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Abstract

Automated negotiation is a key form of interaction in systems that are composed of multiple
autonomous agents. The aim of such interactions is to reach agreements through an iterative process
of making offers. The content of such proposals are, however, a function of the strategy of the agents.
Here we present a strategy called the trade-off strategy where multiple negotiation decision variables
are traded-off against one another (e.g., paying a higher price in order to obtain an earlier delivery
date or waiting longer in order to obtain a higher quality service). Such a strategy is commonly
known to increase the social welfare of agents. Yet, to date, most computational work in this area has
ignored the issue of trade-offs, instead aiming to increase social welfare through mechanism design.
The aim of this paper is to develop a heuristic computational model of the trade-off strategy and show
that it can lead to an increased social welfare of the system. A novel linear algorithm is presented that
enables software agents to make trade-offs for multi-dimensional goods for the problem of distributed
resource allocation. Our algorithm is motivated by a number of real-world negotiation applications
that we have developed and can operate in the presence of varying degrees of uncertainty. Moreover,
we show that on average the total time used by the algorithm is linearly proportional to the number
of negotiation issues under consideration. This formal analysis is complemented by an empirical
evaluation that highlights the operational effectiveness of the algorithm in a range of negotiation
scenarios. The algorithm itself operates by using the notion of fuzzy similarity to approximate the
preference structure of the other negotiator and then uses a hill-climbing technique to explore the
space of possible trade-offs for the one that is most likely to be acceptable.
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1. Introduction

Automated negotiation is a key form of interaction in systems composed of multiple
autonomous agents. It is so important because the agents are autonomous (that is, they
decide for themselves what actions they should perform, at what time, and under what
terms and conditions [20]) and can have conflicting preferences over state of the world.
Given the facts that such agents have no direct control over one another and there are
often interdependencies between their actions, conflicts need to be resolved by the process
of making proposals and/or trading offers, with the aim of finding a mutually acceptable
agreement. In short, by negotiating. More specifically, we view negotiation as a bargaining
process by which a joint decision is made by two parties. The parties first verbalise
contradictory demands and then move towards agreements.

The prevalence and importance of automated negotiation can be seen in the large
number of proposed models [8,18]: ranging from auctions in which the agents’ pricing
decision problem is solved through showing the dominance of a truthful bidding
strategy [57], to models in which the agents’ argue for positions and aim to persuade
their opponents of the value of particular actions [37]. In this work we are interested in
conflicting preferences over complex multi-dimensional decision problems involved in the
bi-lateral resource allocation negotiation of services [50]. In such duopolistic negotiations,
one producer and one consumer have to bargain and come to a mutually acceptable
agreement over the terms and conditions under which the producer will execute some
activity (service) for the consumer.1 Specific decision variables that typically need to be
mutually agreed include the price of the service, the time at which it is required, the quality
of the delivered service, and the penalty to be paid for reneging upon the agreement.

The generative model of bargaining presented here shares with other mechanism design
models the explicit design of protocols whose execution is a function of the agent’s
strategy [3]. A protocol is a set of “rules of encounter” [43] between the negotiation
participants; that is, who can say what, to whom, at what time. Given a protocol, an
agent strategy then defines the model that the individual participants apply to act in line
with the protocol in order to achieve their negotiation objectives. However, the goals
motivating the design of the protocol and strategy in this work are different from those
of classic mechanism design. The latter are more interested in solving the strategic mis-
representation problem that occurs whenever agents have an incentive to mis-represent
their true preferences in order to maximise their own utility. A mechanism design solution
to this problem consists of centrally designing direct incentive compatible or strategy proof
decision rules that have certain properties [29,43]. Although we acknowledge strategic
misrepresentation is a concern in multi-agent systems, we are also interested in the types of

1 It is now common practice for organisations to view their function in terms of the services that they provide
to their various stakeholders. Thus, a service-oriented view, and by extension service-oriented negotiation, should
be seen as covering a wide spectrum of possibilities.
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decision problems that are not only highly complex in dimensionality (rather than simply
dividing the cake) but that also place bounding limits on the performance of the agent
by the virtue of their complexity. Indeed, the combination of these two factors can lead
to sub-optimal decisions, thereby threatening classic solution concepts from mechanism
design [8]. Therefore, we make the implicit assumption that social agreements to complex
problems are achieved through an iterative and indirect fashion similar to real world
bargaining where ill informed players interact and communicate to reach a social choice.
These protocol and agent assumptions were necessary in order to design a negotiation
system for the types of real world problems we have been involved in: business process
management [19], telecommunications network management [9], and e-commerce [35,42].
These assumptions are as follows. Firstly, agents have only limited information about their
negotiation opponent. Although a mechanism can theoretically be designed to incentivise
agents to truthfully reveal their preferences to a central planner, it is assumed that such a
task is highly costly for high dimensionality problem tasks. Instead, we are interested in a
distributed approach where solutions are sought when agents do not know the other player’s
preferences for negotiation outcomes, their reservation values, or their resource constraints.
Secondly, agents are not computationally unbounded. Computation, informally defined as
search, is costly in both time and resources. Thirdly, agents are engaged in a multi-criteria
decision problem modeled as multi-dimensional contracts that include both continuous and
discrete decision variables. Finally, due to the uncertainties in interaction, the complexity
of the computation involved in dealing with multi-dimensional goods, and the presence
of boundedness, the depth of the game tree is implicitly managed by assuming a finite
horizon of interactions. These interactions also follow the rules of an alternating sequential
protocol in which the agents take turns to make offers and counter offers [45]. The protocol
terminates when the agents come to an agreement or when one of them withdraws from
the negotiation.

One implication of the above assumptions is that it is not possible to pre-compute an
optimal negotiation strategy at design time. Rather the agents need to adopt a heuristic and
satisfying approach for their strategy [8,23]. This is in contrast with deductive models of
negotiation where each agent explicitly represents and reasons with the decision tree of
the entire game [15,30]. In this case, a negotiation strategy is then the specification (using
for example backward induction [2]) of a sequence of choices for every decision node in
the game tree, with the property that both the final choices and the complete sequence
(sub-game) of choices are often in equilibrium [45]. However, because representation and
reasoning under such a system can be computationally intractable [23,25,36] we have been
involved in developing approximating decision models for a more limited type of agent
that has no explicit representation of the entire game tree. Then, rather than computing
the best response given knowledge of the end tree, an agent uses the information gained
sequentially in interactions to heuristically form a prediction of the future based on the
history of the interaction so far. Decision making in an intelligent negotiating agent can be
supported by any number of heuristics that assist it in searching for potential deals. In the
decision model presented in this paper the reasoning process of an agent at each sequence
of the negotiation is characterised as meta deliberation over the execution of either a
concessionary or a trade-off mechanism or both. The former mechanism models iterative
concession over the score of a contract based on environmental factors such as the time
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remaining until the deadline, the amount of resources consumed in the negotiation, and the
behaviour of the negotiation opponent (for this reason this is called a responsive mechanism
since agents react to their prevailing environmental context [12]). This exchange of offers
and counter-offers continues until a crossover occurs between the demands of the two
agents or one of the agents withdraws. Conversely, reasoning in the trade-off mechanism
(described fully below) is characterised by a heuristic function that maps the current
demand and the previous offer to a new offer.

In this case, however, such meta decisions are taken not over the whole game tree
structure, but rather at each decision node of the decision tree that represents only the
agent’s local optimization problem and not the joint optimisation problem of the dyad.
Given this, the goal of this paper is to demonstrate the value of incorporating one heuristic,
the similarity heuristic, in the trade-off decision mechanism for a given set of conditions.
Additionally, since the strategy of the agent is not under the control of the system designer,
we would like to show that rational agents are motivated to implement such a heuristic
when faced with uncertainty about their opponents’ utility function. However, at the same
time we note that the computational and representational simplicity of a heuristic approach
is traded-off against our inability to predict or specify equilibrium strategies, since agents
do not explicitly represent and reason about the choices of the other agent. Furthermore,
since heuristics can fail we are forced to accept the possibility of failing to find better
decision nodes with higher objective values.

However, although multi-dimensional decision problems introduce additional compu-
tational complexities, they nonetheless present inherent opportunities for increasing the
social welfare of the deal through trading off between decision variables. This opportunity
has been the motivating factor for developing the heuristic model presented in this paper.
In our previous work we reported on a concessionary strategic mechanism for assigning
values to decision nodes [12]. However, this responsive mechanism fails to explore the
space of potentially jointly better solution nodes because it cannot explore different pos-
sible value combinations for the local negotiation decision variable. Thus, for example, a
contract in which the service consumer offers to pay a higher price for a service if it is
delivered sooner, may be of equal value to the consumer as one that has a lower price and
is delivered later. However from the service provider’s point of view, the former may be
acceptable and the latter may not. The original model does not allow the agents to explore
for such possibilities because it treats each decision variable independently and only al-
lows agents to concede on decision variables (thus producing a contract of lower value to
themselves).

