frames.

The potential vote counter and the actual vote counter are combined using

equation 4.18. However, a constant is required which should be estimated prior to

the evaluation of the model.

Selecting a constant

As explained in section 4.5, the constant should take the value equal to the potential

vote counter of the object being sought. However, the value is not known prior to

the analysis, and thus must be estimated. The 3D and 2.75D representations are

the simplest for this value to be estimated: for the 3D representation, the volume of

the sphere in voxels should be estimated, and multiplied by the number of frames in

the sequence. For the 2.75D representation, the volume of the sphere, in the units

in which the global representation is defined, must be estimated, and multiplied by

both the number of views and the number of frames in the sequence. For the 2D

representation, an estimate of the size of the sphere on each of the views should be

estimated, and again multiplied by the number of views.

The estimations, however, do not need to be too accurate; if the GA returns

an object whose potential number of votes is significantly different to the constant,

then the process should be repeated but using the potential number of votes as the

new constant. Chapter 7 presents a possible method that should be investigated

that could remove the requirement for this constant to be estimated.

The result

The GA will iteratively produce different populations to test, and these are evalu-

ated. Eventually, the system will converge, or the maximum number of iterations

allowed will occur. In either case the process stops, and the best population mem-

ber is found. Once this has occurred, it is useful to check that the best template’s

parameter set resides at the true peak—it is common for the GA to produce a

template that lies near to but not at the peak. Thus performing a complete search

of the local neighbourhood will attempt to ensure that the peak found is the true

peak of the fitness function.

4.6.2 Gait analysis

Background

Previous work by Cunado et al. [15] investigated a 2D gait extraction and descrip-

tion method where single lines that oscillated in a pendulum manner were sought.

From the edge-detected source images, a single pendular line from the thighs was

located by an evidence gathering procedure adapted from the VHT formulated by

Nash et al. [59]. No tracking was involved, and the evidence gathering nature of
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the system made it extremely tolerant to noise and occlusion, with the capability

to handle time lapse imagery.

By analysing the frequency components of the angles that the pendular lines

made with the vertical, as shown in figure 4.12, a biometric was produced from the

phase weighted magnitude spectrum. For the small sample of subjects, this method

produced a 100% recognition rate.

θ (t)

Figure 4.12: The pendular nature of the thighs used by Cunado et al. [15].

Parameter description of the model

The third dimension allows for a much more detailed model to be applied to the

data, and subjects would also be permitted to walk at any angle to the cameras

instead of the simple planar motion used by Cunado et al. [15], giving true freedom

of motion. The swing in the hips and differentiating between the left and right legs

are just two examples of the advantage of manipulating the information in 3D. The

model, described in figure 4.13 and table 4.3, is used in the later example of human

gait description.
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Figure 4.13: A 3D basic human gait model constructed from cylinders.

This model is comprised of two cylinders that represent the thighs; this compares

directly with the lines used in the 2D work by Cunado et al. [15]. These oscillate in

a pendulum-like motion about a pivot point, that being the hip. This pivot point

moves with a constant velocity through the space, although harmonics are applied

to this in the direction of the gait. Also, the hip is permitted to have oscillatory

motion in the vertical direction.
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There is potential for a larger number of harmonics to be present, noting the

restrictions placed by Nyquist’s sampling theorem, which would be required to

describe the oscillations in the thighs, however, previous research into gait has

indicated that recognition can be performed with only the first two harmonics.

Hence there are 23 parameters which are described in table 4.3.

Parameter Description
H0 Hip 3D central position at time t = 0.

Hwidth Hip width.

TL Thigh length.

ω0 Step rate in full gait cycles per second. Period = 1
ω0

.

V Mean velocity of the person in the X and Z directions.

First two harmonics of oscillations of hip position
V ∗2 , V ∗4 orientated in direction of V.

H∗2 , H∗4 First two harmonics of oscillations of hip position vertically.

T0 Mean angle of the thighs.

Fundamental and first two harmonics of oscillations
T ∗1 , T ∗2 , T ∗3 of the thigh angles.

Table 4.3: The 23 parameters required for simple gait recognition. Parameters
marked with a ‘*’ are complex.

Understanding the model parameters

Consulting table 4.3, the central position of the hips is given by:

H(t) = H0 + t

 Vx

0

Vz

+


Vx
|V|

0
Vz
|V|

Re
{
V2e

−4jπω0t + V4e
−8jπω0t

}

+Re
{
H2e

−4jπω0t +H4e
−8jπω0t

} 0

1

0

 (4.26)

the angle of the left leg is given by:

θl(t) = Re
{
T0 + T1e

−2jπω0t + T2e
−4jπω0t + T3e

−6jπω0t
}

(4.27)

and the angle of the right leg is similar, but lagging by half a period:

θr(t) = Re

{
T0 + T1e

−2jπω0

(
t− 1

2ω0

)
+ T2e

−4jπω0

(
t− 1

2ω0

)
+ T3e

−6jπω0

(
t− 1

2ω0

)}
= Re

{
T0 − T1e

−2jπω0t + T2e
−4jπω0t − T3e

−6jπω0t
}

(4.28)
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Note that the hip harmonics are at twice the frequency of those in the thighs

due to the addition of sinusoidal motion caused by the two legs. Also note that

cyclic parameters are not present in the description as these are not trivial to

encode successfully into the GA, as indicated in section 4.4.3—the parameter T0 is

in essence cyclic, but in practise it is defined over a limited range and thus can be

termed as monotonic.

The legs are assumed to be symmetric in motion, i.e., no limping was modelled.

If asymmetric gait was to be considered, it could be modelled as an oscillation of

the parameter T0 as this would yield only relatively small values, but this would

also imply that the hips will now have a fundamental frequency equal to that of

the thighs. Oscillating T0 actually produces a multiplicative model which is be-

lieved to be advantageous over modelling the thighs separately due to the predicted

small amplitudes of the harmonics of T0. Such alternative descriptions should be

investigated in future research.

Production of the basic shape descriptions

Using equations 4.26, 4.27 & 4.28, the two cylinders that represent the template for

the thigh motion will thus be explained by the two pairs of matrices. The matrix

that converts the left thigh’s cylinder from local to global space can be described

as:

M
left

= translate (H(t)) rotatey

(
tan−1 Vz

Vx

)
rotatez (θl(t))

translate


 0

−TL
2

Hwidth
4


 scale




Hwidth
4
TL
2

Hwidth
4


 (4.29)

Here, the scaling creates the correctly sized cylinder, whose diameter is half of the

hip width, and whose overall length is the length of the thigh TL. Translation is

then performed to move the thigh to the correct point relative to the hip position,

which involves placing it so that its top is correctly placed at y = 0 (relative to

the hip) and so it is no longer central to the body, but offset, thereby giving room

for the other leg. The rotation about the z-axis places the thigh at the correct

angle according to equation 4.27, and the rotation about the y-axis ensures the

body is facing the correct direction. The hip position is then moved with the final

translation.

Streamlining

Applying this model directly to the data is not suitable due to its complexity.

Therefore it is simpler to look for the basic components such as the direction of

motion first, and then the various harmonics can gradually be incorporated into the
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search. However, it is important to note that when fewer harmonics are searched

for, values may be produced that are significantly different to when a search is made

for more harmonics. For example, this is a noticeable effect between searching for

just the fundamental frequency of the thigh angle and searching for the fundamental

and first harmonic frequencies.

4.7 Conclusion

The last of the two stages of all of the three systems, these being the background

removal and the parameter extraction algorithms, have now been described. An

estimate of the order of processing for the general case is unfortunately not possi-

ble since technically there is no general model that can be assumed; a qualitative

example of the relative processing times for the extraction stages are presented in

section 6.6.

A by-product of the extraction algorithm is that two methods to evaluate the

quality of the reconstruction algorithms have also been produced. The first method

is provided by the TM algorithm itself, which can also evaluate static scenes. There-

fore, a reconstructed scene can be tested to see how closely it matches the original

model. This is aided by the second by-product, which is that the TM algorithm

can be used in reverse so that templates are produced instead of tested, thereby

creating perfect data. Both of these methods are used in the following chapter

which compares the reconstruction algorithms under various conditions.
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Chapter 5

Comparison of reconstruction

methods

5.1 Introduction

In chapter 4, methods by which objects can be extracted and parametrised by the

three systems were described. Since static data is a subset of dynamic data, these

different systems are thus capable of demonstrating and evaluating the effectiveness

of the reconstruction algorithms themselves. The use of ray-tracing provides an

accurate means for a 3D artificial object to be rendered onto 2D images. These

images can then be analysed using the various reconstruction algorithms described

in chapters 2 & 3 to produce their respective representations of the original scene.

Using the parameter extraction algorithms, the parameters of the best matching

template can be found, as can a measure of the fitness of the original object in

this rendered space. Ray-tracing is not the only source of data; as indicated in

chapter 4, the templates of the objects can be used to create perfect data rather

than test it.

The aim of this chapter is to compare the different reconstruction algorithms

under a number of conditions. These include the investigation into errors caused

by the discretisation of the representation itself, and the effects that incorrectly

calibrated cameras have on the data.

However, although only two reconstruction algorithms have been described, i.e.,

the 2.75D and 3D algorithms, the 2D system is also evaluated in many of the

circumstances; the 2D reconstruction can be thought of as an implicit part of the

extraction phase.

5.2 Experimental set-up

In all of these experiments, three views are used. The intrinsic and extrinsic pa-

rameters are the same as those used in the capture of the real data that is analysed
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Camera α. Camera γ. Camera β.

Figure 5.1: An example of perfect data with a cube whose scale factor is 240. The
irregular ordering of the camera names is for ease of comprehension of the scene.

in chapter 6. The required parameters are described in appendix section A.3.

The resolution of the 3D voxel grid was set so that the descriptions produced

were of the same order as the average size of the 2.75D data (in bytes). In fact, the

3D voxel representations were approximately 50% greater in length.

5.3 Discretisation

As described in section 3.3.2, the initial data capture is of course a source of discreti-

sation noise, however, it is the introduction of further discretisation noise that will

now be studied. The hypothesis is that the 3D representation introduces further

discretisation noise but those of the 2D and 2.75D systems do not.

5.3.1 The perfect reconstruction

This first study shows how the representation affects the resolution of the object’s

parameters that can be recovered. To perform this, a perfect representation of a

cube is created by inverting the function of a cube template so that it produces the

3D data rather than analyses it. The data is perfect since they portray the true

template shape, and are thus better than the visual hull (see chapter 1) that the

three views would produce from the 2D silhouette images.

The cube is centred at the position (0, 1000, 500) mm; the use of units is arbi-

trary, but is present to show the correspondence to the real world data that will

be seen in chapter 6. Using a varying scale factor, data describing the different

‘source’ cubes is created. This reconstructed data, be it in 2D, 2.75D or 3D, is

then analysed by using template matching (TM), testing for a range of cube sizes.

Thus, for each source cube size, ss, the response of a range of the template cube

sizes, st, is produced. The peak of this response should be at the point st = ss,

i.e., the template that best fits the source data is the cube whose parameters are

the same as the source. If discretisation is an issue, then for several source cube

sizes, the response to a range of template cube sizes will be the same. Figure 5.1

demonstrates the perfect data that is observed by the three cameras for a cube

whose scale factor is ss = 240 mm.
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2D 2.75D 3D

Figure 5.2: Discretisation effects using perfect data of many source cube sizes. Source
cube’s size increases from left to right; test template’s size increases from top to bottom.
The darker the point, the higher the fitness.

In this experiment, the suitability of a template is that described in section 4.5.

Recapping, the fitness function is:

w =
va

vp + k
(5.1)

where va is the actual number of votes a template receives, and vp is the potential,

i.e., maximum, number of votes a template could receive. The constant k, is chosen

in this experiment, in line with the indication in section 4.5, as being the volume or

area of the cube being sought (dependent on the representation being used). Hence

the maximum suitability value that is found for any of the algorithms is 0.5.

The sizes of the source cubes and templates start at a value of 10 mm and

increase to 500 mm and 600 mm respectively in steps of 5 mm.

The results can be seen in the images of figure 5.2, where grey-scale is used to

indicate the suitability of the various combinations. The most noticeable difference

in these images is the ‘pixelised’ nature of the 3D response. This effect is solely due

to the voxel representation reducing the fidelity of the result. The 2D response is the

best that could ever be hoped to be achieved by a reconstruction algorithm, showing

only a slight amount of this phenomenon where it is the resolution of the image

that is the limiting factor. Although it is not clear in these diagrams, the 2.75D

algorithm has the potential for better localisation than the 2D algorithm; intimate

knowledge regarding the 3D nature of the original object is known, represented, in

theory, by a set of depth ranges in the R domain, and are thus providing continuous

information.

Figure 5.3 illustrates the response of matching a cube against two different cube

sizes (i.e., two vertical lines in the images of figure 5.2). The discrete nature of
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Figure 5.3: Graph of discretisation effects of two sample source cube sizes, using
perfect data. The two sizes are indicated by the vertical lines.

the 3D response is very apparent, as is its and the 2.75D algorithm’s more peaked

response. It is clear that there are 8 steps in the 3D response for each 100 mm

that the template size is increased. However, for a scale factor increase of 100 mm,

the cube’s sides have actually increased by 200 mm, due to the definition of the

‘unit cube’ being {−1 ≤ x < 1, −1 ≤ y < 1, −1 ≤ z < 1}. Thus the resolution

of the lengths of the sides is 25 mm, which is the same as the resolution of the

voxel grid itself. At the depth of the object, the possible resolution capability is

approximately 10 mm for each view, although the combination of the various views

enables an increased fidelity; only by increasing the resolution of the voxel grid will

the maximum fidelity be achieved.

The increased peak effect of the 2.75D and 3D algorithms is due to their use of

volume as the means of measurement, instead of areas on the images (2D). This

can be described by equations 5.2 & 5.3, for a test cube whose size, st, is compared

with the source data formed from the source cube, which is of size ss.

marea(st) =
1

s2
t + s2

s

∣∣∣∣∣ s2
t for st < ss

s2
s otherwise

(5.2)

mvolume(st) =
1

s3
t + s3

s

∣∣∣∣∣ s3
t for st < ss

s3
s otherwise

(5.3)

For this perfect data, the response curves, for all of the algorithms, have a
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maximum located correctly at the source cube’s size, noting that the 3D response

has a wide plateau rather than a peak thus making it impossible to be certain of

the original source cube’s size.

