
Blind FIR Equalisation for High-Order QAM Signalling

S. Chen, T.B. Cook and L.C. Anderson

Department of Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ
United Kingdom

E-mail: sqc@ecs.soton.ac.uk

ABSTRACT

We compare some blind finite-impulse-response (FIR)
equalisation schemes for high-order quadrature amplitude
modulation (QAM) signalling. The popular constant modulus
algorithm (CMA) is used as a benchmark in an investigation
of two blind FIR equalisers, namely, a bootstrap maximuma
posteriori probability (MAP) equaliser and a recently intro-
duced concurrent CMA and decision directed (DD) equaliser
(CMA+DD). Both equalisers are known to outperform the
CMA considerably at costs of small increase in computa-
tional complexity. Our study indicates that the bootstrap MAP
equaliser has a faster convergence rate than the concurrent
CMA+DD equaliser.

I. I NTRODUCTION

For communication systems employing high bandwidth-
efficiency QAM signalling, the CMA based FIR equaliser is
a popular blind equalisation scheme [1],[2]. It has very simple
computational requirements. A serious problem of the CMA is
that it only achieves a moderate mean square error (MSE) af-
ter convergence, which may not be sufficient for the system to
obtain adequate performance. A possible solution is to switch
to a DD adaptation to minimise the CMA steady state MSE
[3]. However, as pointed out in [4], in order for such a transfer
to be successful, the CMA steady state MSE should be suffi-
ciently low, which may not always be achievable in practice.
In ICC 2001, De Castroet al [4] have suggested an interesting
solution to this problem by operating a DD equaliser concur-
rently with a CMA equaliser. The weight adaptation of the DD
equaliser follows that of the CMA equaliser, and the DD ad-
justment only takes place if the CMA is judged to achieve a
successful adjustment. At a small cost of doubling complexity
to that of the very simple CMA, this concurrent CMA+DD
equaliser is reported to obtain a dramatical improvement in
equalisation performance over the CMA [4].

The CMA and this newly introduced concurrent CMA+DD
equaliser belong to a class of blind FIR equalisers commonly
referred to as Bussgang algorithms [5]-[9]. In this study, we
revisit a Bussgang blind equaliser called the bootstrap MAP

equaliser, which was originally derived in [10] for 4-QAM
constellation and extended toM -QAM (M > 4) channels in
[8],[9]. We compare this bootstrap MAP equaliser with the
concurrent CMA+DD equaliser, using the CMA as a bench-
mark in terms of complexity and performance. The bootstrap
MAP equaliser requires similar numbers of multiplicationsand
additions as the CMA, with an additional need of evaluating 4
exponential function values. Simulation confirms that boththe
bootstrap MAP and concurrent CMA+DD equalisers outper-
form the CMA considerably, and the results also suggest that
the bootstrap MAP equaliser achieves faster convergence than
the concurrent CMA+DD equaliser for the channel simulated.

II. B LIND EQUALISATION

Consider the baseband model of a digital communication
channel characterized by a symbol-space FIR filter and an ad-
ditive Gaussian white noise source. Specifically, the received
signal at samplek is given byr(k) = n�1Xi=0 ais(k � i) + e(k) (1)

wheren is the length of the channel impulse response (CIR),ai = aiR + jaiI are the channel taps, the symbol sequences(k) = sR(k) + jsI(k) is independently identically dis-
tributed,e(k) = eR(k) + jeI(k) is a Gaussian white noise
with E[e2R(k)℄ = E[e2I(k)℄ = �2e , and E[�℄ denotes the expec-
tation. The symbol constellation isM -QAM and the set of all
the symbol points is defined byS = fsil = (2i�Q�1)+j(2l�Q�1); 1 � i; l � Qg (2)

whereQ = pM = 2L, andL is an integer.

A symbol-space equaliser is employed, which has an FIR
structure defined byy(k) = m�1Xi=0 wir(k � i) = wT r(k) (3)

wherem is the equaliser order,w(k) = [w0 w1 � � �wm�1℄T is
the equaliser weight vector withwi = wiR+jwiI , andr(k) =[r(k) r(k � 1) � � � r(k �m + 1)℄T the equaliser input vector.



To deal with non-minimum phase channels, the equaliser has a
delay approximatelykd � m=2. Before blind adaptation, the
equaliser weights are initialised towi = 1+ j0 for i = kd andwi = 0 + j0 for i 6= kd.

A. The constant modulus algorithm

The CMA adjusts the equaliser weights by minimising�JCMA(w) = E
h�jy(k)j2 ��2�2i (4)

using a stochastic gradient algorithm, where�2 is a real posi-
tive constant defined by�2 = E

�js(k)j4� =E
�js(k)j2� : (5)

At samplek, giveny(k) = wT (k)r(k), the CMA adaptsw
according to [1], [2]�(k) = y(k) ��2 � jy(k)j2�w(k + 1) = w(k) + ��(k)r�(k) ) (6)

where� is a small positive adaptive gain andr�(k) is the com-
plex conjugate ofr(k).