To overcome this limitation and to increase the efficiency of deals, agents need the
ability to make trade-offs between negotiation decision variables. Intuitively, a trade-off is
where one party lowers its value on some negotiation decision variables and simultaneously
demands more on others. Thus, an agent may accept a service of lower quality if it is
cheaper or a longer deadline if it receives a higher quality. Such movements are intended to
generate an offer that, although of the same value to the proposer, may be of greater benefit
to the negotiation opponent. This, in turn, should make agreement more likely and increase
the overall joint gains [41] between the two agents. The particular heuristic we consider in
this paper is based on the degree of similarity between two consecutive choices.
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The contribution of this work is twofold. Firstly, current models of automated
negotiation have largely ignored the problem of multi-issue negotiation and the additional
possibility and challenging problems of making trade-offs between decision variables We
aim to rectify this omission in Section 3. Secondly, we present a novel linear algorithm
that enables agents to make trade-offs between both discrete and continuous negotiation
decision variables, in the presence of information uncertainty and resource boundedness
for multi-dimensional goods. The algorithm itself operates by using the notion of fuzzy
similarity [64] to approximate the preference structure of the negotiation opponent and
then uses a hill-climbing technique to explore the space of possible trade-offs for the one
that is most likely to be acceptable. Although the domain of applicability of the algorithm
is currently restricted to linear problems, the abstract underlying similarity model itself
supports a component of the overall negotiation algorithm and can be used by any
negotiating agent. Moreover, this algorithm has been analysed theoretically (to determine
its complexity) and evaluated empirically (to ascertain its operational performance).

The remainder of the paper is structured as follows. Section 2 investigates the space
of negotiation outcomes and outlines where and why trade-offs are possible. Section 3
presents our algorithm for making trade-offs in service-oriented negotiations. Section 4
provides an empirical evaluation of our trade-off mechanism in a range of negotiation
scenarios. Section 5 compares our approach to previous work in this area. Finally, Section 6
outlines our conclusions and our plans for future work.

2. The rationale for making trade-offs

This section analyses the range of outcomes that can occur when two agents negotiate
with one another. It does so in order to identify why and where trade-offs are possible. In
this work, it is assumed that the agents (a and b) have to negotiate a multi-dimensional
contract o ∈ O , where O is the set of possible contracts. Fig. 1(A) shows a simplified
two decision variable version of the problem as an Edgeworth box. For the purpose of
exposition, a single contract clause (decision variable) is taken to represent a commodity
and (re)assignment of a value to a decision variable as its (re)allocation. Thus, in this
figure two agents a and b have to reach a contract over the allocation of two commodities
(1 and 2). Furthermore, each agent is assumed to have an initial endowment of both
commodities (has made an initial choice over the pair of contract decision variables
before negotiation). The initial endowment of a and b is given by wa = (wa

1 ,w
a
2 ) and

wb = (wb
1,w

b
2) respectively and is shown in Fig. 1(A) as the point (wa
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a
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b
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b
2).

The dimensions of an Edgeworth box represent the quantities available of the good. No
allocation of either good to a or b is represented by Oa and Ob respectively. The general
question is then, what allocation of total units of good 1 and good 2 are feasible? In other
words, what decisions over the total ranges of all decision variables are feasible? If an
allocation to agent a and b over commodities 1 and 2 is given by (xa1 , x

a
2 ) and (xb1 , x

b
2 )

respectively, then an allocation is feasible iff xa1 + xb1 �wa
1 +wb

1 and xa2 + xb2 �wa
2 +wb

2 .
That is, all points in the box, including the boundary, represent a feasible allocation
of the combined endowments. However, some allocations will be blocked by one/both
agents while others make both agents better. This is because of the agents’ preferences.
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Fig. 1. (A) Edgeworth box representing the decision outcome space for a pair (a and b) of negotiating agents.
(B) Utility outcome space for a pair (a and b) of negotiating agents.

These are shown by the convex indifference preference curves (or iso-curves) of the two
agents in Fig. 1(A), where each curve represents the indifference an agent has over the
increasing/decreasing utility of one commodity versus the simultaneous decrease/increase
in utility of the other commodity. Allocations along the Oa–Ob and conversely Ob–Oa

axis are associated with an increasing value for agent a and b respectively.
Given the above, a feasible allocation can be blocked by an agent when an allocation

that increases the utility of one decreases the utility of the other. However, the welfare of
both agents is increased at the point where the convex indifference curves of each agent
intersect. A hypothetical set of such points is shown in Fig. 1(A) as solid black ovals.
These allocations are said to be Pareto-optimal over the endowment allocation (a formal
definition is given below). Pareto-optimality implies that if agents have an option to opt out
of negotiation then the only possible allocations need to be Pareto improving allocations.
However, since there are a number of Pareto-optimal contracts given the endowment,
the question remains which will be the one selected. One solution to this indeterminacy
problem is to treat the problem as a bargaining problem in a perfectly competitive market
where utility maximising agents trade commodities for given announced prices. Prices are
then iteratively lowered or increased with excess supply or excess demand respectively,
until the market clears at a general equilibrium [5,39]. The First Fundamental Theorem of
Welfare Economics then states that given consumers’ preferences are well behaved, trading
in perfectly competitive markets implements a Pareto-optimal allocation of the economy’s
endowment.

Solutions to this indeterminacy problem have also been attempted in a more axiomatic
fashion from game theory where a single solution is selected that satisfies a set of axioms.
To show this, the bargaining problem of Fig. 1(A) is mapped from the decision variable
space to the utility space representation of Fig. 1(B) using a utility function Ui :O →
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[0,1], i ∈ {a, b}.2 In this figure, utopia corresponds to the situation where both agents
obtain their highest aspirational level. If the agents fail to reach any deal, they each receive
a conflict payoff. The set of possible outcomes, including utopia (payoffs (1,1)) and the
conflict point c (payoffs (0,0)), are shown in Fig. 1(B). The feasible set of outcomes is
denoted by B in Fig. 1(B) which contains those agreements that are individually rational
and is bounded by the Pareto-optimal line. An agreement is individually rational if it
assigns each agent a utility that is at least as large as the agent can guarantee for itself
from the conflict outcome xc. Pareto-optimality is defined for a bargaining game (B,xc)
in the following manner [6]. Suppose there are two outcomes x and y such that they both
belong to the feasible set, x,y ∈ B . If Ui(y) � Ui(x), for both a and b, but y is strictly
preferred for at least one agent, Ui(y) > Ui(x), for i ∈ {a, b}, then the outcome x is not
Pareto-optimal. This is formally represented as a function that given the game defined by
the pair B and xc does not select x—i.e., f (B,xc) 
= x.

Cooperative (or axiomatic) game theory aims to specify axioms that lead to the selection
of a single point on the Pareto-optimal line as the most desirable solution for a given
negotiation. The Nash bargaining solution is the most popular such solution that selects an
individual outcome from the Pareto-set (hence it is efficient) that is also the most equitable
outcome. The Nash solution is defined as the point that maximises the product of the
utilities (Uaj −Uac)(Ubj − Ubc), where Uij is the utility to player i for settlement j and
Uic is player i’s conflict outcome utility [30]. One interpretation of the Nash bargaining
solution is that agents are motivated by equity or proportional cooperation [27]. Another
solution concept is the Kalai–Smorodinsky [21] which modifies one of Nash’s axioms
(independence to irrelevant alternatives to individual monotonicity) and is interpreted
as endogenously providing more weighting to the “needier” player [27]. However, such
axiomatic models are inappropriate for computational purposes because they specify the
solution properties and leave the process of how to reach these points unspecified.3 Thus,
there are no guidelines for automating the process of how to actually reach these outcomes.
Nonetheless, for evaluation purposes we use the focal or reference point [41] (see below
for the computational argument why the Nash bargaining solution, and by implication the
Kalai–Smorodinsky, is not chosen). This solution point has been extended to an axiomatic
reference outcome solution proposed by [16]. The focal point is often interpreted as a
prominent outcome that replaces the conflict outcome and is often expected to have an
important bearing on the outcome of negotiation. For example, in multi-issue negotiations
the middle point on each issue often becomes the focal point [40] and the negotiators then
try together to find other agreements that are better for both. In Section 4.3 we use the
axiomatic extension of the reference point as the point that is Pareto-optimal and lies on

2 Such a perfect curvilinear shape is only obtained under the assumptions that the utility functions of the
agents are perfectly concave and differentiable.

3 As will be mentioned later, non-cooperative models, notably the alternating sequential model of Rubinstein
[46], do model the selection of the outcome as a process of negotiation, rather than selection of an outcome
that satisfies some desirable property. Indeed, under some strict contexts, non-cooperative models implement the
Nash bargaining solution when agents’ strategies are in equilibrium. However, although we acknowledge the
importance of this body of work, we do not claim deductive and rational equilibrium reasoning by our agents for
the reasons given above. We note that equilibria can be attained by myopic agents if we adopt a “mass action”
[32] or “evolutive” [2] interpretation of equilibria.
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Fig. 2. Outcome space for a pair of negotiating agents: (A) single decision variable and (B) multiple decision
variables.

the line connecting the reference and utopia points (in fact when the reference point is
the conflict point then this solution is identical to Kalai–Smorodinsky’s solution point).
The reference outcome is simply computed as the mid point of each decision variable.
This axiomatic solution has been shown to be particularly appropriate for logrolling in
integrative multi-issue negotiations [16].4 Therefore, the property of the solution we seek
to optimise is the distance of an outcome to the point lying on the Pareto-optimal line and
connecting the reference point with utopia.

For us, it is this multi-dimensionality of decision problems that permit increasing the
social welfare through agents actively searching and communicating nodes of the tree of
decision trade-offs. This is in contrast to negotiation over a single decision variable (inte-
grative vs. distributed negotiation respectively, [41], Figs. 2(A) and (B). In such situations,
the opposing nature of service producers and consumers means that the agents’ payoffs
are perfectly negatively correlated. Thus an outcome that increases the score of one agent
decreases the value of the other. Here all the possible outcomes lie on the Pareto-optimal
line. Furthermore, assuming linear conflicting value functions for the negotiation partic-
ipants, the sum of each outcome is 1 (i.e., it is a zero-sum game [13]). In this scenario,
the Nash bargaining solution is easily computed as the mid point (and most equitable) of
both agents’ value function (i.e., at (0.5,0.5)). Given the single decision variable nature
of the negotiation, decision variable trade-offs are naturally not possible. More generally,
however, the same arguments also hold for multi-dimensional goods in zero-sum games.

