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ABSTRACT

Genetic Algorithm (GA) assisted beamforming techniques are
proposed as an alternative to conventional beamforming algo-
rithms. The design of the corresponding GAs is highlighted
and the achievable performance is characterised in terms of
the Signal-to-Interference Ratio (SIR) and the Signal-to-Inter-
ference plus Noise Ratio (SINR). It is demonstrated that an
attractive SINR versus complexity trade-off is achievable by
the proposed GA-assisted beamformers, provided that the GA
parameters are appropriately chosen.

1. INTRODUCTION

Adaptive beamforming [1,2] is capable of separating signals trans-
mitted in the same frequency band, provided that they arrive from
different angles, i.e. they are separated in the spatial domain. This
facilitates the separation of the desired signal from the interfer-
ing signals. The beamforming process appropriately combines the
signals received by the different elements of an antenna array in
order to form a single output. An adaptive antenna array is capa-
ble of optimising the beamforming pattern by adjusting the array
weights such that the specific objective function used - for example
the Signal-to-Interference plus Noise Ratio (SINR) is optimised.
The specific choice of the adaptive beamforming algorithm deter-
mines the speed of convergence, the hardware complexity required
for implementing the algorithm and the overall performance of a
system.

The properties of the antenna array may be varied over time in
order to optimise the system’s performance for satisfying different
optimisation criteria.These optimisation criteria may include mini-
mizing the Mean-Square Error (MSE) between the desired and the
actual array output, maximizing the array’s output power, maxi-
mizing the Signal to Noise Ratio (SNR), minimizing the effect of
interference or maximizing the SINR, etc. Depending on the ar-
ray’s operational environment, its performance optimisation met-
ric and control algorithm may be varied in order to provide the best
quality of service for the network users.

The optimisation of the antenna array pattern is typically sub-
ject to a range of constraints and the classic methods of array
weight optimisation [1] may get trapped in local minima, result-
ing in a suboptimum beamforming performance. Consequently,
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heuristic optimisation algorithms, based on random search strate-
gies have often been employed in this field [1, 4–6, 10].

In this paper, a Genetic Algorithm (GA) is developed for solv-
ing the beamforming weight optimisation problem. The concept
of a GA is based on optimisation search strategies relying on the
Darwinian principle of natural selection and evolution [9]. In the
beamforming context the optimisation process involves a set of po-
tential array vector solutions, which are referred to as individuals
in GA parlance that are gradually - but not monotonously - im-
proved with the aid of genetic operations. The GA-assisted optimi-
sation process requires the definition of a so-called fitness function,
which is evaluated for each individual throughout the evolutionary
optimisation process exploiting the survival of the ’fit individuals’
in the natural selection. The aim of our study is to determine the
weight values of an antenna array by using GAs.

In Section 2 we will investigate the performance potential of a
state-of-the-art GA, seeking the configurations optimising the per-
formance in terms of co-channel interference reduction, i.e. SIR
and SINR maximization. Throughout our investigations we al-
ways relate the achievable performance to the complexity required.
Novel GA assisted techniques designed for enhancing the achiev-
able performance are presented in Section 3, which are capable
of expediting the search, while reducing the complexity necessi-
tated. Finally, in Section 4 a GA based scheme is employed in
conjunction with a spatial reference technique for more effectively
exploiting a range of new GA features.

2. STATE-OF-THE-ART IN GA-ASSISTED
BEAMFORMING

2.1. GA-Aided Adaptive Beamforming

In order to introduce the family of GAs cast in the context of beam-
forming problems, we will highlight the model also often used in
the studies reported in the literature [3,5,10]. Specifically, we con-
sider a linear array of L omnidirectional elements placed in the far
field of M uncorrelated point sources, separated by a distance of
d =λ/2, where λ is the wave-length of the sources. Thus, the GA
is employed for optimising a set of L complex array weights on
the basis of the information contained in the so-called reference
sequence [1] of each user. This strategy is referred to as the Tem-
poral Reference Technique (TRT).