5.3.2 Reconstructing from perfect images

If, instead of using perfect 2.75D and 3D data, the data was reconstructed from

the perfect source 2D images using Volume Intersection (VI), different response

curves are produced. As in the previous experiment, there is a discrete nature

apparent in the 3D response; this can be seen in figure 5.5. However, the difference

in the responses is that the peak is no longer located at the correct size, but at a

slightly larger value. The cause of this is the observed visual hull; as explained in

section 1.3.2, this is not the same as the visual hull of an object, since it is dependent

on the positioning of the cameras—the visual hull of an object is as a result of the

object itself, and cannot be reduced no matter what external camera positions are

used. The visual hull of a cube is thus itself as there are no concavities. The observed

visual hull, however, has been formed from the intersection of the three views, and

is thus bigger than the source cube. Since the region directly surrounding the

cube itself is within this observed visual hull, the density of ‘actual’ votes directly

surrounding the cube is not 0, and may be greater than the crucial factor of 0.5 (see

section 4.5). If this is the case, then the weighting factor will cause a bigger cube

to be selected. Note, however, if the constant in the model weighting equation is

set to 0, the peak is once again correctly located.

Thus it can be concluded that the 2D algorithm does not suffer from the observed

visual hull, which impedes the other two algorithms. However, this can only really

be stated for perfect data. If, instead, the source data is known to be noisy, then

it would not be possible to determine whether the conservative result of the 2D

algorithm is preferable over that of the 2.75D and 3D algorithms. Hence, it is

the use of the selected voting measure to incorporate noise that has led to this

difference. Using the noiseless measure of va
vp

would thus reinstate the statement

in section 1.5 that there is no advantage or disadvantage in producing 3D data

and extracting parameters in the 3D domain, over extracting the parameters in the

2D images, save, of course, the introduction of errors by calculation rounding and

discretisation.

5.4 Camera parameters perturbation

A key aspect of the reconstruction algorithms is that the cameras are correctly

calibrated. However, as discussed later in section 6.3, the camera set up for the real

data was not very accurate; this was not aided by the presence of radial distortion.

Thus it is necessary to study the effects of perturbing the various extrinsic and

intrinsic camera parameters.
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2.75D 3D

Figure 5.4: Discretisation effects using perfect data of many source cube sizes. Source
cube’s size increases from left to right; test template’s size increases from top to bottom.
The darker the point, the higher the fitness.
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Figure 5.5: Investigation of discretisation. Scenes analysed are reconstructed using
VI from perfect 2D images whose source template was of size 200, and also sourced
directly from perfect data whose template size was 400.
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A cube is placed in a 3D world, centred at the position (0, 1000, 500) mm with the

scaling factor of 240, i.e., the cube has lengths of 480 mm. If a camera is incorrectly

calibrated, it will view this cube, not with the designated extrinsic and intrinsic

parameters, but with perturbed values; these represent the parameters that the

camera’s calibration should have been described by. Using these perturbed values,

‘perfect’ 2D images are created of the scene. These are then used to reconstruct

the 3D scene, using the parameters that the camera was expected to have, and the

extraction process consequently produces a fitness of the original cube.

As there are many combinations, only the parameters of camera γ are perturbed

when creating the initial 2D images, and also only one camera parameter is altered

at a time.

5.4.1 Extrinsic parameters

Figure 5.6 demonstrates the effect of perturbing the camera’s direction angle, that

is, the angle about the y-axis. The overall result is not too surprising; as the

angle deviates further from the standard value, the fitness reduces, i.e., the cube

is gradually eroded. It is also reassuring that the 2.75D and the 3D algorithms

produce very similar results, since in essence, the VI reconstruction algorithms are

the same.

The linear aspect of the curves is due to the fact that the sine of a small angle

is approximately equal to the small angle itself: for a small perturbation angle,

the cube is reconstructed at a small distance away from the expected position,

where this small distance is approximately proportional to the angle. Hence when

searching for the original object, a linearly decreasing volume will be intersecting

with the source template’s volume.

Although the 2D algorithm produces the same basic curve, the linear section is

of much smaller gradient. This is because, although the voting due to the view of γ

decreases linearly with angle, the voting due to the other two views is unchanged,

and hence the gradient is one third that of the 2.75D and 3D reconstruction results.

Hence the fact that the 2D algorithm is less influenced by the perturbation indicates

that it is more tolerant to noise; it is due to the fact that the 2.75D and 3D

reconstruction algorithms correlate information that the information from all of the

views will be affected.

The responses for the other five extrinsic parameters are similar, although the

rotation about the z-axis has less of an effect due to the nature of the test images.

5.4.2 Intrinsic parameters

The study of perturbing the two focal lengths and the principal points has been

made, with the former producing a more significant effect. It was discovered that

a principal point offset of 10 pixels produced only a 4% decrease in fitness for
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Figure 5.6: Graph of perturbing the angle of the camera about the y-axis.

all three systems. However, for small perturbations, the 2.75D algorithm shows a

slightly higher tolerance than the 3D algorithm (a result of discretisation) which

shows a higher tolerance than the 2D algorithm; it is the effect of the visual hull

that has caused the higher tolerance in the 2.75D and 3D algorithms. For larger

perturbations, it is the 2D algorithm that excels due to two views being unaffected

and thus both producing a constant level of voting.

The focal length on the other hand produces an interesting effect, as demon-

strated in figure 5.7. For large perturbed focal lengths, the original 2D image of

camera γ will contain a cube that is actually bigger than it should be. When the in-

tersection of the images is produced, a larger than expected intersection is created.

Thus the expected intersection, and hence the cube, lies within this larger region,

and thus the tested templates receive 100% of the possible votes. Note that the 3D

algorithm never reaches the maximum response value due to a discretisation effect

of the projected objects.

For smaller focal lengths, the 2D image of camera γ will contain a smaller cube

than normal. Thus the intersection is eroded, and due to the nature of the focal

length, this erosion is linearly proportional to it—if the focal length in the direction

of the x-axis that is used to produce the initial images is halved, the resulting size

of the cube in the image of camera γ is halved. This can be clearly seen in the

2D example. However, in the 2.75D and 3D example, it is the observed visual hull

that is actually examined, and as this is bigger than the cube itself, more votes
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Figure 5.7: Graph of perturbing the camera’s focal length in the x-direction.

than would be expected are produced, and hence the apparent increased tolerance

of these two algorithms.

5.5 Image noise response

The previous investigations described above used not only perfect data, but perfect

binary data, thus analysing the VI algorithms only. The colour and grey scale

algorithms of the 2.75D and 3D, being based upon their respective VI algorithm,

share the performance described above, however, there are further effects that will

affect the output produced. Therefore, the data is now moved from perfect data

to a scene that has been ray-traced. However, as there are endless parameters that

can now be incorporated into the scene, the scene is kept very basic. The intention

is to illustrate the manner in which the algorithms produce their data to enable

a better understanding of the processes involved, rather than using more realistic

scenes where interactions are harder to describe.

In this section the effects of two different sources of noise will be studied: blurring

and additive Gaussian noise. Again, the standard camera parameters are used, the

2D images are affected accordingly, and a scene reconstructed in 3D, but now using

the grey-scale voxel algorithm and colour 2.75D algorithm. The scene contains a

single sphere, of grey-level intensity 80% on a background of 20%; there is no texture

on the objects, but there are anti-aliasing effects around the circumference of the

sphere. The sphere is centered at (0, 1000, 1000) mm and has a radius of 240 mm.

Figure 5.8 shows the original source images before they are corrupted with noise.
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Camera α. Camera γ. Camera β.

Figure 5.8: Image noise response source data, showing a sphere of 80% white on a
background of 20% white.

The drawback of such a simple scene is that there is not enough information

present to enable the sphere to be localised unaided—the two shades of grey will

correspond at many points in the reconstructed scene, and thus a method to distin-

guish between the foreground sphere and the background is required. To overcome

this, the reconstructed scene is thresholded at the intensity level of 50%—anything

darker is assumed to be background and is not included in the count, and vice versa.

Thus, this simple object can now be extracted using a sphere template, and dur-

ing the extraction stage, the fitness of spheres with a range of radii are produced.

With a better noise tolerance, the template of the sphere that has the best fitness

should have a radius that is close to the source data radius. The range of radii is

40 ≤ r ≤ 440 mm with steps of 1 mm.

The 2D algorithm is included in the graphs for completeness, however, this is

only an indication of how suitable such a simple threshold method is at overcoming

the introduced noise. Note that for the additive Gaussian noise, the same randomly

corrupted source images are used for the three different representations.

5.5.1 Camera focusing

The experiment

To simulate the effect of camera focus, Gaussian smoothing filters of various sizes

are applied to the image viewed from camera γ before they are passed to the recon-

struction algorithms. The 2D Gaussian distribution, based upon the 1D equivalent,

can be described as:

G(x, y) =
1

2πσ2
e−

x2+y2

2σ2 (5.4)

This function is isotropic, i.e., circularly symmetric, and produces a bell-like re-

sponse. This response, however, is infinitely wide, and thus a cut-off point must

be used after which all values are assumed to be 0. The common choice for the x

values to be clipped at is −3σ < x < 3σ, and similarly for the y values. Due to

the common use of the 1D version of the Gaussian distribution in statistics, the

variable σ is commonly referred to as the standard deviation of the filter.
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σ = 1 σ = 3 σ = 5

Figure 5.9: Example blurred images of camera γ with their respective standard
deviations.

Thus, for σ = 1, a 5 × 5 convolution matrix is described by:

0.00 0.01 0.02 0.01 0.00

0.01 0.06 0.10 0.06 0.01

0.02 0.10 0.16 0.10 0.02

0.01 0.06 0.10 0.06 0.01

0.00 0.01 0.02 0.01 0.00


where the Gaussian distribution has been evaluated for each integer-indexed element

point, with the central element having the index (0, 0).

In this study, a range of σ, 0.1 ≤ σ ≤ 5.0 with steps of 0.1, is used, with examples

shown in figure 5.9. However, for small values of σ, the convolution matrix will rarely

be suitable as the contents will not sum to the value of 1, and hence for all of the

convolution matrices used, a normalisation process is performed. Also, a fixed size

of convolution matrix was utilised due to the fact that the convolution will reduce

the size of the image by one less than the size of the matrix itself. Hence, in order

to be consistent, convolution matrices were thus all 17 × 17, yielding a reduction

in image sizes of 16 pixels in both the width and height.

Results

Figure 5.10 shows both how the normalised actual vote accumulator and the full

measure are affected by increased blurring. Normalisation of the actual vote is

performed by dividing it by the potential vote for the sphere whose radius is 240 mm

(which is also the same as the constant k in the full fitness measure of equation 5.1).

It is clear in figure 5.10a that for larger radii, the actual vote is gradually reduced

as the blurring is increased, but only for the 2.75D and 3D algorithms; the fact that

the 2D algorithm is not affected is not surprising since the threshold level at 50%

white will yield very similar templates for all blurring levels due to the symmetric

nature of the shading of the foreground and background. The reduction in the

2.75D and 3D algorithms is expected as the blurring will cause different shades to

be present in the image of camera γ, and these will not correlate with the other

images successfully. For increased blurring, the left and right-most extremes of the
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circle in image γ will not correspond with the other views as well as the centre, and

thus the sphere will gradually become ellipsoid in nature. The top and bottom-most

extremes of the circle will be less effected due to the camera arrangement.

Figure 5.11 corresponds to the central horizontal line of figure 5.10a, that being

the source radius of the sphere. Note that the 2D algorithm does not reach its

maximum value. This is due to the ray-tracer producing anti-aliased pixels in the

source images that, if they are only to be marginally included into the sphere, have

a value of less that 50% white, and hence are excluded from the thresholded version.

When the template is tested against the thresholded images, inclusion is all that is

required, not the proportion of the pixel to be included; an alternative would be to

use sub-pixel sampling in the TM process, as discussed in chapter 7.

Both the 2.75D and 3D plots in figure 5.11 can be seen to tend towards a

constant for larger values of the standard deviation. This is directly as a result of

the size of the convolution matrix being too small for the standard deviation; if a

larger matrix is used, further degradation is seen.

It can be seen in figure 5.11 that the 2.75D algorithm degrades more quickly at

first. This is due to the inherent filtering in the 3D algorithm; a small level of blur-

ring will not greatly affect the anti-aliased rays used in the voxel-based algorithm

if the blurring is limited to the source region of the ray. Taking this to the limit,

if the voxel space was a single, giant voxel that encompassed all of the pixels of all

of the views, then no amount of blurring would affect the rays projected onto the

voxel.

Turning to figure 5.10b, the full measure can be seen to emphasize the region of

the correct radius of the source sphere. However, the peak does not always corre-

spond directly with the expected sphere; the difference between this peak measure

and that of the expected radius is actually very small. As an indication of the

magnitude of the original measures involved, the full measure of the values of the

template radius of 240 mm are half of the values indicated in figure 5.11 (as for this

radius vpotential = k, and the normalised actual vote is given by vactual
k

). Since the

difference in these values are negligible, it is concluded that the use of this mea-

sure has successfully selected the correct radius given the various levels of blurring

inflicted onto the source image. The 3D algorithm, however, is more affected than

the 2.75D and 2D algorithms, showing an increased tendency to underestimate the

size of the sphere as the blurring is increased. Interestingly, the 2.75D algorithm

actually shows an improvement in the parameter extraction for small standard de-

viations, thus the blurring is actually an aid: due to the sphere turning slightly

ellipsoid, the actual vote will decrease, however, a template whose radius is slightly

smaller will also have a similar decrease in actual vote. It is the noise handling

ability of the fitness measure that results in the selection of the bigger circle.
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2D 2.75D 3D
(a) Plots showing the values of just the actual vote parameter.

2D 2.75D 3D
(b) Plots showing the values of the full fitness measure.

Figure 5.10: Investigation into blurring using Gaussian filters. Standard deviation,
σ, increases from left (0.1) to right (5.0) , and the fitness of templates of spheres whose
radii increases from top (40 mm) to bottom (440 mm) is shown by the grey-level where
the darker the shade indicates the higher the fitness.
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Figure 5.11: Investigation into the effects of Gaussian smoothing. This graph shows
the standard deviation of the filter against the normalised actual vote for the template
whose sphere has the expected size of 240 mm. Normalising is performed by removing
the potential vote contribution in the measure weighting equation.
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σ = 10 σ = 30 σ = 50

Figure 5.12: Example images of camera γ with added noise. The standard deviations
of the noise is shown.