However the games considered in this work are not zero-sum because we can assume
that the agents attach different levels of importance to the various negotiation decision
variables. Thus, for example, one agent may be most concerned with the price of a service,

4 The importance of the reference point has also been corroborated empirically [44].
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while its opponent may be most concerned with the time by which the service can be
delivered. Due to the fact that there are multiple decision variables, each of which has
a different importance level, the negotiation outcomes are transformed to a non-constant
sum game (where the sum of the utility values along the dimensions of an outcome do
not necessarily add up to 1). It is this transformation that opens up the possibility of
agents making trade-offs. That is, it is possible to find agreements in which some decision
variables are increased in value and others are decreased and overall this will benefit one
or both of the negotiation participants simultaneously. In this case, the Pareto-optimal line
is shown in Fig. 2(B). Now the only points on this line where the sums of the individual
values add to 1 is at the point of connection with the x and y axis. Different points along the
line then do not necessarily sum to 1 and do not necessarily have the same addition. More
importantly, however, it is now possible for negotiation outcomes to lie below the Pareto-
optimal line (i.e., towards (0,0)) because agents attach different importance weightings
to the various decision variables. Consequently, there is scope in the negotiation process
to find agreements that are closer to the Pareto-optimal line, meaning that one or even
both of the agents can be better off. This contrasts with the distributive bargaining case
where the negotiation outcome has to be on the Pareto-optimal line (meaning there is no
scope for improving one score without decreasing the score of the negotiation opponent).
Furthermore, the Nash bargaining solution is no longer at (0.5,0.5), because the Pareto-
optimal line has moved from the constant sum line. However (0.5,0.5) can now be viewed
as a reference outcome since it represents the point at which both agents obtain precisely
half their aspirational level.

Having defined the outcome landscape and identified the possibility for trade-offs, the
next step is to determine how to actually compute such trade-offs. If the agents knew
their opponent’s preferences and their relative importance weightings, then they could
compute solutions that lie on the Pareto-optimal line. The regular Nash bargaining solution
in fact implements this shared knowledge assumption. However, the Nash bargaining
solution is inadequate in cases of multiple decision variables because its computation
becomes intractable in the presence of multiple decision variable reservation values and
weights. The maximization problem then becomes maximization of a quadratic function
with restrictions (the reservation values of a decision variable), where the solution to
the quadratic function may violate the restrictions. It is a quadratic problem because the
individual utilities of agents are linear:5

max

(∑
i

wi
aU

i
a(o)

)(∑
i

wi
bU

i
b(o)

)
.

However in most realistic situations, this information is simply not available (as
discussed in Section 1). This means agents need a means of approximating the preferences
of their opponent based upon their observable negotiation behaviour. This approximation
can then be used to select the outcomes that are closer to, or ideally on, the Pareto-optimal

5 Numeric methods, such as active sets, can handle such problems [26]. However, with this method as the
number of decision variables increases then so does the complexity of the computation involved in solving
the quadratic problem. Therefore, active sets become unlikely candidates for computing the Nash solution for
bargaining problems involving a large number of decision variables.
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line. The desired final outcome in the feasible set often depends on the agent’s social
objectives/goals. These may be to maximise the joint gains of the agents (if they are both
from the same organisation) or they may be to increase the value of the agreement to the
opponent while keeping their own return constant (if the aim is to find the contract that is
most likely to be accepted).

Attempting to approximate the preference structure of an agent based upon its
negotiation behaviour is difficult. The most common means of doing this is to construct
an explicit model of the negotiation opponent and then update and refine this model in
the light of subsequent interactions (e.g., [2,14]). However, such models are difficult and
computationally demanding to construct (especially for multi-dimensional goods), they are
not well suited to situations where an agent negotiates with many opponents (one model is
needed per opponent), and they require numerous negotiation encounters before any great
confidence can be placed on their fidelity (see Section 5 for more details). An alternative
approach is not to directly model the likely choice of the negotiation opponent, but rather,
to try and generate a contract that is reasonably “similar” or “close” to the opponent’s
last proposal. This is a reasonable heuristic because the opponent’s most recent proposal
represents an outcome that is acceptable to it. Thus a proposal that is not dissimilar, also
has a reasonable chance of being acceptable. In this case, the heuristic is modeling the
domain and not the other agent. The agent can then use this domain model to induce
the possible default preferences of the other. For example, if the seller has demanded a
payment of £20 for a service then a client of the service can heuristically assume that
the seller will prefer an offer of £18 to £10 because the former is closer, or more similar,
than the latter to the seller’s initial demand. Note also that the final outcome reached is
a function of the initial and subsequent offer strategy. Thus, a seller starting at an offer
of £40 should be better off. We briefly evaluate the effect of different offer strategies
on the outcome of games empirically in Section 4. The computational simplicity and
parsimonious usage of agent models in this similarity-based approach are demonstrated in
the following sections. Moreover, similarity can be applied to encounters between agents
that have never previously interacted.6 For these reasons, we use similarity as the basis for
computing trade-offs in our algorithm.

3. Making trade-offs

This section presents a formal model of our trade-off mechanism (Section 3.1),
details the algorithm for actually making trade-offs (Section 3.2) and illustrates its use
(Section 3.3). Firstly, however, we outline the basics of our service-oriented negotiation
model (refer to [12] for more details). Let i (i ∈ {a, b}) represent the negotiating agents and
j (j ∈ {1, . . . , n}) be the decision variables under negotiation. Negotiations can range over
quantitative (e.g., price, delivery time, and penalty) or qualitative (e.g., quality of service)
decision variables. Quantitative decision variables are defined over a real domain (i.e., xij ∈

6 The similarity heuristic can be more efficient if more information about the negotiation opponent is available.
Thus if the agent does have some information about its opponent’s preferences, this will improve the trade-offs
that are generated.
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Di
j = [minij ,maxij ]). Qualitative decision variables are defined over a partially ordered set

(i.e., xij ∈ Di
j = {q1, q2, . . . , qp}). Each agent has a scoring function V i

j :Di
j → [0,1] that

gives the score it assigns to a value of decision variable j in the range of its acceptable
values. For convenience, scores are kept in the interval [0,1]. The relative importance that
an agent assigns to each decision variable under negotiation is modeled as a weight, wi

j ,
that gives the importance of decision variable j for agent i . We assume the weights of both
agents are normalized, i.e.,

∑
1�j�n w

i
j = 1, for all i ∈ {a, b}. An agent’s scoring function

for a contract—that is, for a value x = (x1, . . . , xn) in the multi-dimensional space defined
by the decision variables’ value ranges is then defined as: V i(x)= ∑

1�j�n w
i
j · V i

j (xj ).
7

We assume both parties have a deadline by when they must complete the negotiation.
This time can be different for each agent and if its deadline passes the agent withdraws
from the negotiation (taking the conflict outcome). An agent accepts a proposal when the
value of the offered contract is higher than the offer it is ready to send out at that moment
in time.

3.1. A formal model

In choosing to make a trade-off negotiation action an agent is seeking to find a contract
that has the same score as its previous proposal for itself, but which may be more acceptable
to (have higher score for) its negotiation opponent. However, the key problem here is how
to select a contract that is likely to increase the score of the opponent, given that the agent
does not know its preferences. To make trade-offs under these circumstances, an agent (call
this a) in negotiation with another agent (call this b) must be provided with a mechanism
to:

(1) select a set of contracts all of which have the same utility as a’s previous offer x (this
is called a’s aspirational level);

(2) select from this set, a contract (x′) that agent a believes is more preferable to b than x.
Ideally, a would like to choose the one that is most preferred by b since this maximises
the chances of it being accepted.

That is, agent a believes that V b(x′) > V b(x). By construction, the constraint V a(x) =
V a(x′) has to be true. Thus, it follows that agent a believes that V a(x′) + V b(x′) >
V a(x)+ V b(x) and therefore believes that x′ increases the joint utility of the proposal.

The first problem to address in this section is how to model the agent’s uncertain
belief in the second step of the mechanism’s operation. A classic solution for handling
such uncertainties is to assume agents have means to compute conditional probabilities
and formulate subjective expected utilities. However this approach is problematic. Firstly,
assigning prior probabilities is practically impossible for the types of problems addressed
here (where there can be an infinitely large set of outcomes and the outcome set itself can

7 For analytical purposes we restrict ourselves to an additive and monotonically increasing or decreasing
value scoring system. Note that the heuristic trade-off model presented here is independent of the way utilities are
computed. The only requirement of the model is that there exists a (linear or non-linear) utility function. However,
the hill-climbing algorithm presented in this paper assumes agents have linear utility functions.
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change dynamically in the course of the negotiation). Even if assigning prior probabilities
was practically achievable for interactions that are repeated (hence permitting the use of
probability update mechanisms such as Bayes rule [47]), the same is not true for encounters
in open systems. In such environments the prior probabilities may simply be wrong, a
fact that is exacerbated by the one-off nature of encounters which prevents the update of
prior distributions. Secondly, the formulation of decisions based on subjective expected
utility introduces the silent out-guessing problem [63]—the agent designer’s choice of
probabilities is based on guesses about the probable choices of others, whose choice in
turn is dependent on the guesses about the probable choices of the first, and so on.

To circumvent these difficulties a solution was sought that is simple and applicable
to the types of problems that are present in both closed and open systems. As discussed
previously, the heuristic employed here is not to directly model the likely choice of the
other agent, but, rather, to select the contract that is most “similar” or “close” to the
opponent’s last proposal (since this may be more acceptable to the opponent).