All examples presented here will refer to a scenario associ-
ated with a two-element antenna array and one interferer located
at 27 degrees with respect to the desired user. In general GA based
optimisation has to be able to perform six basic tasks [8]:
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1. Encode the potential array weight solutions with the aid of
the genes of the GA;

2. Create a string of the GA’s genes for the sake of forming a
chromosome;

3. Create an initial population of GA-based solutions;

4. Evaluate and assign fitness values to individuals in the pop-
ulation of the GA;

5. Perform reproduction with the aid of the fitness-propor-
tionate selection of individuals from the population for cre-
ating the next generation of high average fitness individu-
als;

6. Perform mutation of the individuals of the new generation
by slightly perturbing the individuals for the sake of pro-
moting a higher diversity of solutions in an effort to avoid
getting trapped in local minima.

Each weight of the antenna array is represented by a string of
bits, where half the bits corresponds to the real part and the other
half to the imaginary part of the array weight concerned. This rep-
resentation assists us in creating a genetic model for the weight
adaptation problem. Hence each complex array weight has two
genes, namely a real and an imaginary gene, which jointly consti-
tute a chromosome. The set of chromosomes represents an indi-
vidual, which corresponds to the L-dimensional complex weight
vector of the L elements of the array. The totality of the individu-
als, stored in a given generation of weight vectors, is referred to as
the population.

The number of bits we used for representing each gene was
a variable. It is important to be able to vary the number of bits
per gene, since different optimisation problems may impose differ-
ent constraints in terms of the target performance and the afford-
able complexity. The decision variables used in our GA assisted
beamformer were quantized to a given number of bits, although
the weights of the antenna array to be calculated are continuous
valued. We opted for the straightforward binary coded decimal
(BCD) representation of the weight values.

The optimisation criterion we will use for adjusting the weights
is the minimisation of the MSE between the array output and the
reference signal [1]. In order to evaluate the fitness values of each
chromosome, the heuristic objective function of Fn = 1/(1+En)
has been used, where Fn is the fitness value of the nth individual
and En= |r−wHx|2 is the error term associated with the nth array
weight. Finally, r is the reference sequence, wH is the Hermitian
of the array weight vector and x is the received signal vector. Note
that the choice of this objective function is somewhat ad hoc and
it is based on the requirement of ensuring a reciprocal relationship
between the error term En and the fitness Fn, while also avoid-
ing having an infinite fitness, when we have En=0. This results in
fitness values between zero and unity.

2.2. Simulation Results

The main objective of our study is to find the set of GA parameters,
which result in the highest possible GA performance. This task is
extremely important, since different GAs having the same com-
plexity may have dramatically different performances. We will
commence our study by investigating one of the basic GA configu-
rations known from the literature [6,7], which is shown in Table 1.

Fig. 1 (a) shows the achievable SIR performance versus the
SNR of the GA-assisted beamformer characterised in Table 1 for

Bits per gene 10
Selection type Roulette Selection
Crossover type Uniform
Crossover probability 0.9
Scaling No Scaling
Mutation type Bit inversion
Mutation probability 0.1
Elitism Performed

Table 1: GA parameters

both a high- and a low-complexity scenario associated with a pop-
ulation size of 60 and a total of 60 generations, as well as a popula-
tion size of 200 and 600 generations, respectively. The complexity
of the associated search may be characterised with the aid of the
number of objective function evaluations, which is given by the
product of the number of the generations and the population size.
As expected, better SIR values are achieved, when increasing the
affordable complexity. Furthermore, the sensitivity of the SIR val-
ues with respect to the number of bits used for representing the
array weights is also shown in Fig. 1 (a).

The saturation of the SIR versus SNR=INR curves seen in
Fig. 1 (a) at high SNR values suggests the presence of premature
convergence to local minima, especially when the search-space is
not fully explored due to the relatively low affordable complexity.
In order to exploit the full potential of the GA-based optimisation
algorithm - given a certain affordable complexity - the best pos-
sible GA configuration has to be found with the aim of preserv-
ing sufficient diversity for exploring the entire array-weight search
space.

More explicitly, our aim is to configure the GA for explor-
ing the entire space of the array weight solutions, preventing pre-
mature convergence, when relatively high-fitness but nonetheless
suboptimum individuals are found. In other words, we will at-
tempt to render the GA ”more doubtful” about the reliability of
the first results emerging from the search, in order to ensure that
other potential solutions will not be neglected. Naturally, avoid-
ing the premature convergence will considerably reduce the rate
of convergence. Hence, our aim is to find an attractive trade-off
between the rate of convergence and the achievable SIR.