5.5.2 Additive Gaussian noise

A common method of evaluating the noise handling ability of a system is to subject

the source data to additive Gaussian noise. Similar to the previous experiment, the

image of camera γ is affected by different levels of such noise. For each pixel in the

image, a random variable with a Gaussian distribution is evaluated and added to

the pixel’s value, the result of which is then clipped to be within a valid range [64].

In this experiment, the standard deviation of this Gaussian distribution was

altered from the value of 0 (i.e., no introduced error), to the value of 50; all of the

images in this thesis are represented by the range of (0, 255) in the grey-scale and

colour channels. An example selection of standard deviations of this noise applied

to the image can be seen in figure 5.12.

Results

Introducing the noise causes each non-correlating ray to burrow holes through the

reconstructed shape. Figure 5.13 shows how the actual vote and the full measure are

affected by the increasing noise levels, though it must be stressed that the shading

in these results has been normalised for each level of noise: without this, the results

would show very little for high levels of noise as there is a rapid decrease in both

the actual vote and the full measure, i.e., it would fade rapidly to white. This can

be seen in figure 5.14 where the template whose sphere’s size matches that of the

source sphere is examined.

In figure 5.14 the 2.75D and 3D algorithms can clearly be seen to be greatly

affected even by small levels of noise. The latter, however, is affected less due

to the inherent smoothing nature that thus has the result of averaging out small

amounts of local-regional errors. The non-correlating rays that have produced holes

that tunnel through the reconstruction is the cause of this huge degradation, which

in effect reduces both the sphere and surrounding background into discrete rays

where the pixels happen to correlate. The 2D algorithm is less affected due to the

fact that a pixel must be deviated by a value of about 60 before it is counted as the

background, and that two of the views remain unaffected.
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2D 2.75D 3D
(a) Plots showing the values of just the actual vote parameter.

2D 2.75D 3D
(b) Plots showing the values of the full fitness measure.

Figure 5.13: Investigation into introducing additive Gaussian noise. Standard de-
viation, σ, increases from left to right, and the fitness of templates of spheres whose
radii increases from top to bottom is shown by the grey-level where the darker the
shade indicates the higher the fitness. The fitness has been normalised for each level
of noise, i.e., over each vertical line, and thus direct comparison cannot be made with
neighbouring levels of noise.

However, as indicated in figure 5.15, the full measure has provided a worthy

tolerance to these levels of noise. The 2D trace appears to be most greatly affected,

although it is important to note that the magnitude of the measures in question

are no longer similar (again the measure of the template whose radius is 240 mm is

half that of the values in figure 5.14). In fact, the relative values at σ = 20 between

the best template (with possibly a different radius) and that of the template whose

sphere has a radius of 240 mm (shown in figure 5.14), is 0.1% for the 2D algorithm,

and 1% for the 2.75D and 3D algorithms. The measure is able to produce a suitable

estimate of the radius as the sphere is eroded approximately consistently over its

entire volume, and thus the actual votes of the range of spheres are affected similarly.

5.6 Discussion and conclusion

In this chapter it has become apparent that the 2D system, given a perfect back-

ground removal method, is superior to both the 2.75D and the 3D voxel-based

systems. It has better tolerance to noise in one image as this noise does not af-

fect the interpretation of the other views. However, it is unlikely that a perfect

background removal method is available for real data; the 2D system can also only
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Figure 5.14: Investigation into the effects of additive Gaussian noise. This graph
shows the standard deviation of the noise against the normalised actual vote for the
template whose sphere has the expected size of 240 mm. Normalising is performed by
removing the potential vote contribution in the measure weighting equation.
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Figure 5.15: For the quantity of noise in the images, this graph shows the difference
of the voting measures between the template whose radius is 240 mm and the template
that yields the highest fitness measure.
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perform as well as the underlying VI, and thus it is subject to problems with phan-

tom shapes and the visual hull. The 2.75D and 3D systems were developed in an

effort to eradicate these two artifacts, and perfect background removal is no longer a

necessity since empty space becomes a useful segmentation aid of the reconstructed

scenes.

It has been shown that the 3D system is hindered due to the underlying voxel

structure that places limits on the resolution of the extracted parameters of an

object. The 2.75D system on the other hand has been shown to use a representation

that essentially provides the same resolution as the idealised 2D system.

The 2.75D and 3D systems have been shown to suffer from the effects of poor

camera calibration in a similar manner, but the Gaussian smoothing operator has

been seen to have a slightly greater influence on the reconstructed scene in the

2.75D, mainly due to the inherent non-ideal smoothing performed in the 3D system.

This inherent smoothing operator also aids the 3D system when Gaussian noise is

applied to the source images. However, the full fitness measure provides a useful

means to overcome even large levels of introduced noise, and using this, there is no

discernible difference between the 2.75D and 3D algorithms when one of the images

has been corrupted by Gaussian noise or Gaussian smoothing.

In conclusion, the 2D algorithm should be used in circumstances when a perfect

extraction method is available. If this is not possible, then if the highest fidelity

extraction is required, the 2.75D system is the logical choice. However, there is an

increased processing overhead, as already stated in chapter 4 for the 2D and 2.75D

system, although it should be noted that scene reconstruction has to be performed

for the latter.

In section 5.3.2 it was noted that the 2.75D and 3D algorithms will commonly

overestimate object sizes due to the observed visual hull. However, the converse

effect is also possible, and can be seen in the ray-traced results shown above, for

example in figure 5.11, the template whose radius is 240 mm does not attain 100%

of the vote when no noise is applied. This failure is due to the anti-aliased pixels,

which for the 2.75D and 3D algorithms do not correlate well with other pixels in

the other views; the latter, however, is less influenced due to the inherent limitation

of the resolution. Similarly, there is also a small, but noticeable, effect for the 2D

algorithm, but it is entirely dependent on the background filter: a converse 2D

example is that background removal commonly results in a halo surrounding the

extracted object to be classed as the foreground, due to anti-aliasing. This halo

would thus become part of the segmented area and thus augment the projected

volume, causing an overestimation of the original object volume to be made.

In the following chapter, the full dynamic systems are evaluated, using both

artificial and real data. There is no longer an ideal background removal method,
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thus enabling a more practical comparison and demonstration to be made of the

systems.
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Chapter 6

Model extraction

6.1 Introduction

In the previous chapter, static scenes were analysed and parameters were extracted

and compared against those that were used to create the original scene. In this

chapter, synthetic dynamic scenes are analysed in a similar manner, where it shall

be seen that multiple frames provide a means of improving the performance of the

extraction. As an illustration of the applicability of the techniques, real world data

is also analysed; the first example of this is of a ball thrown through the air, with the

ball’s radius and the acceleration due to gravity providing a means of verifying the

parameters extracted by the complete systems. The second example is of a walking

human, and although there are no parameters that can be used for verification,

visual inspection and the likelihood of the gait cycle itself are useful qualitative

measures.

6.2 Synthetic example: analysis of a moving ball

6.2.1 Setting the scene

In this experiment, a synthetic moving ball model is used, as detailed in sec-

tion 4.6.1, where the motion of the centre of a translating sphere of radius r is

described by:

p =

 x

y

z

 =

 sx

sy

sz

+ t

 vx

vy

vz

 (6.1)

where [sx sy sz]
T is the sphere’s initial coordinates, and [vx vy vz]

T describes the

velocity along the three axes.

The synthetic data was creating using a ray-tracer (‘POVRay’) and consisted

of the moving sphere that had a contrasting colour and luminance to the other

parts of the scene, those being the sky and the tile-patterned floor. No shadows or
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Figure 6.1: Source moving ball ray-traced images.

specular effects are present in this example. Two separate studies were performed,

with the difference being the positioning of the three cameras that were to view

the scene. The arrangements of these cameras are described in sections A.4 & A.5

in the appendices; in the first of these, the three cameras are on one side of the

object, and in the second they are surrounding it. The cameras were positioned

above the floor and at a distance greater than 5000 mm from the centre of the

region of interest. The images were 400 × 300 pixels, and thus with the camera’s

angle of divergence being 90◦ (focal length fx = 200), implies that at the centre of

the region of interest, the resolution possible is approximately 25± 5 mm, with the

range allowing for the resolution to be variable depending on position in the scene.

Eleven frames were rendered for each sequence, and one hundred sequences in

total were analysed; each sequence had a random set of parameters, limited only

by the fact that the sphere must appear within the region of interest. The re-

gion of interest was delimited by the voxel space which represented the region of

(-1512.5 mm≤ x <1512.5 mm, 0 mm≤ y <2025 mm, 0 mm≤ z <2025 mm) with each

voxel being (25 mm)3. A scaling of 0.1 s/frame was applied to convert the frame

number (0. . .10) to an instance in time.

Figure 6.1 shows three frames from the three views used for the first camera

arrangement, i.e., that which is described in appendix section A.4.
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Figure 6.2: 2D background removed images.

6.2.2 2D data preparation

Before parameter extraction can be performed for the 2D algorithm, the background

must be removed from the original data. This was performed in accordance with

the method described in section 4.2.1; the resulting images that correspond to those

displayed in figure 6.1 can be seen in figure 6.2.

6.2.3 2.75D data preparation

The ray-traced images were combined on a frame-by-frame basis, using the full

colour 2.75D reconstruction algorithm described in chapter 3. Figure 6.3 illustrates

those reconstructed scenes rendered from the source camera positions, and thus

can be compared directly to the source ray-traced images shown in figure 6.1. As

can be seen, the sky is improperly rendered, which is not surprising since it is

actually an object located at an infinite distance away and thus any coincidental

correspondences in the near-ground will disrupt its reconstructed accuracy due to

occlusion. The patterned ground is also improperly reproduced from the two side

views; the repeating pattern causes many correspondences to be made, in essence

a form of aliasing at different depths, and is caused by the phantom shapes that

are present in the algorithm for like-coloured objects. There are two causes of the

improper appearance of the floor: first, the obliqueness from the opposite camera

of the flooring causes the wrong height of this pattern to be selected due to minor

errors in the rendering, and second, not all of the views can see these parts and

thus the confidence in them are lower and hence filtered out of the rendering. The
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Figure 6.3: 2.75D reconstructed scene.

central view is successful as the correct and ‘lower’ floor is selected since most parts

can be confirmed by all three cameras and since the region it views is less oblique

to all three cameras.

Having reconstructed the sequence, the background is then removed; this is

performed in accordance with the algorithm described in section 4.2.2, with the

results being illustrated in figure 6.4.

6.2.4 3D data preparation

As with the 2.75D system, the 3D system also requires the data to be reconstructed.

This is performed using the grey-scale voxel-based algorithm described in chapter 2,

with the results corresponding to the images in figure 6.1 being in figure 6.5. As can

be seen, the viewable region is very small in relation to the size of the images, with

the limits of the voxel space clearly visible. However, over this region the flooring

has been successfully located, although the same aliasing problem as was seen in the

2.75D system is present. An estimate of the sky has also been made, however, this

is also unsuccessfully reconstructed since it lies outside the voxel space. This sky

introduces a great deal of noise as different parts become obscured by the moving

sphere, and this can clearly be seen in figure 6.6 where the background has been

removed by the algorithm described in section 4.2.2. However, the ball is present,

and is solid in structure.
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Figure 6.4: 2.75D reconstructed scene with background removed.
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Figure 6.5: 3D reconstructed scene.
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Figure 6.6: 3D reconstructed scene with background removed.

6.2.5 Parameter extraction

Using the parameter extraction algorithm described in chapter 4, the different se-

quences of eleven frames were then subjected to the moving sphere model template.

For the first ten of the 100 sequences, the Genetic Algorithm (GA) was used to scan

a much larger parameter space. Noting that this successfully located the regions of

interest in this large parameter space, a smaller one was selected that could thus be

grid searched. This was performed for speed and so that the peak could be found

more assuredly; as already stated in chapter 4, after a GA search of the parameter

space, a more thorough search of the indicated neighbourhood should be performed.

The range was ±80 units of the parameter with steps of 10 for all of the parameters

except the radius which was ±20 with steps of 4 units. The constant required for

extraction was calculated from the potential vote of the template that was described

by the original set of parameters, i.e., the ‘perfect’ constant was calculated.

Table 6.1 shows the error in the extracted parameters, i.e., the distances be-

tween the extracted parameters and the respective source parameter used to create

the sequence. The results do not show any statistically significant trends since

most of the parameters were calculated to within the possible resolution caused by

the discretisation in the image sequences. However, of notable interest is the fact

that the 3D algorithm also performs well even though it uses a reduced resolution

intermediate data structure. It is the combining of the frames using evidence gath-

ering on the sequence as a whole that leads to this improved parameter extraction
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performance.

Error of the extracted parameters
Analysis Camera Initial position Velocity
method arrangement

Stat Fitness
sx, sy, sz vx, vy, vz

Radius

µ 0.418 3.4 23.4 3.7 6.8 17.1 6.4 3.2
Arrangement 1

σ 0.081 10.9 13.9 11.0 21.8 22.3 19.7 10.0
µ 0.388 5.3 20.4 6.1 11.0 18.9 13.5 6.42D

Arrangement 2
σ 0.092 13.0 9.8 13.8 25.4 26.2 28.3 13.5
µ 0.373 9.2 17.0 14.6 5.3 11.9 12.0 10.9

Arrangement 1
σ 0.086 4.8 8.5 6.5 11.4 13.8 13.1 2.6
µ 0.227 7.4 20.7 7.2 13.6 11.0 11.8 10.62.75D

Arrangement 2
σ 0.068 9.6 7.0 9.2 17.0 13.8 15.2 4.4
µ 0.354 17.3 13.5 15.0 13.0 12.5 20.5 5.8

Arrangement 1
σ 0.094 12.6 15.6 18.0 15.8 16.3 19.6 9.2
µ 0.359 16.1 7.1 7.3 13.3 11.8 14.1 5.73D

Arrangement 2
σ 0.088 9.8 9.1 7.7 15.9 10.4 12.6 5.5

Table 6.1: Extraction results of a moving sphere of unknown radius. In camera
arrangement 1 the cameras are located to one side of the region of interest whereas
in arrangement 2, the cameras surround this region.