The rationale for similarity-based reasoning is demonstrated by the following service
selling scenario. The service provider’s main negotiation objective is to sell the service.
How good and how successful a service is can only be known a posteriori, once its
acceptance in the marketplace can be evaluated. A common way of approximating this
acceptance is to perform a poll that allows the market participants’ preferences to be
elucidated. However this is difficult in areas where the number of opponents is small
and each is selfishly motivated to alter their answers in order to influence the service’s
evaluation. Therefore, statistical inference may lead us to the wrong conclusions. To
circumvent this, we need an a priori valuation of the service in order to drive the negotiation
process. The classical way of doing this is to organise the service’s valuation around
a set of characteristics that determine its differentiation from competing services. These
characteristics then become the cause of the consumer’s satisfaction. However, valuations
based on a service’s characteristics are in essence subjective, they can be wrong, the service
may, in the end, not be satisfactory to the market. With this background, our research
philosophy for modeling a priori valuations can be stated as: similar services should be
indifferent to customers. Moreover, the greater the degree of similarity, the more likely
there is to be indifference. This is also consistent with Hume’s stance: “from causes
which appear similar we expect similar effects. That is the sum of all our experimental
conclusions”. In a sense, if we accept that the a priori valuation of a good must be grounded
on its characteristics, we have to accept that goods considered as similar in the light of
these characteristics must receive similar valuations. Note that here the similarity function
is being used to induce a utility structure (in terms of indifference structures [3]), the more
similar an object the more indifferent the valuation.

The particular means of computing similarity that we adopted here is that of fuzzy
similarity [64]. This shift in emphasis from the probable choices of others to the closeness
of two contracts means that any theory that makes the same ontological commitments as
classical logic and probability theory (where facts are either true or not and probabilities
represent the degree of belief ) is inappropriate. Thus, when modeling concepts such
as closeness, tallness or heaviness a different logic is required that models the degree
of truth—a sentence is “sort of” true. Most people would hesitate to say whether the
sentence “Jeni is tall” is true or not, but would more likely say “sort of”. Note, this is
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not an uncertainty about the external world (we are sure how tall Jeni is), rather it is
a statement about the vagueness or uncertainty over the linguistic term “tallness” or the
similarity/membership of a class prototype. However, an important point to note is that the
use of fuzzy similarity and probabilities are not exclusive. Indeed, the agent can use fuzzy
similarities to guess the prior probabilities of the other’s choices and then update these prior
probabilities in the course of interactions using Bayes rule. Thus, fuzzy similarity can be
used to “bootstrap” decision mechanisms that operate on the basis of choice distributions.

We first introduce the basic concepts of fuzzy similarity and in the next section detail
their usage to model trade-offs. The first thing to model is how to compute similarity along
a dimension of the negotiation space (i.e., the similarity for a particular decision variable).
A graded (or fuzzy) similarity relation can be seen as a generalization of an equivalence
relation and it is also closely related to the mathematical notion of distance. Indeed, from
the perspective of the fuzzy set literature, a fuzzy similarity relation on a set D is a binary
function Sim :D ×D → [0,1] satisfying the three following properties:

(i) reflexivity: ∀xj ∈ D, Sim(xj , xj )= 1,
(ii) symmetry: ∀xj , yj ∈D, Sim(xj , yj )= Sim(yj , xj ), and

(iii) t-norm transitivity: ∀xj , yj , zj ∈ D, if Sim(xj , yj ) = a and Sim(yj , zj ) = b then
Sim(xj , zj )� T (a, b), where T is a t-norm.8

Notice that if Sim is a similarity function in the above sense, d = 1 − Sim has the
properties of a distance-like function. In particular, for T (u, v) = max(0, u + v − 1)
(Lukasiewicz t-norm) property (iii) is nothing but the usual triangular inequality and
d becomes a pseudo-metric, while for T = min, d becomes an ultra-metric (it verifies
d(x, y)� max(d(x, z), d(z, y))).

In this work, the method of building similarity functions is to define, for a given decision
variable, criteria evaluation functions. That is, functions that determine how much, in
the scale [0,1], a given element matches the criteria. For instance, in the domain of
colours, a criteria evaluation function could be temperature that operates by returning
a higher value for increasingly warm colours. Thus, given a criteria evaluation function
h :D → [0,1], a natural way to define a similarity function induced by h is to define
Simh(x, y) = h(x) ↔ h(y), where ↔ is a fuzzy equivalence operator, somehow related
to the t-norm T to guarantee property (iii). For instance, for T (u, v) = max(0, u+ v − 1),
we define h(x)↔ h(y)= 1 − |h(x)− h(y)|, and for T = min, we define h(x)↔ h(y)= 1
if h(x)= h(y), and h(x)↔ h(y)= min(h(x),h(y)) otherwise.

Now, if we need to define not one, but a set of criteria functions hi :D → [0,1] the
question is how can we aggregate the individual similarities Simhi to come up with a global
similarity relation that takes into account all the given criteria? Following the results from
[56], such a similarity function can always be defined as the minimum of appropriate fuzzy
equivalence relations induced by a set of m � 1 criteria functions hi :D → [0,1]. That is,
the similarity between two values for decision variable j , Simj (xj , yj ), could be defined

8 A triangular norm, t-norm for short, is a binary, commutative, associative, non-decreasing operation in [0,1]
with 1 as a neutral element. t-norms play a central role in fuzzy set theory in modeling intersection operations on
fuzzy sets [38].
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as Simj (xj , yj ) = min1�i�m(hi(xj ) ↔ hi(yj )). This definition, although providing a
procedure to build a similarity relation from a set of criteria functions, has a very counter
intuitive interpretation. If, for example, we had ten criteria functions and that for a concrete
pair of elements nine of them give a high value and one of them gives a very small value,
the similarity of the two elements would be equal to that minimum value. This is too
strict. A better alternative, and the one that will be used in the remainder of this paper,
is to build similarity functions as weighted means. By doing this, we may no longer
guarantee the t-norm transitivity for the global similarity. However properties (i) and
(ii) are the most important in this context and they are sufficient to model the concept
of closeness intended in this paper. Nevertheless, t-norm transitivity is indeed preserved
when the functions Simhi are Lukasiewicz-transitive (i.e., when 1 − Simhi are metrics)
and u ↔ v = 1 − |u− v|. Thus our definition for a similarity is the following:

Definition 1. Given a domain of values Dj , a similarity between two values xj , yj ∈Dj is
defined as

Simj (xj , yj )=
∑

1�i�m

wi · (hi(xj )↔ hi(yj )
)

(1)

where wi ,
∑

1�i�m wi = 1, is a set of appropriate weights representing the importance
of the criteria functions in the computation of similarity, and 1 − |h(xj ) − h(yj )| is the
equivalence operator (as argued before).

These weights model different stances with respect to a particular decision variable. For
instance, when buying a car, young people may give more importance to the luminosity of
a colour because it helps in showing off, while older people may give more importance to
the visibility of a colour as this is correlated with security.

To illustrate the modeling of similarity for a decision variable, consider the example
of colours. Here Dcolours = {yellow, violet,magenta,green, cyan, red, . . .}. To model how
similar two given colours are, different perceptive criteria can be considered. For instance,
there are ‘warm’ colours and ‘cold’ colours. With respect to this criterion, yellow and
orange are more similar than yellow and violet. Related to the ‘warmness’ of colours,
Newton [33] established the proportionality factors between colours that determine what
the size of painted surfaces should be in order to be in perceptual equilibrium. For instance,
yellow has luminosity 9 and violet luminosity 3. This means that if we paint two squares,
one in yellow and one in violet, their surfaces have to be in relation 1 to 3 in order for the
result to be in ‘equilibrium’ (that is, the yellow square must be one third of the size of the
violet square). Another relevant perceptual criterion of colours is their visibility. There are
various physiological characteristics of the human visual field, distribution of cones and
rods, that ensure some colours are better perceived when moving away than others [28].
Green is the colour with the worst visibility and yellow and cyan are those with the best
visibility. Given these three criteria, the colour domain can be modeled in the following
way (functions are presented extensively as sets of pairs (input, output)):

ht = {
(yellow,0.9), (violet,0.1), (magenta,0.1), (green,0.3),

(cyan,0.2), (red,0.7), . . .
}
,
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hl = {
(yellow,0.9), (violet,0.3), (magenta,0.6), (green,0.6),

(cyan,0.4), (red,0.8), . . .
}
,

hv = {
(yellow,1), (violet,0.5), (magenta,0.4), (green,0.1),

(cyan,1), (red,0.2), . . .
}
,

where ht , hl and hv are the criteria functions corresponding to temperature (warm is 1,
cold is 0), luminosity (maximum is 1, minimum 0) and visibility (again maximum is 1 and
minimum 0) respectively. Assume that it is a young person buying the car who has the
following weights for the different criteria: wt = 0.7,wl = 0.2,wv = 0.1. Then, using the
similarity relation as defined above we have:

Simcolour(yellow, red) = wt · (1 − ∣∣ht (yellow)− ht (red)
∣∣)

+wl ·
(
1 − ∣∣hl(yellow)− hl(red)

∣∣)
+wv · (1 − ∣∣hv(yellow)− hv(red)

∣∣)
= 0.7 · 0.8 + 0.2 · 0.9 + 0.1 · 0.9 = 0.83

and similarly, Simcolour(yellow, violet)= 0.7 · 0.2 + 0.2 · 0.4 + 0.1 · 0.5 = 0.27.
Once the notion of similarity for a decision variable has been defined, the similarity

between two contracts is simply defined as a weighted combination of the similarity of the
decision variables:

Definition 2. The similarity between two contracts x and y over the set of decision variables
J is defined as

Sim(x,y)=
∑
j∈J

wa
j · Simj (xj , yj ) (2)

with
∑

j∈J wa
j = 1 and Simj being the similarity function for decision variable j defined

as before.