The computational complexity of the CMA is summarised
in Table I. Letwopt be the solution of the adaptive equaliser
based on the cost function (4) that yields the correct signalcon-
stellation. All the weight vectorsws = exp(j�)wopt; 0 � � < 2�; (7)

produces the same cost as�JCMA(wopt). Thus the CMA blind
equaliser may converge to any of the solutions defined in (7).
This undesired phase shift cannot be resolved by the CMA and
must be eliminated by other means.

B. The concurrent CMA+DD equaliser

De Castroet al [4] proposed a concurrent CMA and DD
blind equalisation scheme. Specifically, letw = w
 +wd (8)

wherew
 is designed to minimise the CMA cost function andwd is designed to minimise the decision based MSE�JDD(wd) = 12E
�jQ[y(k)℄� y(k)j2� (9)

with Q[y(k)℄ denoting the quantized equalizer outputQ[y(k)℄ = argminsil2S jy(k)� silj2: (10)

TABLE I

COMPARISON OF COMPLEXITY PER WEIGHT UPDATE.

equaliser multiplications additions exp(�)
CMA 8�m+ 6 8�m �

CMA+DD 16�m+ 8 20�m �
MAP 8�m+ 22 8�m+ 16 4

At samplek, given y(k) = wT
 (k)r(k) + wTd (k)r(k), the
CMA adaptsw
 according to the rule (6) with an adaptive gain�
. The DD adaptation follows immediately after the CMA
adaptation and it only takes place if the CMA adjustment is
viewed to be a successful one. Let~y(k) = wT
 (k + 1)r(k) +wTd (k)r(k) : (11)

Then the DD part adjustswd according to [4]wd(k + 1) = wd(k) + �dÆ(Q[~y(k)℄�Q[y(k)℄)� (Q[y(k)℄� y(k))r�(k) (12)

where�d is the adaptive gain of the DD equaliser andÆ(x) = � 1; x = 0 + j00; x 6= 0 + j0 (13)

It is seen thatwd is updated only if the equaliser hard decisions
before and after the CMA adaptation are the same.

The complexity of the CMA+DD algorithm, given in Ta-
ble I, is linear in the equaliser orderm. Letwdopt be the so-
lution of the DD equaliser based on the cost function (9) that
yields the correct signal constellation. The weight vectors that
produces the same cost as�JDD(wdopt) are:wds = exp(j�)wdopt; � = 0; �2 ; �; 3�2 : (14)

The DD adaptation does not suffer from a serious phase shift
problem, as the CMA does, and is capable of lowering the
steady state MSE, compared with the CMA.

C. The bootstrap MAP equaliser

After the equalisation is accomplished, the equaliser output
can approximately be expressed in two termsy(k) � x(k) + v(k) (15)

wherex(k) = s(k � kd) andv(k) = vR(k) + jvI(k) is ap-
proximately white Gaussian. That is,y(k) can be modelled
approximately byM Gaussian clusters with meansyil = sil; 0 � i; l � Q; (16)

and all the clusters have an approximate covariance�
E[v2R(k)℄ E[vR(k)vI (k)℄

E[vI(k)vR(k)℄ E[v2I (k)℄ � � � � 00 � � : (17)

Thus, thea posteriori p.d.f. ofy(k) is approximatelyp(w; y(k)) � QXq=1 QXl=1 pql2�� exp��jy(k)� yqlj22� �
(18)

wherepql are thea priori probabilities ofyql, and they are all



equal. The bootstrap MAP equaliser is designed to maximise
thea posteriori p.d.f. criterion��(w) = E[�(w; y(k))℄ (19)

with�(w; y(k)) = � QXq=1 QXl=1 exp��jy(k)� yqlj22� � : (20)

At samplek, giveny(k) = wT (k)r(k), the equaliser weights
can be adapted according tow(k + 1) = w(k) + ���(w(k); y(k))�w (21)

with the adaptive gain� and the stochastic gradient��(w(k); y(k))�w = QXq=1 QXl=1 exp��jy(k)� yqlj22� �� (y(k)� yql)r�(k): (22)

In order to speed up convergence rate and to keep the complex-
ity to a minimum, a multi-stage implementation was proposed
[8],[9] for high-oder QAM signalling.

For the 16-QAM case, the equalisation objective is de-
composed into a two-stage process. At the first stage, a 4-
cluster p.d.f. model is adopted with the cluster means beingf�2 + j � 2g. The equaliser weights are adjusted using this
equivalent “4-QAM” model via the gradient algorithm (21).
The objective of this stage is to achieve a roughly correct clas-
sification of equaliser outputs into the 4 quadrants in the com-
plex plane. At the second stage, the 16-cluster p.d.f. modelis
adopted with the cluster means being the correct symbol pointsfsql; 1 � q; l � 4g. This cluster model is divided into 4 sub-
models, one for each quadrant. If the equaliser output is in a
particular quadrant, the corresponding 4-cluster sub-model is
used to adapt the equaliser weights via the gradient algorithm
(21). As the adaptation at this stage is done correctly with high
probability owing to the clustering of the previous stage, the
overall equalisation objective can be achieved faster and more
reliably.