6.2.6 Problems with background removal

The example sequence illustrated in the above figures has demonstrated that the

background has been successfully removed. However, for a slower moving ball, or a

ball that appears to be moving at a slower rate with respect to one of the views, the

non-textured ball may actually be deemed to be background. An example of this is

illustrated in figure 6.7. When the background is removed using the 2D background

removal algorithm, with corresponding images shown in figure 6.8, parts of the ball

are deemed to be the background, and parts of the floor and sky are incorrectly

deemed to be foreground. For more complicated models this would be a problem,

however, since non-corresponding parts of this moving ball are incorrectly labelled,

there is no noticeable degradation in the 2.75D and 3D background removed data as

shown in figures 6.9 & 6.10. In the former, however, the restriction of the views to

project within the mask of the 2D background removed images causes a reduction in

the votes since not all of the views can produce votes throughout its solid structure.

6.2.7 Analysis of an occluded moving ball

In section 6.2.6, a source of noise was illustrated that was due to the motion itself.

This noise, however, as explained, did not have a detrimental effect on the extracted

parameters. Another source of noise, which evidence gathering is commonly shown

to be highly tolerant to, is occlusion. To demonstrate this, the first camera arrange-

ment (see appendix section A.4) was used, but the moving ball was occluded by

three cylinders, as shown in figure 6.11; only one trial of this has been performed.

Table 6.2 indicates the source parameters of the moving ball and those extracted
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Figure 6.7: Source moving ball ray-traced images.
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Figure 6.8: 2D background removed images.
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Figure 6.9: 2.75D reconstructed scene with background removed.
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Figure 6.10: 3D reconstructed scene with background removed.
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Figure 6.11: Occluded source moving ball ray-traced images.

from the scene with and without these occluding cylinders. As can be seen, there

is very little difference in the extracted parameters, although there is a noticeable

reduction in the fitness measure. This latter point should be expected since the ball

is not properly reconstructed due to the occlusions. The 2.75D and 3D algorithms’

fitness measures are more greatly influenced as they are a volume measurement and

thus are affected more than the 2D area measurement.

6.2.8 Conclusion on synthetic data

The above experiments have shown the high tolerance that the systems have to

the different sources of noise, and the success that they have at extracting the

simple artificial model. There are no discernible differences between these systems
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Initial position Velocity
Fitness sx, sy, sz vx, vy, vz

Radius

±10 mm ±10 mm s−1 ±4 mm

Source data - -1000 300 500 2000 500 0 250

2D unoccluded 0.495 -1000 320 500 2000 510 0 250
2.75D unoccluded 0.422 -990 310 510 2000 510 -10 258

3D unoccluded 0.447 -990 290 500 2010 500 -20 242

2D occluded 0.345 -1000 320 500 2000 500 10 250
2.75D occluded 0.100 -990 310 520 2000 490 20 258

3D occluded 0.121 -990 280 520 2020 520 20 246

Table 6.2: Occluded and unoccluded extraction results of a moving sphere of
unknown radius. Values indicated are the actual extracted values not the error; the
source parameters are also listed for comparison. The column headings indicate the
step size of the respective parameter.

demonstrated by this simple example. A further model, which is a box moving

around an arc, can be found in appendix section B.2; this shows a similar pattern

of results.

6.3 The real world data capture

6.3.1 Introduction

Due to the success with the artificial examples, three cameras were also used for the

real world data; this also has the advantage of making the source data distinct from

stereo vision. Thus in essence, three CCTV cameras were placed around the scene,

recording at a frequency of 25 Hz, (with a shutter speed of 250 Hz). The apparatus

used was unfortunately more complicated than just this set of CCTV cameras.

Digital video (DV) was used as the recording medium as it enables convenient

and consistent data play-back, and thus digital cameras were used. However, the

requirement of synchronised cameras made the use of analogue cameras necessary—

currently only NTSC, not PAL, digital cameras are capable of this. Thus video

output from the analogue cameras were fed into digital cameras and recorded, with

the analogue cameras synchronised using the circuit described in appendix D. This

introduces several disadvantages, including interlaced images instead of progressive

scan, and a slow feedback loop when attempting to focus the cameras—the data

had to be played back on a computer to examine the quality of the reproduction.

Also, problems with the DV standard 4:2:0 and unsuitable codecs became a common

source of frustration.

Originally, an outside session was attempted, however, the uncommonly bright

sunshine introduced too great a contrast between the parts of the scene that were

in the direct sunlight and those that were in the shade, with the latter disap-

pearing into the darkness. Thus an inside recording session was used, where the

conditions were more suitable for the cameras. However, no special lighting was
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used—standard fluorescent strip lighting was present, which unfortunately intro-

duced lighting flicker; this can be seen in the resulting images as bands of different

shades travelling through the images.

The data capture system was also not ideal for the tuning of the cameras since

the digital cameras were unable to input from an external source and output to

a computer at the same time, and thus the feedback loop in the focusing of the

cameras was inadequate, yielding source data that was blurred (see figure 6.12a).

(a) (b)

Figure 6.12: The errors in the source data. a) Magnified example of the test board
showing the presence of blurring. b) Magnified and enhanced centre and right-of-
centre circles of (a) showing significant colour bleeding that is due to the DV bit-rate
reduction algorithm.

6.3.2 Digital Video (DV)

Digital video was chosen because of the convenient nature of the data storage and

the reproducibility of the data, however, there are many associated artifacts with

DV which are centred around its compression. One such artifact is that the blue,

and to a lesser extent the red chrominance information are poorly represented,

producing significant colour leaking, as can be seen in figure 6.12b. It is noted

that there is poor representation of the chrominance values when PAL analogue

sampling is used, however, these effects are different.

The other common problem with DV is poor codecs that do not decode the image

data stream correctly, usually making approximations so that the information is

presentable in real time. As the systems described will be off-line, the highest quality

information is preferred. The other common error in codecs that was discovered

is the misinterpretation of the interlaced structure of the 4:2:0 data stream; this

is evident by the misalignment of colour on moving objects. Appendix E gives an
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expanded description of the DV standard, and details how this misinterpretation of

the data stream is commonly made.

6.3.3 Calibration of cameras

One key aspect of the reconstruction process is that the cameras have been cali-

brated, with regards to their positions and orientations in space, and also to their

interpretation of colour. A test screen was constructed that was intended to per-

form just this purpose, and a full interlaced image can be seen in figure 6.13a.

The circles were filled with the different primary colours, (red/green/blue) at two

intensities, the printing primary colours (cyan/yellow/magenta) also at two levels

of intensity, and also four levels of gray scale. Note that for the data capture, the

cameras’ white balance functions were turned off. This ensured that each camera

recorded a consistent representation of the scene, rather than varying it according

to the colour that appeared brightest.

As well as for colour calibration, the circles were intended to be used for the

spatial calibration: using a simple segmentation algorithm and then calculating

local moments, the centre of each could be specified to a sub-pixel accuracy. For

the calibration to be performed, the points in the images are related to those on

the physical board. The board and the points on it are assumed to be the z = 0

plane—any offset to the board’s position and orientation are performed after the

calibration process. Knowing the physical points that each of the centres of the

circles in the images correspond to, Tsai’s camera calibration algorithm [87, 88],

which is freely available on the Internet, can be applied to produce the required

intrinsic and extrinsic parameters for the camera, as well as a constant that describes

the amount of radial distortion in the image. However, there is an assumption that

the camera does not lie perpendicular to the board, since in this case the distance

to the board (the z = 0 plane) and the focal length are only known up to a scale

factor; a value of at least 30◦ to the normal of the board is recommended. Note

must be made that Tsai’s camera calibration algorithm uses right-handed geometry

rather than the left-handed geometry that is used here.

However, this board was not actually fully used for three reasons. First, there

was poor colour in the resulting images, due to both the original lighting conditions

and the DV colour representation. Second, the details were too blurred for localisa-

tion to be accurately enabled, and third, camera γ was pointing in a direction that

was too close to the normal of the board, and thus introduced large errors in the

spatial calibration if small errors were present in the localised points on the board.

However, the internal and external parameters of cameras α and β were confirmed

using this method.
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Instead, at the time of filming, physical measurements of distances between

the cameras and the board were made, enabling their extrinsic parameters to be

calculated by trigonometry. By taking excess measurements at the time of filming,

the extrinsic parameters were calculated to be within an accuracy of 5 mm. To

calculate the intrinsic parameters, the four corners of the board were labelled in

the image of each of the cameras, and a simple search was performed to find the

three angles and the two focal lengths that would map the physical positions of the

board’s corners onto the respective points in the images; this used a method of least

squares for judging the fitness by the errors incurred. For a visual inspection, a ray-

traced scene was generated, as is depicted in figure 6.13b, which was then compared

with the original image. By producing this ray-traced scene, the presence of radial

distortion became more noticeable, however, the level was deemed to be only about

four pixels at the worst case, and thus was believed to be relatively insignificant for

the purposes of the experiments reported here.

(a) (b)

Figure 6.13: (a) The calibration board and (b) the ray-traced estimation of it.

No formalised method was made to colour-calibrate the cameras as the objects

under study had good contrast, and the presence of the strobing lights was more

significant. However, for one of the experiments described below, a manual estimate

of the calibration was made, and the images were slightly altered.

6.3.4 Interlaced video

It was originally believed that interlaced video was a problem rather than an asset

of the system. However, it was soon realised that by reducing the size of the images

and increasing the temporal rate from 25Hz to 50Hz, this was not the case. Scaling

the images so that they were half size considerably reduced the processing time for

reconstruction. Having more fields than required provided an alternative way of

confirming the results obtained—the results of the even fields could be compared
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with those produced from the odd fields. Alternatively, for short sequences the

fields could be combined to form a 50Hz sequence.

To remove the interlacing from a video stream, a common method is to fabricate

the lines in-between those of the field under study by directly averaging them with

the rows above and below, or duplicating the row above or below if the row is at

the limits of the image:

Let Ri be a vector of pixel values in row i of an image, 0 ≤ i ≤ n, where n ≥ 2.

Let the resulting image be described by [R′0
T R′1

T ... R′n
T]T

Let φ = 1 if the image resulting from the odd fields is sought, or φ = 0 if the

image resulting from the even fields is sought.

R′i =


Ri for (i&1) = φ

Ri+1 for ((i&1) 6= φ), i = 0

Ri−1 for ((i&1) 6= φ), i = n
1
2

(Ri−1 + Ri+1) otherwise

(6.2)

where ‘&’ denotes logical AND.

Since this fabrication does not add any information, the images can be scaled by

half, vertically, without any loss; the images were also scaled by half horizontally

for ease of comprehension, although this does discard information. It is worth

noting that scaling an image alters the focal lengths of the camera that viewed

it. This initial fabrication is necessary (in form, since these two manipulations

can be performed in one step), since the row n of the odd field is not from the

same spatial location as row n of the even field. By performing this manipulation,

this is taken into account, enabling the resulting lines to be compared. However,

for regions in the image of high discontinuity, comparing similar lines is not ideal.

For example, behind the board in figure 6.13a is a window whose sill has many

fine sharp horizontal details. These details will not be visible by both fields, and

thus the two frames produced from the two fields must still be handled separately.

This is necessary for the background removal stage, otherwise these regions will

produce a high standard deviation, and thus always be labelled as foreground.

Although unnecessary, throughout the experiments, the two sets of frames were

processed separately, to ensure a consistent approach to the data handling. This

thus produced two sets of results for each original sequence, which can then be

compared; in order to compare the results, note must be made of the significant

time delay between the two sub-sequences.

6.4 Real world example: ball under the influence of gravity

To test the performance of the systems, a method was required that could extract

parameters from the real world scene of which some could be verified. The model
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selected was that of a ball under the influence of gravity. Two parameters were

known in this experiment, that of gravity (9800 mm s−2), and that of the ball’s

radius (120 mm).

6.4.1 The model

The eight motion parameters, as shown in table 6.3 dictate the ball’s position at a

given time as:

p = p0 + tv0 +

 0

0
gt2

2

 (6.3)

Parameter Description

p0 =

 x0

y0

z0

 The position of the ball at time t = 0

v0 =

 vx
vy
vz

 The components of the velocity of the ball at time t = 0

g The acceleration due to gravity (9800mms−2)
r The radius of the ball (120mm± 5)

Table 6.3: Description of the parameters of the model for the ball under the
influence of gravity.

The ball is modelled using the basic shape of the sphere, centred on p, with

radius r.

6.4.2 The source data

For this experiment the cameras were not calibrated for colour, which thus also

introduces noise into the reconstruction. This was found to be not necessary since

the ball was a significantly different colour from the surroundings. Figure 6.14

shows a selection of frames from the three cameras from a single image sequence.

6.4.3 The reconstructed and filtered data

2D

Having removed the background, segmented images were produced. Those corre-

sponding to the images in figure 6.14 can be seen in figure 6.15.

A large threshold was required for this data, with the significant extraneous

movements being sourced from the person who had thrown the ball and also the

shadow on the wall.

2.75D

The results of the reconstruction of the source views from the 2.75D scene generation

can be seen in figure 6.16. It is clear that although noise is present, the original scene
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Figure 6.14: The ball-under-gravity source data [sequence 07217-07239].
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Figure 6.15: The ball-under-gravity 2D background removed images [sequence 07217-
07239].
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has been reproduced with high fidelity with this representation of data. The noise

that is obviously present is caused by the high threshold placed on the rejection

of differing pixels. This high threshold was required due to the noise in the source

images caused by the imperfect lighting. The streaks visible are thus projected from

other views that confer a similar colour.

When producing the images of figure 6.16, all of the information was used,

however, some may be inappropriate since the projected ray’s limits may not be

visible by all of the source cameras. By reducing the threshold of uncertainty in the

rays, it can be seen in figure 6.17 that certain areas of the image are now missing

in the reconstruction. This includes the area above the door which only camera α

can see, and also the area of the window which is due to none of the views looking

at the same part of the adjoining room. It is worth noting that the sheet of paper

that was adhered to the window, to hide a monitor’s strobe effect with the camera,

has been resolved.
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Figure 6.16: The ball-under-gravity 2.75D reconstructed scene from original camera
angles.

Figure 6.18 shows the generated scene from three novel angles. It would appear

that from such angles, all the 3D nature is lost. An obvious feature is the white

streak in view δ, caused by the ceiling light in camera α. Since that light could not

be correlated with any view, the representation placed it where the other two views

could not see it, and hence from a near novel position such uncertainties become

apparent.

By utilising the same restriction as before on the level of uncertainty allowed

in the reconstructed scene, a more meaningful result is obtained as in figure 6.19.