These weights represent the level of importance the agent believes the opponent places
on the different decision variables. If an agent has no such information, it may assign
equal weights to all decision variables. However if it can deduce the likely priorities of its
opponent, then these weights can be modified to reflect this information.

Given this background, we can now proceed with the details of the trade-off formal
model. An agent will decide to make a trade-off action when it does not wish to decrease
its aspiration level (denoted θ ) for a given service-oriented negotiation (the aspiration level
is the valuation of its last offer x, that is θ = V (x)). Thus, the agent first needs to generate
some/all of the potential contracts for which it receives the score of θ . Technically, it needs
to generate contracts that lie on the iso-value (or indifference) curve for θ [41]. Because
all these potential contracts have the same value for the agent making the trade-off, it is
indifferent amongst them. Given this fact, the aim of the trade-off mechanism is to find
the contract on this line that is most preferable (and hence acceptable) to the negotiation
opponent. More formally, an iso-curve is defined as:
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Definition 3. Given an aspirational scoring value θ , the iso-curve at level θ for agent a is
defined as

isoa(θ)= {
x | V a(x)= θ

}
. (3)

From this set, the agent needs to select the contract that is most similar to agent b’s last
offer. A trade-off is then defined as:

Definition 4. Given an offer, x, from agent a to b, and a subsequent counter offer, y, from
b to a, with θ = V a(x), a trade-off for agent a with respect to y is defined as

trade-offa(x,y)= arg max
z∈isoa(θ)

{
Sim(z,y)

}
. (4)

A linear trade-off algorithm that implements an instance of this generic formal heuristic
model is described next.

3.2. The trade-off algorithm

The trade-off algorithm we consider here is defined over the class of linearly additive
utility functions. We acknowledge that restriction to a linear utility model limits the
applicability of the algorithm. However, we also note that the assumption of linearity is
restricted to the algorithm and not the heuristic model itself. It is perfectly consistent
with the heuristic model to design other trade-off algorithms for other non-linear utility
functions (see [10] for non-linear distributed search algorithms).

This algorithm performs an iterated hill-climbing search in a landscape of possible
contracts. The search starts at the opponent’s offered contract and proceeds by generating
a set of contracts that lie closer to the iso-curve (representing the agent’s aspiration level).
The contract that maximizes the similarity to the opponent’s last offering is selected at
the end of each iteration. The algorithm repeats, starting from the contract selected at the
previous step, until the iso-curve is eventually reached.

The algorithm is shown schematically in Fig. 3. It starts at contract y, the opponent’s last
offer, and moves towards the iso-curve (the solid marked line corresponding to the agent’s
aspiration level θ ) associated with x, the agent’s last offer. This approach to the iso-curve is
performed sequentially in S steps (three in Fig. 3). Each step starts by randomly generating
N contracts (three, one filled and two patterned ovals in Fig. 3) that have a utility E greater
than the contract selected in the last step, yj (or y0 = y if it is the first step), for the agent
making the trade-off. Here N is referred to as the number of children. Each new contract,
yj+1, so generated satisfies the constraint V (yj+1) = V (yj) + E, and they all have the
same utility to the agent making the trade-off (shown as the dotted line connecting all
the children at each step). From the generated child contracts, the one that maximizes the
similarity with respect to the opponent’s contract y is selected (shown as the filled oval in
Fig. 3). This contract then becomes the parent of the next set of children. E is computed
as the overall difference between the value of x and y divided by the number of steps. That
is, E = (V (x)− V (y))/S. The overall effect of the algorithm is to sequentially explore a
subset of the possible space of contracts and select for the next step the one that maximizes
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Fig. 3. Schema of the trade-off algorithm with N = 3 and S = 3.

the similarity with respect to the other agent’s contract offer. This search terminates when
a contract x′ is generated that lies on the iso-curve of x.

Fig. 4 presents the part of the algorithm responsible for generating a new trade-off
contract. This algorithm will thus be invoked N times at each step in order to compute
the best trade-off contract (giving SN calls in total). The algorithm generates children by
splitting the step gain in utility, E, randomly among the set of decision variables under
negotiation.

The algorithm shows only the computations involved in making a single step, of size E,
towards the iso-curve specified by x. It functions as follows. Firstly, the maximum utility
that can be gained for each decision variable, either qualitative or quantitative, is computed
as the difference between the full aspiration of the agent’s preferences and the utility
of the decision variable’s value in the contract that is being modified V i(y

j
i ) (line (1)).

Note, at the first step of the algorithm’s iteration, y0 will be the opponent’s offered
contract. Each weighted individual utility gain is then summed to determine the overall
weighted amount of utility that can be gained (line (2)). Next, because the “consumption”
of this utility gain has a random element (line (5)), a degree of tolerance is included to
guarantee the convergence of the algorithm (line (3)).9 The process of consumption of the
total available utility (computed in line (2)) begins by allowing each decision variable

9 As the convergence is asymptotic to the value V (y)+Emax, if we had a situation with Emax = E we could
not guarantee reaching the iso-curve. Also, the search process reaches the iso-curve within epsilon distance if
there is at least one decision variable over a continuous domain. Price at least plays this role in service-oriented
negotiation domains.



222 P. Faratin et al. / Artificial Intelligence 142 (2002) 205–237

Inputs: yj ; /* last step best contract. y0 = y */
E; /* step utility increase */
Vi(); /* value scoring functions for the decision variables */
wi ; /* importance weights for the decision variables */

Output: yj+1; /* child of yj */
begin

for each decision variable i do
if i is discrete

(1) then Ei := {
&u(q) | q ∈Di , &u(q) = Vi(q)− Vi

(
y
j
i

)
> 0

}
(1) else Ei := [

0,1 − Vi
(
y
j
i

)]
endfor;

(2) Emax := ∑
i wi · max (Ei);

(3) δ := 0.01 ·Emax;
if (Emax >E + δ) then
begin

(4) k := 0;En := 0;
while (En < E) do

k := k + 1;
for each decision variable i do

if (En < E)

then if i is qualitative
(5) then rki := random

({
&u(q)

∣∣&u(q) ∈ Ei, &u(q) � E−En
wi

} ∪ {0})
(5) else rki := min

(
random(Ei),

E−En
wi

)
else rki := 0;

(6) En :=En +wi · rk
i

;
if i is qualitative

(7) then Ei := {
&u(q) | q ∈Di , &u(q) = Vi(q)− (

Vi
(
y
j
i

) + ∑
i�j�k r

j
i

)
> 0

}
(7) else Ei := [

0,max (Ei)− rki

]
endfor

endwhile;
for each decision variable i do

(8) Ei := ∑k
j=1 r

j
i ;

(9) y
j+1
i

:= V−1
i

(
Vi

(
y
j
i

) +Ei

)
endfor

end
else raise error no step can be performed

end

Fig. 4. Contract generation part of the trade-off algorithm.

to consume a random amount (line (5)) within the limits of the interval computed in
line (1) for the quantitative decision variables or by randomly selecting one of the possible
finite increments for qualitative decision variables. The store of the current total amount
consumed En is then updated as the addition of the old store and a linear weighted sum
of each of the individually consumed utilities (line (6)). The total amount that can be
consumed is then recomputed given the newly consumed amount (line (7)). If the amount
consumed is less than the total amount E, the process of consumption continues until the
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maximum (E or the step size in Fig. 3) is reached. Finally, the utility gained by each
decision variable is remapped to actual values that correspond to the new utility (line (9)).
In the case of qualitative decision variables V−1

i (u) must be interpreted as a function that
selects a qualitative value q ∈ Di , that satisfies Vi(q) = u. Given that we assume a partial
order we may have more than one value q with valuation u. If this is the case, we chose
one randomly. The algorithm guarantees by construction that there is at least one qualitative
value with valuation u.

A theoretical analysis shows that the average time the algorithm takes to complete is
linear with respect to the number of decision variables in the negotiation (see [11] for
details of the proof). This linearity is a highly desirable property given the aim of this
research to develop decision mechanisms that respect an agent’s computational limitations.

3.3. A trade-off scenario

To illustrate our model consider the example of a car-dealer (of name b) negotiating
the purchase of a car. Assume agent a enters the garage and receives the initial proposal
x = (green, £27000,10 weeks) for a deal on buying a car of a given model (over
decision variables = {colour,price,delivery}). Clearly, the first decision variable is a
qualitative one with the same domain as the colour example introduced before, and the
other two are quantitative. Agent a responds to this proposal with a counterproposal
y = (yellow, £21000,0 weeks). The point now is what could be a potential answer from the
dealer using our trade-off technique? To answer this, we have to specify domains, weights,
valuation functions and the similarity function for the car dealer:

Db
colour = {yellow, violet,magenta,green, cyan, red},

Db
price = [£18000,£35000],

Db
delivery = [0 weeks,16 weeks].

We assume the following valuation functions (V b
colour is extensionally defined, and the

other two are linear functions):

V b
colour = {

(yellow,0.5), (violet,0.2), (magenta,0.3),

(green,0.8), (cyan,0.3), (red,0.8)
}
,

V b
price(xprice) = xprice − 18000

35000 − 18000
,

V b
delivery(xdelivery) = xdelivery/16.