We used elitism for replacing the low-fitness offspring of the
new generation by the highest-fitness individuals of the previous
generation. Elitism is efficient in promoting convergence, but hence
it also may in fact encourage premature convergence without ex-
ploring the entire search space with sufficient grade of diversity
for the solutions. Hence in our investigations we achieved the re-
quired population diversity by increasing the mutation probability
from 0.05 to 0.1. Additionally, we also used the so-called Stochas-
tic Remainder Selection technique (SRS) [9] for giving also the
relatively low-fitness individuals a higher chance to reproduce and
then employed the technique of Power Scaling (PS) for expedit-
ing the search [9]. The employment of a single point crossover
was found to be more effective than that of a multi-point cross-
over zone, when combined with binary mutation, i.e. with bit-
inversion applied to binary encoded variables. The specific choice
and combination of the above-mentioned GA parameters is justi-
fied with the aid of the results seen in Fig. 2, portraying our com-
parison between the standard suboptimum GA configuration and
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NOT OPTIMISED GA 200-100

Figure 1: (a) The interference rejection expressed in terms of SIR versus
SNR = INR using 7-, 8- and 10-bit encoding for each gene. The
GA configuration was as follows. Selection: roulette based;
crossover type: uniform; crossover probability: 0.9; mutation
probability: 0.05; no scaling, elitism. The number of genera-
tions and population size was varied for the two-element an-
tenna array studied, using a reference sequence length of 16
bits and an element spacing of λ/2 assuming SNR = INR. The
source was at 0 degrees and the interferer at 27 degrees. The
results were averaged over 10000 GA runs, when communicat-
ing over a Gaussian channel.
(b) Scatter diagram of the SIR versus the fitness values of the
best individuals of each run using a GA configured as in a).
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Figure 2: The interference rejection achieved expressed in terms of the
SIR versus SNR = INR using 10-bit encoding for each gene in
the improved optimised GA configuration. (Selection: stochas-
tic remainder; crossover type: single point; crossover probabil-
ity: 0.9; mutation probability: 0.1; power scaling with σ=1.5
; elitism). The number of generations and the population size
was varied for a two-element antenna array, using a reference
sequence length of 16 bits and an element spacing of λ/2 at
SNR = INR. The source was at 0 degrees and the interferer at
27 degrees. The results were averaged over 10000 GA runs,
when communicating over a Gaussian channel.

the above-mentioned improved GA configuration. It is interesting
to note that despite its approximately 8dB higher SIR performance,
the improved GA-based beamformer has the same complexity ex-
pressed in terms of the product of the number of generations and
the population size, as standard suboptimum scheme.

3. ADAPTIVE GA

3.1. Developments in Genetic Algorithms

In this section we set out to further reduce the complexity of the
algorithm expressed as the product of the population size and the
number of generations, while mantaining the same performance
as in Fig. 2. As this stage we invoked a number of further GA
operations, which are listed below:

• Weighted mutation was proposed for binary enviroments,
where the assignment of different mutation probabilities de-
pends on the significance of each bit of the binary-coded
array weight. The less significant bits of each gene are as-
signed a higher mutation probability. This confines the ef-
fects of the mutation, focusing the search to the space sur-
rounding the mutated individual. The aim of this technique
is to prevent the search from diverging from the area that is
likely to contain the optimum solution, which is typically
activated only, when the GA succeded in identifying the
broad area, where the optimal solution lies.

• Post selection retains those specific individuals for the next
generation that are likely to achieve the best performance
in the forthcoming generations. We note here that this prin-
ciple is different from elitism, as it will highlighted below.
The employment of this idea is based on two thresholds. If
the fitness of the best individual of a generation is above a
certain threshold, another threshold will be set to the value
of |Faverage − Fbest|/n, where Faverage and Fbest repre-
sent the average fitness of the population and the fitness of
the best individual, respectively, while n is a parameter to
be chosen depending on the specific problem considered.
Each individual having a fitness below this second thresh-
old is discarded and replaced in the following generation by
a chromosome similar to the best one encountered so far.
This is accomplished by applying a weighted mutation to
the individual having the best fitness value so far through-
out the search.