Cameras δ and ζ, which are located between the original camera positions, bear a

close resemblance to the scene, however, camera ε indicates that the scene has not

been successfully reproduced as expected. In this view, which has an acute vertical

angle to the scene, the wall is clearly seen to protrude into the room. This, however,
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Figure 6.17: The ball-under-gravity 2.75D reconstructed scene as seen from original
camera angles but filtered.
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Figure 6.18: The ball-under-gravity 2.75D reconstructed scene as seen from novel
camera.

is to be expected, as was found in the previous synthesised examples, because the

original views do not have enough information on the wall to be able to indicate

its flatness. The limits of the main protrusion are clipped by the original camera α

resolving the radiator with the other views, and camera β resolving the door. This

thus shows that texture is fundamental in abstract scene reconstruction.

Finally, the results of removing the background, or more precisely, restriction

to areas formed from masking the individual view projections with the respective

segmented 2D images, can be seen in figures 6.20 & 6.21. No filtering is required to

clearly see the reconstructed ball. The small areas of pepper noise in the segmented

2D images can be seen to produce long rays from the source camera positions in

the 2.75D data.

Although this reconstructed ball appears spherical from the source camera views,

this is not so from the novel views, especially obvious in the acute view ε. As before,

the true spherical nature cannot be resolved with just three views, and thus the

straight lines are the edges of the regions of correlation between the views. The

novel views also show how the blurred outline of the ball was not resolved but placed

at close or distant positions relative to the cameras, as can be seen, for example, in
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Figure 6.19: The ball-under-gravity 2.75D filtered reconstructed scene as seen from
novel camera.

camera δ of figure 6.21 where lines can be seen to be present in the top right and

bottom left of the image.
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Figure 6.20: The 2.75D filtered background removed scene from original camera
angles.
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Figure 6.21: The 2.75D filtered background removed scene from novel camera angles.

3D

The results of the 3D reconstruction can be seen in figure 6.22. As with the 2.75D

analysis, the scene appears to be constructed well, although there is decreased

fidelity due to the lower resolution data structure. In a similar manner to the 2.75D

process, voxels of reduced certainty can be removed. This is shown in figure 6.23.

It can be seen that, along with the regions in the 2.75D method (figure 6.17), there
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are regions that were not recovered. The main additional areas for zero contribution

are from sharp edges, especially noticeable around the bottom of the wall where

there are two examples of such sharp edges. The contribution to voxels at these

points in space will be the anti-aliased region of the original images, and thus unless

a very similar contribution was made, rejection is inevitable, with another preferred

point being chosen. The ball does not suffer from this edge effect, but it is the only

dark object in the vicinity, and it is also relatively large.
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Figure 6.22: The ball-under-gravity 3D reconstructed scene from original camera
angles.
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Figure 6.23: The ball-under-gravity 3D reconstructed scene as seen from original
camera angles but filtered.

The 3D data can also be rendered from the novel positions used in the 2.75D

results above (see figure 6.24). Again, like the 2.75D results, without limiting

the uncertainty for voxels, there are large quantities of information that restrict the

comprehension of this reconstructed data. Figure 6.25 shows this reconstructed data

from new views. Comparing these results with those for the 2.75D case (figure 6.19)
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indicates that there are similar, but now more intensified protrusions present that

obscure the ball. They are intensified by the inability to handle the edge information

appropriately.
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Figure 6.24: The ball-under-gravity 3D reconstructed scene as seen from novel cam-
era.
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Figure 6.25: The ball-under-gravity 3D filtered reconstructed scene as seen from
novel camera angles.

The removal of the background, as shown in figure 6.26 produces a scene which

clearly has located the moving ball. There is, however, increased noise in these

images. The reconstructed data was more susceptible to noise from the capture

process than the 2D segmentation (and hence also the 2.75D background removal);

the use of a VI technique instead for the background removal, in a similar manner

to the 2.75D algorithm, is left for future work.

Figure 6.27 shows the ball, but it is now entwined within the noise of the voxel

space. As with the 2.75D method, the ball is not spherical, but pointed, with the

restrictions placed being along the projection rays from the cameras.

6.4.4 Parameter extraction

There were three stages in the extraction process of the ball. For the first two a GA

was used, with an increasing level of resolution but decreasing ranges of parameters.

During the first pass it was informed that the ball was moving quickly from left

to right, or right to left, or slowly with no discernible direction, depending on the

sequence under study. The initial values and steps for the various parameters for the

first sequence (that used in the above diagrams) can be seen in table 6.5. Although

the GA successfully located the region of the peak in the voting space, only about

50% of the peaks were found (there were ten separate trials for each sequence),
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Figure 6.26: The 3D filtered background removed scene from original camera angles.
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Figure 6.27: The 3D filtered background removed scene from novel camera angles.

and thus the third stage was a very localised grid search of the parameter space.

Eventually the GA would have found the peaks as there was often only a single

bit change required in the genome, however, the GAs were not run until complete

convergence as this is intensive work that does not have any advantages over a grid

search of the region; the GAs were terminated after 500 iterations (there were 501

population members).

To provide a means of confirmation, the odd and even sequence members, i.e.,

those formed from the odd and even fields, were tested separately. The results

of the four sequences using the three systems can be seen in table 6.4, where the

results from the odd and even fields are separately listed.

The results in table 6.4 clearly show a correlation between the different algo-

rithms and also a correlation between the odd and even frame analyses of the same

algorithm. The value for gravity has been successfully predicted, well within the
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x0 y0 z0 vx vy vz g rSeq
System mm mm mm mms−1 mms−1 mms−1 mms−2 mms# ±10 ±10 ±10 ±10 ±10 ±10 ±10 ±4

1 2D 1280 220 1130 -2130 4360 70 -9880 128
1280 230 1120 -2130 4340 90 -9870 128

1 2.75D 1280 210 1120 -2120 4350 100 -9860 120
1280 220 1130 -2120 4310 90 -9780 120

1 3D 1280 210 1110 -2130 4340 100 -9850 120
1280 210 1110 -2130 4350 100 -9890 124

2 2D -630 370 720 1530 5490 -270 -9760 124
-630 380 720 1530 5460 -280 -9710 128

2 2.75D -640 360 720 1560 5480 -270 -9750 112
-640 360 720 1560 5480 -270 -9750 112

2 3D -640 350 710 1550 5490 -280 -9760 116
-640 350 710 1540 5490 -280 -9750 116

3 2D 760 190 460 -1010 5080 340 -9800 124
760 200 460 -1010 5050 340 -9750 128

3 2.75D 770 180 460 -1010 5080 350 -9800 116
770 190 450 -1010 5080 370 -9760 116

3 3D 750 180 450 -1000 5090 350 -9850 120
760 170 450 -1010 5110 350 -9850 120

4 2D 180 300 760 260 4960 210 -9850 124
180 300 760 260 4960 210 -9840 124

4 2.75D 190 290 770 250 4940 210 -9800 116
190 290 770 250 4950 210 -9820 116

4 3D 180 280 760 260 5000 200 -9930 120
180 280 760 250 5000 200 -9910 120

Table 6.4: The extracted parameters of the model for the ball under the influence
of gravity.

limitations caused by the radial distortion effects: the error caused by a radial dis-

tortion that gives rise to two pixel deviation, as was noted during the calibration

(it was four pixels, but the images have been halved in size), would yield a distance

error of about 20 mm; the sequences were in the region of one second long, and

thus the ball would reach the apex of its flight at about half a second, and thus

80 mm s−2 would be the estimate of the error present. Only the 3D algorithm for

the last example exceeds this error margin, but note must be made that there are

also errors in the estimates of the extrinsic and intrinsic parameters of the cameras.

More significantly, the radius is always underestimated by 2.75D algorithm and

overestimated by the 2D algorithm. This is because the aliasing around the edge of

the ball is not included within the representation of the ball of the 2.75D, but is for

the 2D. The 3D algorithm also will not correlate the aliasing, but the error of the

voxels is 25 mm, not the 10 mm resolution used for the 2D and 2.75D at the depths

of interest and thus the effect is very much less noticeable. As with the synthetic
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x0 y0 z0 vx vy vz g r
mm mm mm mms−1 mms−1 mms−1 mms−2 mm

Minimum 0 0 -500 -6300 0 -2500 -14000 100
Stage 1 Maximum 3100 1500 1000 -1000 5000 2500 -7000 220

Step 100 100 100 100 100 100 1000 8
Minimum 1000 50 600 -2400 4000 -100 -11000 100

Stage 2 Maximum 1500 525 1375 -1625 5775 475 -8025 148
Step 25 25 25 25 25 25 25 4

Minimum 1260 200 1110 -2130 4270 70 -9960 116
Stage 3 Maximum 1290 230 1140 -2100 4380 100 -9700 128

Step 10 10 10 10 10 10 10 4

Table 6.5: The stages for the extraction of the ball in sequence [07217-07239].

example of the moving ball, the 3D algorithm is able to predict results that exceed

its underlying representation’s resolution.

Figure 6.28 demonstrates the even frames of the first sequence with the results

superimposed. The white circles indicate the limit of the tested basic shape; they

were created from the perfect templates described by the respective parameters,

and the perimeters of these templates were then extracted and overlaid onto the

original sequence. These results indicate that the 2D algorithm has found the result,

although it must be noted that the white line covers the blurred region surrounding

the ball that should not actually be included. The 2.75D and 3D algorithms, which

opted for a smaller, and for these examples, the correct physical radius, both have

results that can be seen to lie within the visible limits of the ball, but are inconsistent

in their position within these blurred limits.

6.4.5 Conclusion on the ball under the influence of gravity

This first example has demonstrated that the three techniques are capable of ex-

tracting basic dynamic models from sequences of images, with the known parame-

ters being within the tollerances allowed for in the system. The next example is of

a more complex model, that of human gait.

6.5 Real world example: human gait

6.5.1 The model

In section 4.6.2, a more complicated model was discussed that is thought capable

of extracting and describing human gait for biometric purposes. In this example,

the same model is used but the higher, fourth harmonic, components are not used.

Thus instead of the 23 parameters, there are only 19, as listed in table 6.6.

This model has many more parameters than the previous examples, and as-

suming that few are known or can be estimated, this makes the search somewhat

awkward—there is little point in performing a GA search of such a large parameter

space as there would be little probability of the peaks actually being found. Thus
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Figure 6.28: The results of the three systems superimposed onto the original images
from cameras α, γ and β, which are then clipped. The white pixels indicate the
outermost pixels of the sphere.
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Parameter Description Model 1 Model 2 Model 3
H0 Hip 3D central position at time t = 0. Yes Yes Yes

Hwidth Hip width. Constant Constant Constant

TL Thigh length. No No Constant

ω0 Step rate in full gait cycles per second. Period = 1
ω0

. Yes Yes Yes

V Mean velocity of the person in the X and Z directions. Yes Yes Yes

First harmonics of oscillations of hip position
V ∗2 orientated in direction of V.

Yes Yes Yes

H∗2 First harmonics of oscillations of hip position vertically. Yes Yes Yes

T0 Mean angle of the thighs. Yes Yes Yes

T ∗1 Fundamental oscillations of the thigh angle. Yes Yes Yes

T ∗2 First harmonic oscillation of the thigh angle. No Yes Yes

T ∗3 Second harmonic oscillation of the thigh angle. No No Yes

Table 6.6: The 19 parameters required for simple gait recognition. Parameters
marked with a ‘*’ are complex.

the parameter extraction is performed using three different models with each being

described by successively more parameters, as detailed in table 6.6.

For the first two models, the thigh length is not specified, instead it is assumed

to be half the mean height of the hip above the ground, only in the third stage is

a constant assigned to this value which was slightly smaller than this half mean

height. All three models were fed a constant for the hip width; this was only

an approximation and could easily be replaced with an unknown parameter if so

desired.

Having said that there were three models, there were in fact many iterations of

the third model, each with successively smaller steps in order to improve the accu-

racy of the extraction. Also, the discovered constants found in a lesser model could

not be used directly in the more complicated model since, for example, incorporat-

ing another frequency component can drastically alter the fundamental oscillation,

thus a margin must be allowed.

6.5.2 The source data

The source data suffers from the same flaws as the ball-under-gravity example

described above in section 6.4, with blurring being quite noticeable. In this example

a manual attempt at colour calibration was made by sampling various colours on

the test board and adjusting the contrast and brightness of the three different

channels, although this was not an ideal method due to the lack of pure colours

on the test-board—much had been blurred with the circle’s black circumference.

The location also was not ideal as the room was small and thus subjects showed an

inconsistent gait pattern as they walked since they had to first find their natural

pattern and then prepare to stop before hitting another wall. Only two gait cycles

have been analysed, however, the second was corrupted so much by this that the

results did not visibly match the data very well; in hindsight it would have been
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better to analyse this gait pattern over a single gait cycle rather than over the entire

sequence of about three gait cycles.

In a similar manner to the ball analysis, not all of the sequence was used for

analysis, but instead one frame in four, noting that each original frame actually

produced two frames due to their interlaced nature. Thus the frames 0, 4, 8 . . . 116

were analysed throughout, but also the set of frames 2, 6, 10 . . . 118 were analysed

separately from when the more complicated model was utilised; in the final stage,

all four sets were analysed.

Figure 6.29 shows a selection of frames from the three cameras from a single

image sequence; examples of the intermediate stages of the processing can be found

in appendix section B.3.
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Figure 6.29: The human gait source data [sequence 11487-11546].

6.5.3 Parameter extraction

The results of the four sets of the frames from the sequence, using the three systems,

can be seen in table 6.7. It can be seen that the 2D algorithm has produced signifi-

cantly different values, and has instead chosen to place the hip higher and oscillate

the legs less; this is more clear from figure 6.30. The 2.75D and 3D algorithms,

however, have produced very similar results, as can be seen in figures 6.31 & 6.32.
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These results are also visually accurate, except in the last few frames where the

subject can be seen to slow in the region of the wall; the results of 2.75D algorithm

show a marginal improvement over that from the 3D algorithm. The extracted pa-

rameters from the 2.75D and 3D algorithm give rise to the gait cycles as described

in figure 6.33; the described cycles fit within the limits found by medical studies

[58].