Finally, we assume the following weights: wcolour = 0.1, wprice = 0.8, wdelivery = 0.1.
Similarity for price and delivery will each be based on a single criteria: ‘low price’ (lp)

and ‘low delivery’ (ld) respectively. These will also be modelled as linear functions:

hlp(x)=
{

1 − x/40000, x ∈ [0,40000],
0, otherwise,

hld(x)=
{

1 − x/28, x ∈ [0,28],
0, otherwise.

With all these elements, we can exemplify the working of the algorithm. First of all,
from the car dealer’s perspective, contracts x and y have different values:

V b(x)= 0.1 · 0.8 + 0.8 · 27 − 18

35 − 18
+ 0.1 · 10

16
= 0.558.
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This value represents the car dealer’s aspiration level θ . The value of agent’s a offer is
V b(y) = 0.19. Now if we run the algorithm for one step, S = 1, and three children per
step, N = 3, it could generate the following trade-offs:

x1 = (yellow, £28132,5 weeks), x2 = (red, £26568,12 weeks),

x3 = (violet, £28506,7 weeks).

All of them verify, by construction and because we are running the algorithm for just one
step, that V b(x1) = V b(x2) = V b(x3) = θ . Now, the trade-off algorithm selects the one
with highest similarity with respect to the offer made by agent a, that is contract y, using
the car dealer’s decision variable weights.

Sim(y,x1) = 0.1 · Simcolour(yellow, yellow)+ 0.8 · Simprice(£21000, £28132)

+ 0.1 · Simdelivery(0 weeks,5 weeks)

= 0.1 · 1 + 0.8 · 0.821 + 0.1 · 0.82 = 0.839,

Sim(y,x2) = 0.1 · Simcolour(yellow, red)+ 0.8 · Simprice(£21000, £26568)

+ 0.1 · Simdelivery(0 weeks,12 weeks)

= 0.1 · 0.83 + 0.8 · 0.861 + 0.1 · 0.571 = 0.828,

Sim(y,x3) = 0.1 · Simcolour(yellow, violet)+ 0.8 · Simprice(£21000, £26568)

+ 0.1 · Simdelivery(0 weeks,7 weeks)

= 0.1 · 0.27 + 0.8 · 0.812 + 0.1 · 0.75 = 0.751.

Given these values, the algorithm would chose x1 as the trade-off to offer to customer a.
That is, x′ = (yellow, £28132,5 weeks).

4. Experimental analysis

A series of experimental tests have been undertaken to calibrate the operational
performance of our trade-off algorithm. Two types of empirical information were sought.10

The first set, here referred to as single-offer experiments (Section 4.2), aimed to investigate
the parameters of the trade-off algorithm in the generation of a single offer (i.e., they
evaluated the kernel of the algorithm). Conversely, the aim of the second set, here referred
to as meta strategy experiments (Section 4.3), was to investigate the process of negotiation
when agents use trade-off and/or responsive negotiation mechanisms (i.e., they deal with
the dynamics of the algorithm when interacting with other mechanisms). Recall that
the latter mechanism implements an iterated search for a contract with a value that is
acceptable to both parties.

10 The results shown are first case approximations, derived for single case rather than long term expected
performance of the algorithm.
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4.1. Experimental procedures

Both types of experiment involve offers from one negotiator, a player, to another,
the opponent. Furthermore, both experiments involve negotiation over four quantitative
decision variables [price,quality, time,penalty]. The domains of values of each decision
variable for both agents are the same. The importance weight vectors of the agents
(Section 3) are fixed throughout the negotiation: W player = [0.1,0.5,0.25,0.15] and
W opponent = [0.5,0.1,0.05,0.35].11 The value function V a

i used by agent a for decision
variable i is a linear scoring function of the following type:

V a
i (xi)=




maxai − xi

maxai − minai
, if decreasing,

xi − minai
maxai − minai

, if increasing,

where increasing and decreasing refer to the direction of change in score as the value of
that decision variable increases. For example, increasing the price of the service usually
decreases the score for a client, but increases it for a seller.

The other input variables of the trade-off algorithm were set as follows. The
discriminatory power—the magnitude of the difference between the input and output—of
the criteria functions (Eq. (1)) were set so that they exhibited two properties. Firstly, they
have more discrimination within the decision variables’ reservation values (as compared
to values outside this range), since most of the negotiation will take place in this region.
Thus, maximal discrimination should be between a decision variable’s min and max values
(Section 3). For example, consider a buyer of a good with a single decision variable
quantity of the good needed which has [10,20] minimal and maximal values respectively.
Given this reservation, we want the criteria function to return a full ordering of values
within this interval and equivalent orderings exterior to this interval. We parameterised
this reservation value requirement by the independent variable ε. When ε is low, the
function should be maximally discriminative for values within the decision variable’s
reservation limits (mutatis mutandis when ε is high). Secondly, we also want to experiment
with different discriminatory powers within the reservation range (to support different
similarity measures for different decision variables). For example, for one decision variable
it may be desirable to have maximal discrimination at the center of the reservation values
(e.g., within the sub ranges of [14,16] for the quantity of the overall [10,20] reservation
for the quantity example given above), whereas for another decision variable maximal
discrimination may be desired at the extremes of the reservation values (e.g., within the
sub ranges of [18,20] for the quantity of the overall [10,20] reservation for the quantity
example given above). We parameterise this requirement using the variable α. When α

is high, more discrimination is placed towards the maximum of the reservation values

11 Generally speaking, the differences in these weights are one of the key elements that provide the opportunity
for joint improvements, the other being the different shapes of the negotiators’ scoring functions (recall the
discussion of Section 2). For example, an increase in price may have little effect in value for the player, but
relatively more for the opponent.
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(mutatis mutandis when it is low). Given this, the following function satisfies these two
requirements:

h(x)= 1

π
arctan

[(
2|x − min |
x − min

·
∣∣∣∣ x − min

max− min

∣∣∣∣
α

− 1

)
tan

(
π

(
1

2
− ε

))]
+ π

2
.

In this case, in order to be reasonably discriminatory, ε was fixed at 0.1 for all decision
variables. For all decision variables, we fixed the different αs to be equal, αprice = αquality =
αtime = αpenalty = 1, to have linear criteria functions that have equal discrimination power
across the decision variable’s reservation values. We chose to make ε and α constant to
reduce the number of free variables in the experiments (normally they would be set to
reflect the agent’s knowledge of a given domain).

4.2. Single-offer experiments

In these experiments the independent variables were:

(i) the number of children generated at each step in hill-climbing to the iso-curve (N in
Section 3.2);

(ii) the number of steps taken to reach the iso-curve (S in Section 3.2);
(iii) the information that is available to an agent regarding the importance the opponent

places on each decision variable in computing the contract’s value (the weights in
Eq. (2)); and

(iv) the opponent’s and the player’s last offers (x and y in Eq. (4)).

Values for the first and second variables control the amount of search performed by
the algorithm. Experiments were run where the number of children was selected from
the set {5,100,200}. The number of steps to the iso-curve was selected from the set
{1,40}. The specific numbers for both N and S signify very little; the important thing
is the relative relationship between them. Thus, more computation is involved when the
algorithm generates 200 rather than 5 children at each iteration, or when it takes 40
steps rather than 1 to reach the iso-curve. For the third set of independent variables, an
agent can have perfect, partial, imperfect or uncertain information on how the other agent
weights the decision variables that are input into its similarity function. In experiments
with perfect information, the algorithm, in computing similarity, is given the other agent’s
precise weights for different decision variables (cardinally correct information). Partial
information games are where the algorithm is given the correct order of importance but
not the actual decision variable weights (ordinally correct information). Imperfect games
represent the situation where the weight of each decision variable of the other agent is
selected from a normal distribution. Finally, uncertain information games represent cases
where the algorithm is given undifferentiated weights for each decision variable (in this
case [0.25,0.25,0.25,0.25]).

The experimental procedure consisted of inputting two contracts, representing x and y,
into the algorithm under each of the dependent variable environments and observing the
execution trace of the algorithm for an offer from the player to the opponent. All input
contracts (x and y) were subject to the general constraint that V player(y) < V player(x) and
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V opponent(x) < V opponent(y). This ensured trade-offs are possible by ruling out all those
contracts that are already of a higher value to either party. The control set was generated by
choosing the preferred child randomly at each step approaching the iso-curve (as opposed
to using the similarity criteria).

The hypotheses of these experiments are given in terms of the input and output of the
trade-off algorithm. The input is the set of importance weights of the other agent (perfect,
partial, imperfect and random) and the output is a contract that has the same score to the
player, but some other score to the opponent. Specifically, the hypotheses are:

Hypothesis 1. The greater the exploration of the space of possible deals, the better the
output of the algorithm from the perspective of the negotiation opponent.

Hypothesis 2. The quality of the algorithm’s output (the score of the contract to the
opponent) is directly correlated to the quality of information input—the better the input
information, the better the outcome quality.

These hypotheses simply state the intuition that a more refined search of the possible
space of contracts should result in selecting and offering a contract that has more value to
the other agent. Furthermore, this search should be directly affected by the information the
algorithm has about the other agent’s decision variable importance rankings.