TABLE II

A 22-TAP TELEPHONE CHANNEL IMPULSE RESPONSE FROM[11].

Tap Re Im Tap Re Im
0 0.0145 -0.0006 11 0.0294 -0.0049
1 0.0750 0.0176 12 -0.0181 0.0032
2 0.3951 0.0033 13 0.0091 0.0003
3 0.7491 -0.1718 14 -0.0038 -0.0023
4 0.1951 0.0972 15 0.0019 0.0027
5 -0.2856 0.1896 16 -0.0018 -0.0014
6 0.0575 -0.2096 17 0.0006 0.0003
7 0.0655 0.1139 18 0.0005 0.0000
8 -0.0825 -0.0424 19 -0.0008 -0.0001
9 0.0623 0.0085 20 0.0000 -0.0002
10 -0.0438 0.0034 21 0.0001 0.0006
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Fig. 1. Comparison of convergence performance in terms of (a) estimated
MSE and (b) MD measure.

In general, theM -QAM equalisation, whereM = 22L, can
be achieved using theL-stage process. Because the sub-task of
each stage can be accomplished easily and reliably, the overall
convergence of the equaliser is achieved faster and more reli-
ably. The soft-decision directed nature of this bootstrap MAP
means that a much large adaptive gain can be used, which oth-
erwise would cause the CMA to diverge. The choice of� for
each adaptation stage should ensure a proper separation of the
clusters. If the value of� is too large, a desired degree of sep-
aration among the clusters may not be achieved. On the other
hand, if a too small� is used, the algorithm attempts to impose
a very tight control in the size of clusters and may fail to do so.

Let wopt be the solution of the adaptive equaliser based
on the criterion (19) that yields the correct signal constella-
tion. Then the weight vectors which produce the same function
value as��(wopt) are given byws = exp(j�)wopt; � = 0; �2 ; �; 3�2 : (23)

Since the equaliser weights are adapted using a 4-cluster sub-
model at each sample via the gradient algorithm (21), the com-
plexity is always compatible to the minimum complexity of the
4-QAM case, and is listed in Table I.

III. S IMULATION STUDY

Two performance criteria were used to assess the conver-
gence rate of a blind equaliser. The first one was an estimated
MSE at each adaptation sample based on a block ofNMSE data



-4

-2

0

2

4

-4 -2 0 2 4

Im

Re

(a)

-4

-2

0

2

4

-4 -2 0 2 4

Im

Re

(b)

-4

-2

0

2

4

-4 -2 0 2 4

Im

Re

(c)

Fig. 2. Equaliser output signal constellations after convergence (a) the CMA,
(b) the CMA+DD, and (c) bootstrap MAP.

samples. The second one was the maximum distortion (MD)
measure defined byMD = Pn
�1i=0 jfij � jfimax jjfimax j (24)

whereffign
�1i=0 was the combined impulse response of the
channel and equaliser,n
 = n + m � 1 was the length of
the combined impulse response, andfimax = maxffi; 0 � i � n
 � 1g: (25)

The equaliser output signal constellation after convergence
was also shown usingNtest = 6000 testing data samples.

The CIR, listed in Table II, was a 22-tap channel taken from
[11] and the transmitted data symbols were 16-QAM. With a
noise power of�2e = 0:01, the channel signal to noise ratio
(SNR) was 27 dB. The equaliser had 23 taps and the length of
data samples for estimating the MSE wasNMSE = 250. The

CMA had to choose a small adaptive gain of� = 0:00001 to
avoid divergence, and the two adaptive gains of the concurrent
CMA+DD equaliser were�
 = 0:00001 and�d = 0:0001.
For the bootstrap MAP equaliser, 2000 samples were used in
the first stage with� = 0:002 and� = 1:8, while in the sec-
ond stage the adaptive gain was� = 0:002 with the cluster
width � = 0:7. The convergence performance of the three
blind equalisers, in terms of the estimated MSE and MD mea-
sure, are depicted in Fig. 1. Both the concurrent CMA+DD
and bootstrap MAP equalisers have similar steady state perfor-
mance which are dramatical improvements over those of the
CMA. For this example the bootstrap MAP equaliser has the
fastest convergence speed. The three equaliser output signal
constellations are shown in Fig. 2.

IV. CONCLUSIONS

Two novel blind FIR equalisers for high-order QAM sig-
nalling, the concurrent CMA+DD and bootstrap MAP, have
been compared, with the popular CMA as a benchmark. These
two blind equalisers are attractive as they have low com-
putational requirements that are only slightly more than the
simple CMA. Simulation study has confirmed that these two
blind equalisers outperform the CMA significantly. The re-
sults have also demonstrated that the bootstrap MAP equaliser
has a faster convergence rate than the concurrent CMA+DD
equaliser for the channel simulated.
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