6.5.4 Improving the model

The 2D algorithm failed to locate the gait since there was nothing to prevent the

legs being predicted higher in the body. Without using edge information, there is no

advantage in placing the legs at the correct position or higher in the abdomen. This

problem, however, can be circumvented in two ways: first, anchoring could have

been made on the model to, for example, the knee or more simply the shoulders—

the model would be encouraged to correctly place the moving legs. Second, the

region of space surrounding the legs could be analysed for free space, as described

in chapter 7. These methods would thus ensure the advantage of using solid objects

which yields increased peak widths in the parameter space.

For future extractions of gait patterns, the initial searches can be refined by

allowing only sensible amplitudes and phases, using the ranges suggested by medical

studies. In these cases it would be simpler to make the higher harmonics a multiple

of the fundamental gait frequency, thus allowing the extracted parameters to be

compared more easily, rather than calculate their phases relative to the fundamental

gait frequency.

Section 4.6.2 has already briefly described a method in which asymmetric, i.e.,

limping, gait can be modelled.

6.6 Conclusion

In this chapter various models have been applied to the respective objects in syn-

thesised and real sequences. The examples have all shown similar and accurate

results, except for the 2D algorithm which was unable to successfully extract the

human gait.

The 2D algorithm is also expected to fail for a more dynamic scene where the

subject cannot be successfully removed from the scene. In this situation no part of

any image may be static, in which case the whole image would be included. The 3D

algorithm has in these examples overcome the limitations of the lower resolution

of its underlying structure, although there are small indications in the real data

examples that discretisation effects may be restricting the accuracy of the analysis.

For examples with relatively more chaotic motion, these restrictions should become

more noticeable. The 2.75D algorithm has been seen to be consistent in all of the
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Figure 6.30: The results of the 2D systems superimposed onto the original images.
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Figure 6.31: The results of the 2.75D systems superimposed onto the original images.
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Figure 6.32: The results of the 3D systems superimposed onto the original images.
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Figure 6.33: The gait cycles predicted from the 2.75D and 3D GA model, showing
the 2σ deviation described by Murray [58].

examples and no situation where this algorithm would fare significantly worse than

the other two can be invisaged.

However, the 3D algorithm does have the advantage that it is much faster to

perform. For example on a 1.4 GHz machine, the reconstruction stage of the mov-

ing ball model is approximately 25 seconds for the 3D algorithm as compared to

5 minutes for the 2.75D algorithm, and 15 minutes for the 3D extraction stage, as

opposed to the 20 minutes and 45 minutes for the 2D and 2.75D algorithms respec-

tively (approximately 6,000,000 templates tested). These values indicate, however,

that it would not be favourable, given the same number of views, to increase the

resolution of the 3D voxel grid so that it becomes comparable to the underlying rep-

resentation of the 2D and 2.75D algorithms. However, for larger views, the number

of possible correspondences that could be made by the 2D and 2.75D systems would

increase, unlike the 3D system where the voxel-grid resolution is independent.

Summarising, the 2D algorithm is ideal if the object can be segmented from the

images and if the dynamic motion is not restricted within its own visual hull; the

3D algorithm should be used if the motion is simple and a less accurate method is

required; the 2.75D algorithm should be used for more complicated scenes where

an accurate extraction of the parameters is required, possibly having used the 3D

algorithm to locate the region of interest in the parameter space.

However, the 2D algorithm has other advantages: first, the views do not need to

be synchronised temporally, although the relative timing is required—each view is
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not compared with the others and it is only the evidence gathering procedure that

finds the best fit to the observed data. The 2D algorithm can operate on single

view sequences, and thus provide a means to extract 3D models from a sequence

of 2D images. This latter feature can also be performed by the 2.75D algorithm,

however, this would be of no additional value.

Concluding, in this chapter, the three complete systems have been demonstrated

and the results compared, showing in these examples, little difference. Scenarios

where significant differences occur have been discussed, as has the relative merits

of the different algorithms.
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Chapter 7

Concluding remarks

7.1 Introduction

In this thesis, three systems have been presented that are capable of extracting

dynamic objects from a sequence of images. A gait recognition system was not the

aim of this research, however, it is a possible application that could be investigated,

especially as it has been shown that complex gait signatures can be produced.

This chapter concludes the work presented and suggests other future directions and

improvements that could be made to the algorithms.

7.2 Scene reconstruction

In chapter 1, it was concluded that the most suitable method to extract 3D dynamic

objects was to do so either directly from the 2D images or from reconstructed 3D

data. The latter resulted in a survey of different methods that have been developed

elsewhere, which culminated in the decision to use an algorithm based upon Volume

Intersection (VI). This has been shown in chapter 2 to bear close resemblance

to an evidence gathering procedure and thus noise tolerance can be introduced if

required. Other algorithms were also presented that enabled non-segmented scenes

to be reconstructed, including ‘voxel coloring’ [73]. The advantage of these is that

more abstract scenes can be analysed, and the problems regarding the visual hull

and phantom shapes are reduced.

Initial research investigating the 3D reconstruction problem led to an algorithm

similar to that described by Culbertson et al. [14] and Eisert et al. [23], although

it introduced the concept of sided-voxels and a statistical presence of voxels. This

has been shown to produce good reproductions of real scenes, as well as confer

information in synthetic scenes. The sides on the voxels were introduced so that

facing views could not contradict each other; for example, looking at a sheet of

paper that is coloured differently on either side.
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After further analysis of the 3D results it was discovered that the voxel space was

a poor representation for scene reconstruction from 2D images. The failure was due

to both the inefficiency of the representation if the scene was to be reconstructed

with the highest fidelity, and the limited range of the voxel grid: outside scenes

would be noisy if distant objects were in view as these would not be correlated cor-

rectly. This led to a more ideal representation which was described as being 2.75D

(see chapter 3). This representation is an extension of 2.5D images, where each

pixel has a single depth, except in 2.75D, each pixel has many associated depths.

This has been shown to lead to a more natural description of the scene, and also to

permit near-infinite scenes to be reproduced. However, the order of processing can

be up to the order of the cube of the number of views. This representation is thus

only practical for a limited number of cameras.

As well as demonstrating how VI can be described mathematically in this repre-

sentation, a colour 2.75D reconstruction algorithm has been formulated. This uses

the angle between two cameras at a point to describe how likely it is that they

would see the same colour; this is thus an improvement on the sided-voxels used in

the 3D algorithm. The 2.75D algorithm has been shown in chapter 5 to naturally

represent the object at the highest resolution.

7.2.1 Improvements to the reconstruction

Unfortunately, comparisons have only been made between the systems that have

been created specifically for this research and not with others elsewhere. As de-

scribed in section 1.3, there have been many recent efforts in the area of non-

segmented 3D reconstruction, in particular algorithms derived from, and including,

‘voxel coloring’ by Seitz and Dyer [73]. It would be advantageous to compare the

3D reconstruction algorithm described in this thesis with such algorithms. Also,

the recent use of warped voxel spaces by Slabaugh et al. [81] so that larger regions

of interest can be studied could also be incorporated.

Research should also be made into a voxel coloring or space carving algorithm

that would be applicable to the 2.75D algorithm. It would most likely be imple-

mented as depth carving, with each pixel initially being defined over all possible

depths which would then be gradually eroded.

However, other systems aside, there are many further improvements that could

be made to the algorithms, including the implementation of the less-approximate

2.75D algorithm which is described in section 3.5.

Surface influence

Non-segmented 3D reconstruction is naturally noisy due to the large number of

similar shaded pixels in an image. The most common noise is a form of salt-and-

pepper noise, where spurious voxels are deemed present. Snow et al. [82] noticed
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that such noise was a problem with VI, and thus described an energy-based algo-

rithm to calculate the object, which could introduce noise tolerance. Implementing

this for non-segmented scenes is not envisaged, but instead the reconstructed space

should be influenced by the local neighbourhood.

The 3D algorithm should first produce a fitness measure for each voxel in the

standard manner, but then each voxel should be re-examined, noting the fitness

measure of the 26 neighbours; even a simple averaging function might suffice to

produce the desired effect. The 2.75D algorithm is complicated by the fact that

when a pixel is projected, the neighbours along the same ray may correspond to

inconsistently sized volumes. Therefore it would be sensible to integrate the neigh-

bouring fitness over a fixed range of depth relative to the point location.

Understanding the constants

There are five constants for both the 2.75D and 3D reconstruction (excluding the

constants relating to the 3D voxel grid resolution, placement and scaling), and

currently these have only been assigned values experimentally. It would thus be

advantageous to perform a study to investigate their effects on reconstruction. This

should include experiments to analyse the effects of perturbing the colour calibration

on a camera. Such studies on the constants were not performed systematically

during the development in the present study due to the drive to produce a fully

working system; the computing equipment available at that time is also significantly

inferior to that which is available now and would have taken many months to

complete.

Using the visual hull

As already mentioned in section 4.2.3, it would be useful to use the VI visual

hull as a filter on the 3D voxel data. This should reduce the noise in the images

viewed. However, the 2.75D algorithm is also not properly restricted to the visual

hull, but instead each view is masked by the segmented image. Again, restricting

the 2.75D algorithm to the visual hull should enable better-than-hull results to be

obtainable. Calculating the VI visual hull takes a fraction of the time of the colour

algorithms, and thus there would not be a significant increase in workload. In fact,

the extraction stage would take less time as there would be less data to process, and

thus this should compensate the time to processes the additional VI visual hull.

Marching cubes

Although the 2.75D algorithm has not been presented for use as a static model

capturing method, it could in theory be used in this manner. It would thus be

appropriate to investigate methods to extract surface detail for use in computer

graphics. Lorenson and Cline [53] described an algorithm that converted a voxel

space into a triangular mesh that represented the surface of the object in the space.
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This was performed by considering which of the eight corners of the voxel could be

deemed as inside or outside the object, thereby producing a few triangles for each

voxel which represented the segmenting surface; this algorithm was termed ‘march-

ing cubes’. It would not be unreasonable to assume that an equivalent algorithm

exists for the 2.75D representation, which would thus introduce the advantages of

near-infinite sized scenes and the more efficient high fidelity representation.

Self calibration

An unsuccessful attempt has been made to automatically calibrate the cameras us-

ing a test board, as explained in section 6.3, with the problem arising from the poor

angle to the board from one of the cameras. However, even for the other cameras,

there was a considerable error between the predicted and calculated calibration val-

ues. To simplify the calibration, the radial distortion, being a 2D process, could

actually be measured prior to the camera’s use in the data capture by studying a

regular pattern from a position that is normal to it. If the camera’s field-of-view is

not altered, this radial distortion will be constant. Modelling the radial distortion

prior to the 3D spatial calibration will undoubtedly improve the estimate for the

camera’s parameters, and will thus also improve the reconstruction and extraction

results.

7.3 Dynamic model extraction

In chapter 4 a generalised method to represent arbitrary 3D dynamic objects was

presented using a method akin to constructive solid geometry (CSG), a tool com-

monly used in computer graphics. A selection of basic shapes are transformed to

describe the object at a particular moment in time. The transformations are de-

scribed by the model’s governing parameters, and examples have included a simple

translating sphere to a human thigh gait model.

The models describe templates that are used in a template matching (TM) algo-

rithm to find the best match in a sequence. TM is known to produce the equivalent

result to the evidence gathering procedure of the Hough Transform (HT) which is

well regarded for its high noise tolerance. The generic nature of the description

allows the same model to be used for extracting the best match from segmented 2D

images and 2.75D and 3D reconstructed scenes.

In order to extract the objects using TM, it was known that even for moderately

complicated models representing and processing the various data structures required

would be infeasible, and thus an alternative method was sought. Genetic Algorithms

(GAs) were introduced as the method to search these high dimensional spaces. GAs

search the spaces in a evolutionary style, but as with all approximate searching

methods, it is necessary to increase the probability of a part of the peak in the

space to be visited. It was thus shown that searching for volumes in 3D, or areas in
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2D, maximised this probability by widening the peak. However this also introduced

localisation issues, and thus a weighting factor had to be used in conjunction with

the ability for shapes to dynamically alter in size.

Using the segmented 2D image data and the 2.75D and 3D reconstructed scenes,

this dynamic modelling has been shown to be capable of extracting relatively simple

synthetic static and dynamic objects, with the former examined closely in chapter 5

where, a study was made for the effects of noise on the three systems. Both synthetic

and real objects have been extracted in chapter 6, ranging from describing a simple

translating sphere, to producing a feasible human gait pattern.

7.3.1 Improvements to the extraction

As with the reconstruction stage, a useful comparison to make would be between

the systems described in this thesis and others that are being used elsewhere. The

work of Bottino et al. [10] is of interest as it uses VI for reconstruction and then

matches a body to the shape before tracking it through a scene. This would thus give

an opportunity to demonstrate the expected effectiveness of the evidence gathering

approach presented here. Comparisons with other human model tracking algorithms

and statistical-based human gait analysis systems would also be beneficial, however,

it would require a huge effort to implement them.

In chapter 6, many suggestions for improvements to the extraction stage were

made, which are now summarised below.

Volumetric Edge Detection

In the extraction stage, constructive solid geometry (CSG) was used to describe the

templates which were thus volumetric in nature, but there was a notable problem

with this representation. All of the previous work on the Hough Transform (HT)

that were described in section 1.4.1 used edge-detected 2D images, and thus the

equivalent in 3D would be to use surface detection. It was explained in section 4.5

that using edge-detected 2D images produces very narrow peaks and thus would be

less suitable for searching with a GA. However using edge-detected 2D images helps

to ensure that a circle will not be recognised so easily as a square, and likewise in

3D, the surface of a sphere would not be recognised as that of a cube.

To overcome this problem, the CSG objects described in chapter 4 were allowed

to grow, and with the fitness weighting, resulted in a solid sphere matching another

sphere better than a cube. This method is not suitable if the objects are assumed

to be constant in size, and thus an alternative method must be used.

An alternative method would be to use surface-detected 3D data and extend the

work of Samal and Edwards [71] who researched the extraction of natural shapes

using the HT with 2D edge-detected images. It was realised that, for example,

recognising a picture of a leaf is awkward due to the many perturbations that could
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cause problems which thus cause a poor peak to be produced. Therefore Samal and

Edwards [71] suggested the use of a ‘template’ that was a wide line, thus in essence

producing an algorithm that was an amalgamation of the area and edge-detected

methods; this would certainly produce a more suitable peak for a GA. Surface-

detected 3D data will also significantly reduce the amount of data to be tested and

thus would improve the processing time.