Fig. 5 and the top row of Fig. 6 show the results of varying, under different information
inputs, the number of children generated when the number of steps to the iso-curve is set to
40. The bottom row of Fig. 6 represents the case where the number of children is set to 100,
but the trade-off algorithm computes the iso-contract in a single step. The dot-dash line
represents the execution trace of the random control, the solid line emanating from y the
similarity based trade-off execution trace, and the line joining (0,1) to (1,0) the Pareto-
optimal line. The Pareto-optimal line was computed using the weighted method [7,41].
The output of the algorithm, x′, is shown in Figs. 5 and 6 (top row) as the end point of the
execution trace, and for Fig. 6 (bottom row) as the explicitly marked points (since there
is no trace). For benchmarking purposes, the reference point (and not the Nash bargaining
solution for reasons given in Section 2), is also plotted in all cases. Note however, that the
aim here is simply to observe the amount of benefit the other party gains as a function of
the algorithm’s performance under different contexts, rather than maximisation of any of
the explicit solution concepts introduced in Section 2.

Three major patterns are observed that directly and indirectly support our hypotheses.
Direct support for Hypothesis 1 is given by the observation that when moving to the iso-
curve if the space of possible contracts is not explored sufficiently—5 children (Fig. 5 top
row) or 1 step (Fig. 6 bottom row)—then the gains of the opponent are at best insignificant
and at worst negative. More specifically, only when the player has perfect information
about the opponent’s evaluations and the trade-off mechanism operates in 1 step with
100 children will the mechanism improve the offer (from the opponent’s perspective)
(Fig. 6(E)). The next best contract for the opponent is when it has the same value as x
(Fig. 5(A)). All other contracts generated by the player when it does not explore the search
space (Figs. 5(B)–(D) and Fig. 6(F)) have lower value to the opponent than the original
offer.



228 P. Faratin et al. / Artificial Intelligence 142 (2002) 205–237

Fig. 5. Data for 5 children in 40 steps (first row) and 100 children in 40 steps (second row). (A) and (E)
perfect information. (B) and (F) imperfect information. (C) and (G) partial information, (D) and (H) uncertain
information.

Fig. 6. Data for 200 children in 40 steps (first row) and 100 children in 1 step (second row). (A) and (E)
perfect information. (B) and (F) imperfect information. (C) and (G) partial information. (D) and (H) uncertain
information.

However, the opponent’s benefit increases as the algorithm performs more search (from
5 to 200 children in 40 steps—Fig. 5 top row [5 children], bottom row [100 children],
and Fig. 6 top row [200 children]). Thus, generating more children does indeed increase
the utility of the opponent. However, the data suggests there is a point above which
generation of more children does not increase the utility of the opponent. This is observed
in the lack of any significant difference between perfect and partial information outcomes
within either the 100 and 200 children (40 steps) result categories (compare Figs. 5(E)–
(H) with Figs. 6(A)–(D)). Furthermore, the expectation, as stated by Hypothesis 2, that
the more accurate the information about the weights of the opponent are, the better the
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contract score for the opponent, is supported by the observation that the utility to the
opponent is indeed increased when the algorithm is increasingly supplied with more correct
information about the opponent’s weights (seen as increasing utility) from the incomplete
to uncertain information classes. However, the hypothesis is rebutted for perfect and partial
information cases (compare Fig. 5(E) with Fig. 5(G) or Fig. 6(A) with Fig. 6(C)). This lack
of significant differences between contracts selected under perfect and partial information
conditions indicates that the algorithm requires only partial ordering information, rather
than perfectly cardinal orderings, in order to compute outcomes that are better for the
opponent. This is because the absolute differences in magnitude between the perfect and
partial information classes are small, resulting in input variables that are not significantly
different. The chosen value for the partial weight estimation cannot be made significantly
different from the perfect weight estimation values because the actual values of the partial
estimates are constrained both at the upper and lower limits by the perfect and uncertain
weight estimation values.

Positive support about the relationship between the quality of the input and the resultant
output is given in the final observation that, for all environments and variable combinations,
imperfect information (Fig. 5(B) and Fig. 5(F), and Fig. 6(B) and Fig. 6(F)) results in
significantly poorer outcomes for the opponent than all the other information classes. This
is only to be expected since the search is directed towards erroneous directions when the
information supplied about the other agent is incorrect.

Note, in nearly all cases, the similarity based trade-off out performs the policy of
randomly selecting a child for the next step towards the iso-curve. However this pattern
does not hold for the cases of reaching the iso-curve in one step under partial and uncertain
information environments (Fig. 6(G) and Fig. 6(H)). Given an offer is generated in 1
step, this is due to chance, rather than randomness being a better strategy in this type
of environment (supported by the consistently poor performance of the random selection
strategy in the experiments where the number of steps to the iso-curve is set to 40, Fig. 5
(C), (D), (G) and (H), and Fig. 6(C) and Fig. 6(D)).

In summary, these results indicate that unless agents know, at least partially, the
importance the other agent attaches to a decision variable, then the best policy for
computing trade-offs is to assign uncertain weightings to all decision variables. These
weightings can then be updated by some learning rule towards partial or perfect
information models, since (a) information models are private and (b) erroneous predictions
can result in poorer outcomes. Furthermore, engaging in trade-off negotiation, particularly
with a high search factor by both parties, results in higher joint gains.

4.3. Meta-strategy experiments

The aim of these experiments is to empirically evaluate the outcome and dynamics
of negotiation when agents use either a trade-off mechanism or a responsive mechanism
or a combination of the two in the course of negotiation (that is, a meta strategy of
which mechanism to select in order to generate a series of counter-proposals). The first
offer of both agents was generated using responsive mechanisms, since the trade-off
mechanism requires at least one offer from the opponent. After that, an agent is faced
with a choice of which mechanism to select. Since the number of meta strategies is
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exponential on the length of the negotiation (there are as many as there are potential
sequences of choosing between responsive and trade-off types of counter-proposals), the
meta strategies considered here were limited to the set {responsive, smart, serial, random}.
Responsive simply selected the responsive mechanism for generating an offer throughout
negotiation. This was included to compare the trade-off mechanism against an agent that
always concedes utility. A smart strategy consisted of deploying a trade-off mechanism
until the agent observed a deadlock in the average closeness of offers between both agents
as measured by the similarity function. That is, the distance between the offers was not
reducing. Under these circumstances, the value of the previously offered contract, V a(x),
was reduced by a predetermined amount, here 0.05, thereby lowering the input value of θ
into the trade-off mechanism. A serial strategy involves alternating between the trade-off
and responsive mechanisms. Finally, the random meta strategy randomly selected between
the two mechanisms. The parameters of the responsive mechanism were set to produce
concessionary behaviours, since being responsive often involves concessions in the light
of environmental needs (e.g., time, resources etc.). For the trade-off algorithm, the number
of children and number of steps were set to 100 and 40 respectively and the similarity
weights were set at the uncertain settings of [0.25,0.25,0.25,0.25]. Both negotiators were
given a deadline of twenty offers.

The particular hypotheses we sought to evaluate here are as follows:

Hypothesis 3. The more the space of possible deals is explored jointly, the better the joint
outcome.

Hypothesis 4. Higher joint utilities are obtained at the expense of greater communication
between the agents.

These hypotheses essentially state the expectation that a symmetric game consisting
of a pair of smart meta-strategies should select final outcomes that have a higher joint
value than other types of meta-strategies. This is expected because a smart meta-strategy
is essentially a trade-off strategy that only concedes a small amount when a deadlock is
detected. All other experimental meta-strategies have an element of concession involved
in them (since the variables of the responsive mechanism have been chosen to behave in
a concessionary fashion). Thus any meta-strategy that selects a responsive mechanism in
the course of negotiation (all pairs of meta-strategies except [smart, smart]) should result
in joint utility execution traces that “move” south westerly, away from the Pareto-optimal
line. Furthermore, meta-strategies that engage more in search for higher joint utilities and
less on concessions should result in higher communication loads. This latter expectation
is based on the intuition that a responsive mechanism generates contracts that successively
approach the point of cross over in offers faster than the trade-off mechanism. Hence it
is to be expected that a meta-strategy that selects the responsive mechanism should reach
deals quicker than one that is smart.

Fig. 7 presents the data for the meta-strategy experiments investigating the process of
mechanism selection. Individual offers between the player and the opponent are depicted
as circles and squares respectively. The sequences of offers are joined by a solid line for
the player and a dotted line for the opponent. The final agreement is depicted as the offer
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Fig. 7. Dynamics of negotiation process for meta strategies: (A) smart vs. smart, (B) smart vs. serial, (C) smart
vs. random, (D) smart vs. responsive, (E) serial vs. serial, (F) serial vs. responsive, (G) random vs. random,
(H) random vs. responsive.

where the circle and square meet. The communication load is simply the addition of the
numbers of circles and the squares.

The observed rank ordering across meta-strategy pairings over the summed joint utility
gained for the final outcome directly supports Hypothesis 3. The highest joint gain is
achieved in negotiations between two smart meta-strategies. Furthermore, in this case
the final outcome is closest to the axiomatic reference outcome (the Pareto point that
connects the reference outcome with utopia—Section 2) than any other meta-strategy
pairing, implying that such a pairing results in outcomes that are most beneficial to both
parties. This result suggests that if agents are motivated by maximising the joint utility
of the outcome then rational agents have an incentive to be symmetrically implementing
the trade-off algorithm. The remaining summed utility rankings for player, opponent
pairings of meta-strategies are then [smart, serial], [serial, serial], [smart, random], [smart,
responsive], [serial, responsive], [random, responsive], [random, random] with respective
joint gains of 1.27,1.18,1.146,1.11,1.076,1.06,0.99. In general, the higher joint utilities
occur when at least one of the agents is smart. The random meta strategists, as expected,
perform worst.