This technique ”virtually” extends the population in the sense
that it allows the GA to search in a wider space without in-
creasing the complexity. The employment of post selection
may potentially reduce the grade of population diversity,
which has to be prevented by either mutation or scaling.

• Double search corresponds to an on-line re-initialization.
The search invokes two GAs, where the second one uses a
population generated by the results of the first one. Firstly,
this technique aims for exploring the entire solution space,
in order to locate the area for the optimal solution and sec-
ondly, for examining this ’promising’ area in detail in order
to find the best solution.

In our forthcoming elaborations we will employ a GA exhibit-
ing the above features, which will be referred to as the ”adaptive
GA”.
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Figure 3: (a) The interference rejection achieved versus SNR = INR us-
ing 10-bit encoding of each gene in an improved GA configu-
ration. (Selection: stochastic remainder, post selection with a
threshold set at 0.22 and n=10; crossover type: single point;
crossover probability: 0.9; mutation type: binary up to the fit-
ness threshold of 0.22, then weighted mutation; mutation prob-
ability: 0.1; power scaling with σ=1; elitism). The number of
generations and population size was varied for a two-element
antenna array, using a reference sequence length of 16 bits and
an element spacing of λ/2 at SNR = INR. The source was at
0 degrees and the interferer was at 27 degrees. The result were
averaged for 10000 GA runs when comunicating over a Gaus-
sian channel.
(b) Scatter diagram of the SIR versus the maximum fitness val-
ues of the individuals for each GA run using a GA configured
as in a) .

3.2. Adaptive GA Performance

The challenge in applying the features introduced in Section 3.1
is to appropriately set the point, where the GA has to change its
search strategy. The results of our related investigations are shown
in Fig. 3 (a) where it is clearly seen that for a normalised complex-
ity of 7.5·103 expressed in terms of the product of the population
size and the number of generations, the adaptive GA of Section 3.1
has a better SIR performance, than the improved GA of Fig. 2. For
example, when considering Fig. 3 (a) at an SNR of 33 dB and at
a normalised complexity product of (150 x 50)=7.5 ·103, the new
features of Section 3.1 enhanced the SIR performance by about
10 dBs. In other words, the double-search based adaptive GA
achieves the same performance as the improved of GA of Fig. 2,
although the latter exhibits a normalised complexity of 200 x 100
= 2·104 in comparison to 75x2x50 = 7.5 ·103.

The efficiency of the double-search based adaptive GA in opti-
mising the objective function is further characterised in Fig. 3 (b).
From the comparison of Fig. 1 (b) and Fig. 3 (b) it becomes evident
that the phenomenon of premature convergence has been elimi-
nated, since most fitness values are above 0.3. Unfortunately, how-
ever, the SIR spread does not seize to constitute a serious draw-
back, which limits the achievable performance, indicating that some-
times a high objective function value leads to low SIR values.
These findings indicate that a better objective function is required
for further improving the achievable performance. Hence in the
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Figure 4: Comparison between the SIR performances of conventional
benchmarker algorithms and that of a GA configuration. (Se-
lection: stochastic remainder; crossover type: single point;
crossover probability: 0.9; mutation probability: 0.1; power
scaling with σ=1 ; elitism). The number of generations and
the population size was varied for a two-element antenna ar-
ray, using a reference sequence length of 16 and 32 bits and an
element spacing of λ/2 at SNR = INR. The source was at 0
degrees and the interferer was at 27 degrees. The results were
averaged for 10000 GA runs, when comunicating over a Gaus-
sian channel.

next section a more attractive optimisation criterion will be intro-
duced.

3.3. GA-Aided versus Conventional Beamformers

Let us now benchmark the proposed GA-assisted beamformer against
conventional techniques. The benchmarkers employed are the Sam-
ple Matrix Inversion (SMI), the Normalised Mean Squares Algo-
rithm (NLMS) and the Unconstrained Least Mean Squares (ULMS)
techniques [2].