However, the 2.75D and 3D data produced are relatively noisy in character, and

thus surface-detecting is probably not suitable. An alternative method would be

to use the volumetric method presented in this report in conjunction with halos-

of-void. For example, for the human gait model, the thigh can be defined as a

solid cylinder, but surrounding its curved edge, a region of space can be tested for

the absence of data. The halo would act in a contrary manner to the main solid

cylinder, thus any data present in it would be a penalty and a void would be a

benefit. This method would thus still be volume-based, and incorporate a form

of edge-detection. A comparison of this volume-based method and the surface-

detected method should be made to establish which is most suitable. Additionally,

a geometric-based algorithm could be formulated that uses the ‘marching cubes’

algorithm highlighted above.

Removing a constant

During the extraction, a fitness was assigned to a template using the equation:

w =
va

vp + k
(7.1)

where va and vp are the actual and the potential vote of the template respectively,

and k is a constant. It was found in section 4.5 that this constant should ideally be

the potential vote of the required template, but this is obviously an ill-posed problem

since the ideal template is not known. However, a method has been conceived to

remove the requirement to calculate the constant in advance. On the first iteration

of the GA, a moderate value of k could be selected, even a value of 1 would probably

be acceptable; note that a value of 0 should never be chosen as this will lead to only

small objects being located, as explained in section 4.5. On subsequent iterations,

this constant is revised so that it equals the potential vote of the best fitting object.

Although at first, the constant will change rapidly, since the GA will not have

properly started to converge, the effect of changing the weighting factor will not be

too significant on the overall process. The choice of the initial value may actually

be unimportant if the templates are restricted to a minimum size. Thus it can

be concluded that the constant is effectively being removed from the set-up of the

extraction stage although it is still present in principle.
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Alternative searching methods

A GA was chosen as the tool for searching for features in the large parameter space

due to the success others have had with them to perform a similar task. However,

there are many other techniques, Simulated Annealing and Gradient Ascent which

could also be investigated. Multi-resolutional methods were actually employed in

part in the extraction stage, as can be seen in chapter 6.

Sub-pixel sampling

If optimum fidelity is required without regard of the processing cost, the final sugges-

tion for improvement in the extraction stage is to analyse the object using sub-pixel

and sub-voxel accuracy; this would thus allow, for example, a sphere template to

be more sphere-like in nature. Thus when comparing voxels in the template with

those in the data, a weighting factor could be used to describe how much of the

voxel in the template actually lies within the template’s sphere. This weighting

factor would thus influence the contribution that a voxel in the data provides.

Implementing this, however, is only suggested when the voxel space becomes

relatively coarse for the size of object to be extracted. In many cases it may not

actually produce a significant improvement, though this is dependent on the type

of motion. For example, a sphere traveling at exactly one voxel per frame in the

direction of one of the voxel space’s axes cannot be resolved any better than to the

accuracy of one voxel.

7.4 The complete systems

In chapter 1 it was concluded that there were two suitable methods to extract 3D

dynamic objects from arbitrary scenes. One would be to use a sequence of 2D

segmented images and search for a 3D mathematically described model mapped

onto the 2D images using evidence gathering as the extraction tool. The second

would be to reconstruct the scene prior to segmentation and then search for the

3D model in this 3D space. Three systems have been developed: the proposed

segmented 2D method and the 2.75D and 3D reconstructed scene methods.

These three systems have been analysed in chapters 5 & 6 and the suitability to

various scenarios discussed. It has been shown that whilst the 2D system is more

tolerant to noise caused by poor calibration of cameras, it is highly dependent on

successful segmentation. It is surmised that, for example, gait extraction using the

segmented 2D system would not be possible in crowded scenes. However, the 2D

system can be used in conjunction with unsynchronised cameras, which the other

two systems cannot.

The 3D system has been shown to introduce noise due to its inappropriate

underlying representation, which have been seen to slightly influence the extracted

results. Nevertheless it has shown favourable results. The 2.75D system has been
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demonstrated to extract the parameters of objects with the highest fidelity, however,

the order of processing makes it unsuitable for large numbers of cameras.

This research has led to a novel approach to 3D voxel-based reconstruction

as well as a novel representation, named 2.75D. Also, a novel method has been

presented to extract 3D models from 2D segmented images and 2.75D and 3D

reconstructed sequences using a description akin to constructive solid geometry;

these systems have been contrasted and compared. In conclusion, three systems

have thus been described which are capable of estimating 3D motion parameters

with success from multi-view images by non-invasive means.
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Appendix A

Camera arrangement

A.1 Introduction

This chapter details the various camera arrangements used in experiments in this

project.

A.2 Camera parameter conversion

The ray-tracer uses a different camera description method to that used by the imple-

mented code. The relationship between those used in this report (see section 2.2.4)

and those used by the ray-tracer can be seen in table A.1. As can be seen many

more parameters are required by the ray-tracer to achieve the camera description in

an effort to be flexible for the user. This is, however, only a summary of the basic

manipulation, since further commands can be used by the ray-tracer to change the

view.

‘POV-Ray’
camera parameter

Type Relationship

location 3-Vector Directly yields the position of the camera, T
lookat 3-Vector With location, yields the direction and elevation angles

sky 3-Vector Gives the camera’s rotation angle, θr = tan−1 skyy
skyx

right 3-Vector With the image’s dimensions, yields the pixel’s aspect ratio, κ
angle Scalar With the width of the image, yields fy

Table A.1: Summary of the relationship between the parameters used in this
report and those used by the ‘POV-Ray’ ray-tracer.

The lookat vector yields the camera’s direction and elevation angles, θd and θe

respectively, by:

θd = −tan−1 lookatx−locationx
lookatz−locationz

(A.1)

θe =

∣∣∣∣∣ sin−1 lookaty−locationy
|lookat−location| for |lookat− location| 6= 0

0 otherwise
(A.2)
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The scalar, angle, is the horizontal angle of the field of view, and thus can be

used to calculate the focal lengths fx and fy. However, the aspect ratio, which is

described by the vector right and the image’s dimensions, alters the focal length

fx but not fy. Hence with the width, w, of the image, fy, is given by:

fy =
w

2 tan(0.5 rad(angle))
(A.3)

The focal length in the x direction, fx can be calculated using the height, h, of

the image and the x:y ratio of the components in the vector right by:

fx =
rightx/righty · h

2 tan(0.5 rad(angle))
(A.4)

A.3 Real world camera arrangement

This camera arrangement was used for real world data capture and for some of the

synthetic data examples.

F  = 441.41x F  = 488.98y

F  = 443.24x F  = 483.77y

F  = 443.78x F  = 488.67
y

β

γ

Voxel grid

(−1512.5, 0, 0) (1512.5, 0, 0)

121 x 81 x 81 voxels

α

z

x

Voxels are 25 x 25 x 25 mm

Reaches the height of 2025mm

Origin
(0, 0, 0)

(−2516.70, 1235.00, −2726.90) mm

(132.08, 2130.00, −3355.24) mm

(3165.86, 2425.00, −1993.27) mm
Direction=40.40°
Elevation=−20.69°
Rotation=−2.39°

Direction=2.28°
Elevation=−15.97°
Rotation=−0.34°

Direction=−29.97°
Elevation=−4.57°
Rotation=0.00°

Figure A.1: Plan view of the three camera arrangement (α, β and γ), showing
respective parameters, used in the experiments. All of the images have dimensions
348 × 280 pixels, with the principal point located at the centre; there is no skew
factor.

158



By taking excess measurements, the cameras’ positions were found, using trigonom-

etry, to an accuracy of 5 mm. The cameras’ three angles and two focal lengths were

calibrated using the four front corners of the test board described in section 6.3.3;

the calibration of each camera is independent of the others. As the four front corner

positions were known, the respective four image coordinates for each camera pro-

vided eight values to solve for the five unknown parameters. A coarse grid search

was performed on the entire parameter space followed by three further localised

searches using successively greater resolution; the aim of the searches was to find

a set of parameters that minimised the difference between the predicted and mea-

sured positions in the images of the four points. The final angle resolution of the

search was 0.01◦, and the final focal length resolution was 0.02. The sum of the

minimised distances of the four points was 4.25, 4.31, 1.66 for camera α, β and γ

respectively. Thus each point was predicted to be approximately within a pixel of

the measured value; the search with resolutions of 0.1◦ and 0.2 for the angles and

focal lengths respectively produced only marginally different results. Camera γ has

a smaller error because the radial distortion that is present affects the four corners

in a consistent manner due to their symmetry in the picture. Note that the values

shown are those for the half-sized images there were used, i.e., the focal lengths

have been halved. These images have dimensions 348 × 280; the principal point is

assumed to be at the centre of the image.

The analogue cameras used for the capture were the DFK 50H13 P, supplied

by ‘The Imaging Source’; the digital cameras used for the recording were the Sony

DCR-TRV900E-PAL. A modified version of the Linux library ‘LibDV’, which is

developed under the GPL, was used to decode the DV data.
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A.4 Synthetic camera arrangement I

This camera arrangement was used for synthetic data creation only.

Sky: (0, 1, 0)

Right: (1.33, 1, 0)

Location: (−3000, 1000, −3000) mm

Lookat: (0, 1000, 0) mm

Angle: 90°

Sky: (0, 1, 0)

Right: (1.33, 1, 0)
Lookat: (0, 1000, 0) mm

Location: (3000, 1000, −3000) mm

Angle: 90°Sky: (0, 1, 0)

Right: (1.33, 1, 0)

Location: (0, 3000.00, −4000) mm

Lookat: (0, 1000, 0) mm

Angle: 90°

γ

Voxel grid

121 x 81 x 81 voxelsz

x

Voxels are 25 x 25 x 25 mm

Reaches the height of 2025mm

βα

(1512.5, 0, 0) mm(−1512.5, 0, 0) mm Origin (0, 0, 0)

Figure A.2: Plan view of synthetic camera arrangement I (α, β and γ), showing
respective parameters, used in the experiments. All of the images have dimensions
400 × 300 pixels, with the principal point located at the centre; there is no skew
factor.
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A.5 Synthetic camera arrangement II

This camera arrangement was used for synthetic data creation only.

Sky: (0, 1, 0)

Right: (1.33, 1, 0)

Location: (3000, 1000, −3000) mm

Lookat: (0, 1000, 0) mm

Angle: 90°

Sky: (0, 1, 0)

Right: (1.33, 1, 0)

Location: (−3000, 1000, −3000) mm

Lookat: (0, 1000, 0) mm

Angle: 90°

Voxel grid

121 x 81 x 81 voxelsz

x

Voxels are 25 x 25 x 25 mm

Reaches the height of 2025mm

βα

γ Sky: (0, 1, 0)

Right: (1.33, 1, 0)

(1512.5, 0, 0) mm

Location: (0, 3000.00, 4000) mm

Lookat: (0, 1000, 0) mm

(−1512.5, 0, 0) mm Origin (0, 0, 0)

Angle: 90°

Figure A.3: Plan view of synthetic camera arrangement II (α, β and γ), showing
respective parameters, used in the experiments. All of the images have dimensions
400 × 300 pixels, with the principal point located at the centre; there is no skew
factor.

161



Appendix B

Further model extraction

B.1 Introduction

This appendix complements the work described in chapter 6, providing further

illustration of the techniques described.

B.2 Synthetic example: analysis of a box moving around an arc

B.2.1 Setting the scene

Increasing the dimensions of the modelling, a further example is the extraction and

description of a box, of unknown dimensions moving along the ground around an

arc at a constant speed, with the motion described by the parameters listed in

table B.1 and illustrated in figure B.1. The experiment was performed in a similar

manner to that of the moving ball above, using two different camera arrangements,

each with 100 trials in which each has a random set of parameters. Figure B.2

illustrates a typical sequence, showing an irregular floor texture and, once again,

a complicated sky. Also present are small amounts of shadow and shading on the

moving box itself; this is more clearly visible in the background removed images

as shown in figure B.3. It is important to note the relative size of the box in the

images which lies a moderate distance away from the cameras.

+ω t

depth

θ

czcx

radius

height

width

(    ,0,    )

Figure B.1: The box-around-arc model.
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Figure B.2: Source moving ball ray-traced images.
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Figure B.3: 2D background removed images.
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Parameter Description
width, height, depth The dimensions of the box

(cx, 0, cz) The centre of rotation
radius The radius of the arc
θ The angle around the arc at time t = 0
ω The angular velocity

Table B.1: The 8 parameters required for detecting a box moving around an arc.

B.2.2 Parameter extraction

The results shown in table B.2 are prepared in the same manner as those of the

moving ball model above. There are no significant trends in the majority of the

parameters, although the 2.75D and 3D algorithms commonly overestimate the size

of the box; this effect was explained in section 5.3.2, the cause of it being the

observable visual hull. The errors in the central arc position are slightly larger

than the 25 mm resolution of the images at that depth, however, calculating it

is extremely dependent on the angular velocity - for a slower speed, the central

position is very much more affected by the noise of the reconstruction.

Therefore, as with the moving ball model, this more unusual motion was suc-

cessfully captured. A possible use of this system could be the basis of monitoring

cars on a road, after which a more complicated model could be applied that would

be capable of identifying the type of vehicle.

Error of the extracted parameters
Analysis Camera Dimensions Arc centre
method set-up

Stat Fitness
w, h, d cx, cz

Radius θ ω

µ 0.378 12.4 24.2 14.6 15.0 21.4 18.8 1.4 3.6
# 1

σ 0.123 16.8 9.1 15.9 29.2 26.6 26.7 5.1 9.1
µ 0.361 11.6 24.6 14.1 15.0 16.2 15.4 1.4 3.82D

# 2
σ 0.124 17.2 9.7 17.4 28.9 28.5 27.1 5.1 9.2
µ 0.239 21.4 28.3 25.7 16.2 15.8 16.6 1.7 3.4

# 1
σ 0.107 15.1 11.8 13.8 23.3 25.0 25.9 5.3 9.7
µ 0.181 21.5 29.6 23.3 19.4 14.6 16.8 1.2 2.52.75D

# 2
σ 0.086 14.7 10.4 14.6 22.9 24.6 25.9 4.3 7.7
µ 0.271 17.3 13.9 18.5 20.0 18.2 9.2 2.7 4.6

# 1
σ 0.085 12.2 10.1 12.4 16.2 17.9 19.0 7.7 12.0
µ 0.259 13.9 15.4 17.4 17.6 7.0 9.4 1.2 3.03D

# 2
σ 0.072 10.9 8.8 12.0 18.6 14.8 17.8 4.5 9.8

Table B.2: Extraction results of a moving sphere of unknown radius.