Hypothesis 4 is supported by the observation of the number of messages exchanged
between agents using different meta-strategies (recall that the communication load is
simply the addition of the individual messages exchanged in Fig. 7). As predicted,
the observed pattern is almost the reverse for the joint value outcomes above; with a
[smart, smart] pairing incurring the highest communication cost (reaching a deal after
19 rounds (20 was the deadline)), followed by [random, random], [smart, responsive],
[smart, random], [smart, serial] (14 rounds), [serial, serial] (13 rounds), and [serial,
responsive] (12 rounds). This observation supports the intuition that higher joint utilities
are gained through greater search, which, in turn, involves more communication between
the agents.
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5. Related work

The problem of negotiation is extensive, at both the local and the social level,
with subproblems that occur not only during the negotiation period itself (the gaming
problem), but also at the pre and post negotiation phases (the knowledge and commitment
problems respectively). Consequently, there has been a considerable body of work from
different fields, ranging from operational research, management sciences, decision theory,
game theory and to, more recently, autonomous computational systems. Negotiation in
operational research is viewed as an optimization problem solved through the design of
(mostly centralized) optimal solution algorithms [7,17,23,54]. These algorithms, based on
mathematical programming techniques, are often optimal because: (a) the geometry of the
solution set is assumed to be described by a closed and convex set (therefore there is a
bounded number of solution points), (b) the objective functions of the individuals (the
utility functions) are concave and differentiable and (c) some global information (such
as the utility gradient increase vector [7]) is stored or elicited by a centralized mediator
that acts to direct problem solvers towards the Pareto-optimal line. However, although
analytically elegant, such optimality cannot be guaranteed in decentralized autonomous
agent systems operating in open environments where information is sparse and there is a
lack of trust.

This algorithmic approach contrasts with the cooperative (axiomatic) and non-coop-
erative approaches of game theory that have been highly influential in the mechanism
design tradition of MAS [23,24,43,48,58]. Rosenchein and Zlotkin used cooperative game
theory to design negotiation mechanisms that maximize the social welfare function (the
product of agent utilities, or the Nash solution) for task, state and worth oriented domains
[43]. Similarly, Sandholm, in addition to extending the Contract Net protocol [52] with
decision theoretic mechanisms, developed a computational model of leveled commitments
and coalition formation based on principles of cooperative game theory. On the other
hand, Kraus developed negotiation mechanisms based on non-cooperative (or strategic)
game theoretic models (in particular that of Rubinstein [45], which has been shown to
implement the Nash bargaining solution under some conditions [46] and thus strengthening
the support for the Nash Program [31]) that models the negotiation process as a bi-lateral
bargaining game, consisting of an alternating and sequential protocol of offers and counter-
offers.

Our work also borrows from game theory. In particular, we adopt the nomenclature and
concepts of game theory (in terms of utility maximizing agents and Pareto-optimality) for
developing and evaluating our negotiation mechanism. However, despite this influence,
our negotiation mechanism is based on a different set of assumptions (see [8] for a critique
of the various game theoretic approaches). In general, although analytically well formed
[4], game theory’s rationality assumption, shared by the majority of its computational
extensions—that (i) beliefs are common knowledge (in its strong form and probabilistically
inferred in its weaker form), and (ii) individuals are optimizers and computationally
unbounded—is inappropriate for open system problems. These assumptions are based
on an “ideal” world in which beliefs deduced rationally from a common prior can be
common knowledge and computation is unbounded. However the real world is not ideal.
There are imperfections in an agent’s knowledge and optimization behaviour is often not
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independent of actual capabilities and limits. In its strongest form, the combination of
the two assumptions implies that no computation is required to find mutually acceptable
solutions within the feasible range. This space of possible deals is assumed to be
fully known by the agents, as are the potential outcome values. Agreements are thus
instantaneous. Inefficiencies only arise when beliefs are probabilistically inferred, leading
to a process of negotiation. Generally, the theory is silent with respect to the actual
computational rationality of the agents [51]. However in the real world, to know a
solution exists is not to know what the solution is. The perfect rationality of all agents,
although useful in designing, predicting and proving properties of a system, is therefore
not altogether useful in system design since physical mechanisms do take time to process
information and select actions. Therefore, what is required are different agent architectures
that implement different search mechanisms, capable of heuristically exploring the set of
possible outcomes, under both limited information and computation assumptions. In fact,
heuristics were also proposed by Nash as a method of narrowing down the set of possible
equilibrium strategies of a non-cooperative game [31]. In the environments in which our
model operates, where agents must deliberate over an n-dimensional space of deals, rather
than simpler games of dividing the dollar, solution quality is based on a satisfying rather
than optimal criteria.

Uncertainty in negotiation was also addressed by using decision theoretic models in
the Persuader system [53] where multi-attribute utility theory was combined with case-
based reasoning in contexts where the agent had no previous cases to reason with. This
dual approach is similar to our work in that agents use both utility and similarity for
decision making. However, we use similarity rather than utility to address the inherent
uncertainties involved and, as we have shown in Section 4.2, this appears to be a better
choice in uncertain environments.

The process of negotiation has also been modeled as a distributed constraint satisfaction
problem [1,49,62]. In the work of Sathi and Fox, agents’ objectives are represented
as constraints together with their associated utilities. Strategies (e.g., composition,
reconfiguration and relaxation operators) are then used to modify these constraints, or the
current solution, until a final solution is reached. The relaxation of constraints is similar to
our work on concession mechanisms, and the modification of the current solution closely
resembles the trade-off mechanism reported here. However, in our work there is only one
objective, namely reaching a contract which maximises value. Therefore, our approach is
to develop reasoning mechanisms that deliberate over raw values rather than objectives.
Similarly, Yokoo and colleagues formalize negotiation as an extension to the classic
single agent constraint satisfaction framework [60,62], where variables and constraints
are distributed among multiple agents. Search algorithms (asynchronous backtracking and
asynchronous weak-commitment search) are shown to solve this distributed problem. Both
algorithms are complete and the asynchronous weak-commitment is shown to be more
efficient. However, although concerned with the computational tractability of negotiation,
the agents’ search problem is simplified through resolution over only a single variable
and the implicit assumption that agents communicate constraints and modify their local
solutions cooperatively. Even when multiple variables are considered [61], the second
assumption greatly helps the search process. However, in open systems, agents are
motivated to misrepresent their true constraints for selfish reasons. Our trade-off algorithm
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implements a distributed multi-issue constraint modification strategy that requires no such
explicit communication of constraints. Furthermore, since similarity heuristics can lead to
deals with higher social welfare then rational agents are better off using such a decision
mechanism. In this model the similarity heuristic captures the strategic element of decision
making; more successful outcomes can be expected for those decisions that increase the
similarity of two demands. Therefore, agents are better off in the horizon of the game when
they invest time and computation in maximising the similarity metric.

Finally, although similarity is a basic tool in at least three cognitive tasks (classification,
case-based reasoning, and interpolation) it has received comparatively little attention in the
context of logical models of reasoning. It has, however, been used in work on psychological
studies of human behaviour [55], mathematical work on graded extensions of equivalence
relations [56,64], and as a model of approximate reasoning [22,59]. From the philosophical
perspective, Niiniluoto relates similarity with the broader area of analogical reasoning [34].
Finally, although similarity has been frequently used to model case-based reasoning, it has
never been used to model negotiation processes between autonomous agents.

6. Conclusions and future work

This paper presented a formal heuristic model and a particular linear algorithm for
performing trade-offs in automated negotiations. Based on our experiences with a number
of real-world applications, the algorithm had to be designed to work in a distributed
setting in which the agents have limited information about the preferences of their
negotiation opponent, limited computational resources to devote to the negotiation process,
and limited opportunities for repeated encounters. For these reasons, we decided the
notion of similarity should be the cornerstone of our trade-off approach since this
enables the agents to model the domain of the negotiation decision variables rather
than the specifics of their negotiation opponent. The particular technique we adopted
was fuzzy similarity since this enables us to cope with the inherent uncertainties in
the negotiation process. From this basis, we developed a novel hill-climbing algorithm
for performing trade-offs in multi-dimensional negotiations that involve both qualitative
and quantitative decision variables. We analysed the algorithm theoretically and found
its average complexity to be linearly proportional to the number of negotiation decision
variables under consideration. Moreover, our empirical evaluation demonstrated the
algorithm’s effectiveness in generating trade-offs in a range of negotiation contexts.
Specifically we showed that as our algorithm explores more of the set of possible outcomes
so it produces agreements that have higher joint gains. This increased search results in:
(i) higher joint outcomes on each iteration of the algorithm, across a single run in a unique
environment or across multiple environments; and (ii) higher communication costs since
more proposals are exchanged before an agreement is reached.

For the future, there are four broad directions in which this research can be extended.
Firstly, we would like to develop a more sophisticated meta-strategy controller. In
particular, we would like to develop an intelligent controller that can select the negotiation
strategy according to the agent’s prevailing context and its negotiation objectives. Such
a meta-controller would be able to decide when it is appropriate to engage in a trade-
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off negotiation, when it is appropriate to disengage from a trade-off negotiation, which
of the negotiation decision variables should be subject to trade-offs at the current time,
and how to set the various parameters of the trade-off algorithm in order to optimise the
agent’s performance. Secondly, we would like to explore the opportunities for an agent
to learn information about its negotiation opponent so that the agents can come to higher
quality agreements in a more efficient manner. In particular, learning information about the
opponent’s preferences and their relative weightings is likely to lead to better outcomes.
The third future goal of our research is to evaluate the current algorithm and the above
proposed extensions against other negotiation algorithms. Finally, we aim to design and
evaluate other algorithms for computing trade-offs when agent’s utility models are assumed
to be non-linear. Pareto-optimality of distributed global optimisation algorithms, such as
tabu search and simulated annealing, are currently being evaluated in the context of a
distributed optimisation/negotiation for complex non-linear games [10].
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