In terms of their computational complexity, these algorithms
exhibit rather dissimilar behaviours. The complexity of the SMI
algorithm has a cubic relationship as a function of the number of
antenna elements L, while the NLMS, the ULMS and GA-assisted
beamformers exhibit a linear relationship as a function of the num-
ber of array elements, i.e. the number of array weights. Hence for
a high number of array weights the SMI-aided beamformer ex-
hibits a significantly higher complexity than that incurred by the
others. In this context it is worth mentioning that while both the
SMI and GA-assisted beamformers require the computation of the
autocorrelation matrix of the received signal, only the SMI-aided
beamformer has to invert the matrix. This results in an excessive
complexity in case of a large autocorrelation matrix. On the other
hand, the performance of the GA-aided beamformer appears to be
closer to that of the SMI expressed in terms of the SIR, rather than
to that of the NLMS and ULMS algorithms, as it is seen in Fig. 4.

4. SIR OPTIMISATION IN ADAPTIVE BEAMFORMING

In our previous investigations the MSE between the array out-
put signal and the desired signal generated from the reference se-
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Figure 5: (a) Scatter diagram of the SIR versus the maximum fitness val-
ues of the individuals for each GA run, using a GA configu-
rated as in b).
(b) The interference rejection achieved versus SNR = INR us-
ing 10-bit encoding for each gene in a rudimentary subopti-
mum GA - configuration. Selection: stochastic remainder;
crossover type: single point; crossover probability: 0.9; mu-
tation probability: 0.1; power scaling with σ=1 ; elitism; the
angle of arrival was assumed to be estimated with a precision
of 0.01. The number of generations and population size was
varied for a two element antenna array, using a reference se-
quence length of 16 bits and an element spacing of λ/2 at SNR
= INR. The source was at 0 degrees and the interferer was at
27 degrees. The result were averaged for 10000 GA runs when
comunicating over a Gaussian channel.

quence was minimised. By contrast, our aim in this section is
that of directly maximising the SIR. Hence we set the gradient
of the SIR expression with respect to the array weights to zero
and directly maximised the SIR by determining the weights with
the aid of a GA. Our initial investigations suggested that in con-
junction with this optimisation criterion interesting results emerge
even when using unsophisticated GAs. Specifically, the SIR vari-
ance versus the objective function’s maximum value seen in Fig. 5
(a) becomes narrower and this assists us in irradicating low SIR
values, which were always experienced in conjunction with the
MMSE criterion of Fig. 3. To elaborate a little further, a directly
proportionate relationship between the fitness value and SIR is ex-
tremely desirable for ensuring that once the objective function is
optimised by the GA, the optimum SIR value will be achieved.
Again, Fig. 5 portrays the SIR values achieved by the GA speci-
fied in the figure caption, which is now consistently higher than the
SIRs achieved by the benchmarkers of Fig. 4, whilst maintaining a
reduced computational complexity. In this context we would like
to note that this time the cost-function has been normalised in the
post selection process, such that it may assume values in excess of
unity.

5. CONCLUSIONS AND CURRENT RESEARCH

Various GA-assisted beamforming techniques have been proposed
as an alternative to conventional beamforming algorithms. The de-
sign of the corresponding GAs was highlighted and their achiev-

able performance was characterised in terms of both the SIR and
the SINR. It was demonstrated that a potentially more attractive
SINR versus complexity trade-off is achievable by the proposed
GA-assisted beamformers. Further research is required for gener-
alising these results to more complex beamformers and propaga-
tion scenarios.

Our current research is aimed at directly minimising the bit
error rate of beam-forming assisted systems by employing the so-
called the minimum bit error rate (MBER) approach. These tech-
niques require an estimate of the probability density function (PDF)
of the BER, which can be based on both block-adaptive and sample-
by-sample adaptive approaches. Since the associated BER ver-
sus array-weight surface is significantly less well-behaved than the
classic quadratic MSE error surface, the employment of the GAs
investigated in this contribution is expected to be attractive in the
context of directly optimising the BER. Consequently, our tenta-
tive results indicate that MBER beamforming is capable of pro-
viding significant performance gains in terms of a reduced BER
over MMSE beamforming, while the employment of GAs has the
promise of allowing us to avoid some of the associated deficiences
of the BER optimisation problem.
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