B.3 Gait intermediate processing examples

B.3.1 Introduction

The images presented below demonstrate the stages of reconstruction and back-

ground removal. They are comparable to the examples given in section 6.4, and
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as such the figures should be self-explanatory. Figure B.4 illustrates the original

source data that is to be analysed.
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Figure B.4: The human gait source data [sequence 11487-11546].

B.3.2 The reconstructed and filtered data

2D

Having removed the background, segmented images were produced. Those corre-

sponding to the images in figure B.4 can be seen in figure B.5.

2.75D

The results of the reconstruction of just a single frame can be seen in figure B.6

showing the scene from the source camera angles. Having removed the background

from the data, the data corresponding to the frames in figure B.4 can be seen in

figure B.7, and those from new angles in figure B.8.

3D

The results of the reconstruction of just a single frame can be seen in figure B.9

showing the scene from the source camera angles. Having removed the background

from the data, the data corresponding to the frames in figure B.4 can be seen in

figure B.10, and those from new angles in figure B.11.
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Figure B.5: The human gait 2D background removed images [sequence 11487-11546].
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Figure B.6: The human gait 2.75D reconstructed scene from original camera angles.
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Figure B.7: The 2.75D filtered background removed scene from original camera
angles.
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Figure B.8: The 2.75D filtered background removed scene from novel camera angles.
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Figure B.9: The human gait 3D reconstructed scene from original camera angles.
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Figure B.10: The 3D filtered background removed scene from original camera angles.
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Figure B.11: The 3D filtered background removed scene from novel camera angles.
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Appendix C

Pixel ray casting

C.1 Overview

When projecting a pixel through space, a locus in the form of a straight line is

described. The line can be projected onto another view, and is also a straight line.

The following sections analyse the rate at which the line must be projected away

from the source camera’s focal point, so that all pixels in the destination view’s

image line are stepped through once, and once only.

C.2 Theory

It is assumed, that the line can be mapped to the destination’s intrinsic local ge-

ometry as defined in section 2.2.4, i.e., the destination camera lies at the origin of

the coordinate system, and the image plane lies on the z = 1 plane, and pixels are

square and centralised around the principal point.

Thus there is a line visible which follows the standard equation:
x3d

y3d

z3d

 =


a

b

c

+ λ


d

e

f

 (C.1)

i.e.: 
a

b

c

1

 = P
1
P−1

0


0

0

0

1

 (C.2)

where P
0
, P

0
are the projection matrices for the source view and destination view

respectively, as defined in equation 2.10, but having been turned in a 4 × 4 square
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matrix to enable the matrix manipulation, and:
(a+ d)

(b+ e)

(c+ f)

1

 = P
1
P−1

0

 p

1

1

 (C.3)

where p is the source pixel coordinate vector.

A 3D point on the line is mapped onto the destination image by the following

equation: [
x

y

]
=

1

z3d

[
x3d

y3d

]
(C.4)

Noting that there is no fx or fy component as this is accounted for in the intrinsic

geometry representation.

So, looking at just the equation for x:

x =
a+ λd

c+ λf
(C.5)

Re-arranging, a function for λ is obtained:

xc+ xλf = a+ λd

λ =
a− xc
xf − d

(C.6)

It is also noted that

dx

dλ
=

d

dλ

a+ λd

c+ λf

=
(c+ λf)d− (a+ λd)f

(c+ λf)2

=
cd− af

(c+ λf)2
(C.7)

Hence dx
dλ

is positive for cd−af > 0, negative for cd−af < 0 and 0 for cd−af = 0.

As λ increases, the next λ (λ′) must be calculated so that the line enters the

next pixel. Since the next pixel depends on the sign of dx
dλ

, there are three instances:
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Instance 1: cd− af > 0 The next pixel is at x+ 1

Instance 2: cd− af = 0 The next pixel is at x

Instance 3: cd− af < 0 The next pixel is at x− 1

Instance 2 indicates a case where the ray is mapped to the same pixel in the

destination image, and thus there is no dependency on the depth of the projection.

In such a case, there is obviously no requirement to search for the next pixel that

the line will cross.

C.2.1 The positive direction

First looking at the case where the next value of λ yields a point at x+ 1:

λ′ =
a− (x+ 1)c

(x+ 1)f − d
=

a− xc− c
xf + f − d

(C.8)

λ has thus changed by:

δλ = λ′ − λ =
a− xc− c
xf + f − d

− a− xc
xf − d

(C.9)

Cross multiplying, and reducing the equation:

δλ =
(a− xc− c)(xf − d)− (a− xc)(xf + f − d)

(xf + f − d)(xf − d)

=
−c(xf − d)− f(a− xc)

(1
z
x3df + f − d)(1

z
x3df − d)

=
(cd− af)z2

(x3df + fz − dz)(x3df − dz)

=
(cd− af)(c+ λf)2

((a+ λd)f + f(c+ λf)− d(c+ λf))((a+ λd)f − d(c+ λf))

=
(cd− af)(c+ λf)2

(af + λdf + f(c+ λf)− dc− dλf)(af + λdf − dc− dλf)

=
(cd− af)(c+ λf)2

(af + f(c+ λf)− dc)(af − dc)

=
(cd− af)(c+ λf)2

((af − cd) + f(c+ λf))(af − cd)
(C.10)

Noting that the exception to the equation at cd = af is invalid under the

application of this equation,

δλ = − (c+ λf)2

(af − cd) + f(c+ λf)
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=
(c+ λf)2

(cd− af)− f(c+ λf)
(C.11)

Thus the step, δλ is dependent on the current λ and on the four variables.

C.2.2 The negative direction

If, as λ increases, the image is swept in a negative-x manner, then it is the change

in λ that would be needed to visit the point at x− 1 that is required. So adapting

the equations above:

λ′ =
a− (x− 1)c

(x− 1)f − d
=

a− xc+ c

xf − f − d
(C.12)

δλ = λ′ − λ =
a− xc+ c

xf − f − d
− a− xc
xf − d

(C.13)

Cross multiplying, and reducing the equation we get:

δλ =
(a− xc+ c)(xf − d)− (a− xc)(xf − f − d)

(xf − f − d)(xf − d)

=
c(xf − d) + f(a− xc)

(1
z
x3df − f − d)(1

z
x3df − d)

=
(af − cd)z2

(x3df − fz − dz)(x3df − dz)

=
(af − cd)(c+ λf)2

((a+ λd)f − f(c+ λf)− d(c+ λf))((a+ λd)f − d(c+ λf))

=
(af − cd)(c+ λf)2

(af + λdf − f(c+ λf)− dc− dλf)(af + λdf − dc− dλf)

=
(af − cd)(c+ λf)2

(af − f(c+ λf)− dc)(af − dc)

=
(af − cd)(c+ λf)2

((af − cd)− f(c+ λf))(af − cd)

=
(c+ λf)2

(af − cd)− f(c+ λf)

(C.14)

A similar result to before, but with a change in sign of a component of the

denominator.

C.2.3 Combining the two equations

The two equations differ only by a change of sign in a component of the denominator,

but the different equations will only be used depending on cd − af as this effects
dx
dλ

. Therefore, combining these results,
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δλ =

∣∣∣∣∣ (c+λf)2

|(af−cd)|−f(c+λf)

∞
for

cd 6= af

cd = af
(C.15)

C.2.4 Confirming the result

To illustrate the result, consider a projected ray that moves horizontally across the

destination view at a constant orthogonal distance. In this case, f = 0, and thus

δλ = c2

cd
= c

d
. This appears correct as it is dependent on the distance, c, of the

line in 3D, and is inversely-proportional to the rate at which the points move in the

positive direction along the x-axis.

For a ray that passes through the origin of the destination camera, i.e., one that

moves directly along a projection line:
0

0

0

 =


a

b

c

+ λ


d

e

f

 (C.16)

for some λ. Therefore a+λd = 0 and c+λf = 0. Substituting λ, this yields fa = cd

which has already shown to produce an exception in the equation, indicating that

it is not possible to traverse, no matter what change in λ, to the next pixel.

C.2.5 The y-axis and multiple views.

Similar equations can be formed for the y-axis. Then, to find the step for a given

λ, the two equations are evaluated, and the minimum step is selected. It must be

noted that the range of λ over a particular destination view is restricted so that it

evaluates only pixels in the view and in front of the camera.

When there are several views, pixels may be visited more than once, although the

combination of pixels from the different views will only be tested once. By selecting

the minimum step from the various (relevant) images, this can be achieved.
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Appendix D

Camera synchronisation device

D.1 Introduction

Figures D.1 & D.2 describe the circuit to produce a synchronising signal for the

analogue cameras. There is actually a minor discrepancy between the cameras

since one camera’s signal is used to calculate the synchronisation signal for the

others, however, this small temporal difference is insignificant, being approximately

0.2 ms.

If a driving camera is not present, then the respective LED will indicate an error

(RED), and all other LEDs will turn off. If a driving camera is producing a suitable

signal, this LED will turn GREEN, and the other two LEDs will turn on. These

other LEDs will be GREEN if the difference between their field signal and that of

the driving camera is relatively insignificant, and RED otherwise.

The electronics is concise, for example using a hybrid of analogue comparative

filters with digital electronics to drive the LEDs; the emphasis was to quickly pro-

duce a workable solution, and thus, although this is not the recommended method,

it has been found to be applicable in this situation.
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Figure D.1: Camera synchronisation device part I.

175



G
N

D
U

/C

U
/C

G
N

D

U
/C

U
/C

G
N

D
U

/C

0.
1 

 Fµ
0.

33
  Fµ

L
78

05 3

1
2

G
N

D

V
C

C

1N
40

07

33
0

Y
el

lo
w

 5
m

m
 L

E
D

Ω

V
12

0.
1 

 Fµ
0.

33
  Fµ

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12

1 2
V

SR
C

G
N

D

G
N

D
V

12
G

N
D

G
N

D

G
N

D

G
N

D
V

12
G

N
D

G
N

D
V

12
G

N
D

G
N

D

G
N

D

G
N

D
V

12
G

N
D

V
ID

E
O

SR
C

1
V

ID
E

O
SR

C
2

H
SY

N
C

1
V

SY
N

C
1

H
SY

N
C

2
V

SY
N

C
2

C
on

ne
ct

io
ns

, a
nd

 p
ow

er
Pa

ge
: 2

/2

Pr
oj

ec
t: 

C
am

er
a 

Sy
nc

ro
ni

sa
tio

n 
U

ni
t

A
ut

ho
r:

 K
J 

Sh
ar

m
an

D
at

e:
 1

9 
A

pr
il 

20
01

V
er

si
on

 1
.0

3

1
2

G
N

D

1N
40

07

V
12

L
78

12

V
SR

C

G
N

D
V

12
G

N
D

V
ID

E
O

SR
C

0
G

N
D

G
N

D

G
N

D
V

12
G

N
D

Figure D.2: Camera synchronisation device part II.
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Appendix E

DV Codecs

E.1 Introduction

During the course of this research, it was found necessary to fully understand the

DV encoding. The initial reason for this was so that tools to animate, split and

convert the data to images could be produced. However, it was soon discovered

that not just the codec used, but many others, misinterpreted the video format,

producing extremely erroneous output.

This section does not intend to be a specification of the standard, but rather an

overview of how the data is encoded in the standard and how this common mistake

in codecs has been formed in order that others will not be plagued by it. The full

standard is available from The Society of Motion Picture and Television Engineers

(SMPTE 314M-1999).

E.2 Overview of the standard

DV encodes each frame separately and in a fixed number of bytes, therefore not

utilising any temporal correlation between successive images. For the common

25 Mb/s standard, each frame, which includes audio information, fits into a 144,000

byte block for PAL or 120,000 bytes for NTSC. There is a different structure between

these two main video standards, but the encoding is in essence the same, both

requiring a compression method to reduce the video data to a much smaller amount.

Each frame is split into, for the NTSC format (known as 4:1:1), 32 × 8 pixel

blocks which are represented by four blocks of 8 × 8 luminance information, but

only two blocks of 8 × 8 chrominance information that will represent the red and

the blue channels. Figure E.1 shows how the image data is sampled in such a

representation, indicating that the chrominance fields are poorly represented from

the outset.

The Discrete Cosine Transform is then applied to each of these six blocks; the

DC term is encoded separately and without loss. However, in order to compress the
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Red channel Blue channel
Chrominance sampling

Luminance sampling

Figure E.1: DV sampling with the 4:1:1 representation. The luminance is sampled at
every point in the original image, but the red and blue each sample one pixel in four.
The solid lines indicate the block over which the chrominance is used for reconstructing
the image.

data, it is essential that many of the other frequency components are reduced to

zero. This is performed by scaling them by various amounts that result in favouring

the luminance low frequency components and poorly representing the chrominance

high frequency components, especially that of the blue channel. Having forced many

of the components to zero, a specific Huffman encoding is applied to reduce the size

of the represented data.

E.3 The 4:2:0 representation

The PAL standard is known as the 4:2:0 representation, where each frame is now

split into 16 × 16 pixel blocks, again represented by four blocks of 8 × 8 luminance

blocks and two blocks of chrominance, however, the sampling of the original image

is performed in a different way. First, as seen in figure E.2a, the red chrominance

channel is sampled on every other line, and the blue chrominance channel is sampled

on the others. However, it is important to note that the standard is designed

around the interlaced television standard, therefore this representation would seem

to poorly sample the video as one field would be sampled for blue and the other

for red—any bright moving object would be distorted. The standard, however,

indicates that this is the method of sampling in a single field, not the frame, and

in fact the true interlaced sampling structure is as appears in figure E.2b.

Codecs commonly do not interpret this interlaced structure correctly, resulting in

images where, although the luminance is correct the colours appears to be interlaced

in pairs of lines, not singly. There is no such problem with the 4:1:1 NTSC standard

since the two different chrominance values are sampled on all field lines. In this

research, the codec was corrected, however, although it will introduce slight errors,
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it is relatively simple to swap the chrominance after the RGB images have been

produced.

Chrominance samplingLuminance sampling
Red channel Blue channel
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Figure E.2: DV sampling with the 4:2:0 representation. (a) shows the commonly
misinterpreted format where the red and blue chrominances sample every other row.
(b) shows that in the same field, the red and blue sample every other row, but not
over the block of 16 × 16 pixels; To form the top left pixel, the respective luminance
and red value is used along with the blue value from the next row in the field, i.e., the
blue value from row 2 of the block.
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