
Versatile High-level Synthesis of Self-checking Datapaths
Using an On-line Testability Metric

Petros OIKONOMAKOS Mark ZWOLINSKI Bashir M. AL-HASHIMI
Electronic Systems Design Group

Department of Electronics and Computer Science
University of Southampton

Southampton SO17 1BJ
United Kingdom

{po00r,mz,bmah}@ecs.soton.ac.uk

Abstract
There have been several recent attempts to include

duplication-based on-line testability in behaviourally
synthesized designs. In this paper, on-line testability is
considered within the optimisation process of iterative,
cost function-driven high-level synthesis, such that on-line
testing resources are inserted automatically without any
modification of the source HDL code. This involves the
introduction of a metric for on-line testability. A variation
of duplication testing (namely inversion testing) is also
used, providing the system with an additional degree of
freedom towards minimising hardware overheads
associated with test resource insertion. Considering on-
line testability within the synthesis process facilitates fast
and efficient design space exploration, resulting in a
versatile high-level synthesis process, capable of
producing alternative realisations according to the
designer’s directions.

1. Introduction and Motivation

In designs with high reliability requirements, or when
faults are expected to develop due to a hostile
environment, some form of on-line testing (ideally
combined with a recovery mechanism) is essential to
guarantee the correct operation of the system. Typically,
computed results are verified using a self-checking design
technique. Several such techniques have been presented
[1]; simulation results ([2]) show that parity checking and
(identical or diverse) duplication are the most attractive,
both in terms of fault coverage and of area overhead. In
this work, we apply duplication-related techniques, taking
advantage of the hardware saving potentials naturally
existing in data paths, as is demonstrated in the following
example.

Straightforward physical duplication clearly results in a
hardware penalty of over 100%. However, when dataflow
graphs (DFGs) are considered (rather than isolated cir-
cuits), then algorithmic duplication, utilising components’
idle periods* can provide an economical alternative.
Consider figure 1, where three operations of the same type
(additions) are scheduled over control steps (CS) 1 and 2,

*
A component in a synchronous design is considered to be idle during a

particular control step, if it is not fed by useful inputs and does not
produce useful results during that particular step.

and allocated to two
adders (A1, A2). It
can be seen that both
A1 and A2 are idle
during CS 3, while
A2 is also idle during
CS 1. We can utilise
A2 during CS 1 to
duplicate +1, while
A1 and A2 can be
used during CS 3 to algorithmically duplicate +3 and +2
respectively. In this way, we duplicate all three additions,
without inserting any new adders at all (as in physical
duplication), or any overhead to the original unit (as in
parity checking), just with the expense of the associated
multiplexers.

An obvious issue is how to deal with designs with less
module idle time than that required to duplicate all
operations. Orailoglu and Karri [3] presented a hardware
redundancy based technique. They imposed strict
performance requirements (checkpoints), and accepted
some hardware overhead (redundant units). Recently, Wu
and Karri [4] proposed a time redundancy based
technique. In their approach, some additional control steps
are tolerated, so that no extra units need to be inserted.
Karri and Iyer [5] investigated the idea of rejecting any
redundancy at all, and presented their Introspection
technique, which fully utilises the idle time available, but
prefers untestable designs to redundancy. Antola et al [6]
trade-off testability for area savings and propose
semiconcurrent error detection. In this technique, only
one of every P computed results is verified (P is defined
by the designer), while checking is applied to primary
outputs only.

All the above-mentioned work inserted on-line testing
resources to designs either by modifying the initial design
HDL descriptions (e.g. [4]), or using some post-
processing step (e.g. [6]). The former is clearly limited to
designs that are small enough to be handled manually,
while the latter still lacks the flexibility to consider
scheduling and allocation of functional and self-checking
operations simultaneously, within the same synthesis
process. Furthermore, all previous work imposed
particular scheduling and allocation strategies from the
beginning; thus, the techniques mentioned can be very
efficient for specific designs in certain contexts. However,

1

2

3

+ 1

+ 3

* 1

+ 2

A 1

M 1

A 2A 1

Figure 1. Algorithmic duplication :
motivational example

efficiency cannot be guaranteed for every given design,
and design space exploration in the search for an
alternative has not been addressed.

The aim of this paper is to propose a new framework for
high-level on-line test synthesis. We utilise an existing
high-level synthesis system and modify its internal data
structures. In this way, insertion of self-checking
functionality is performed automatically, at the designer’s
request, without any modification of the HDL input,
guided by a cost function that reflects on-line testability
requirements (together with the traditional area and
delay). This enables the fast production of on-line testable
designs of realistic size (as opposed to small benchmarks).
Further, we do not impose a particular redundancy
technique; rather, it is the designer’s requirements that
direct the system towards hardware or time redundancy, or
in certain cases a mixture of both techniques. As will be
demonstrated in section 5, this approach allows for
efficient design space exploration, while the ability to
choose the most appropriate redundancy technique in each
synthesis session makes our system versatile. As regards
testability, we assume that every computed result has to be
verified, and, ideally, faults need to be detected before
they corrupt the primary outputs, so that any possible
recovery mechanism will be able to react in time.

2. Inversion Testing

Firstly, an overview of
inversion testing [7] is given
and the hardware savings
potential it adds to the syn-
thesis process is demonstra-
ted. The basic inversion test-
ing scheme is shown in figure
2. Module 1 is the functional
unit, while module 2 and the
comparator have been inser-
ted for testing purposes. From
the figure, it is evident that
inversion and comparison can
be regarded as a variation of
the well known duplication and comparison scheme, the
difference between the two being that in the inversion case
the introduced unit (module 2) is not a replica of the
functional one; rather, it is the inverse module. In this
context, we use the term inverse to signify a module that
reproduces the original functional input when fed by the
functional output. Clearly, not all operations are
invertible, that is we cannot define inverse operations and
corresponding units for all operations (e.g. logic functions
are non-invertible). However, when dealing with
invertible operations, such as arithmetic functions,
inversion is a valid alternative to duplication.

Physical inversion has no advantage over duplication.
However (when considering a DFG) there are cases when
algorithmic inversion can lead to smaller designs than
duplication. This is illustrated in the DFG of figure 3. In
the figure, addition +1 is scheduled at CS 1 and allocated
to adder A1, while an operation of the inverse type
(subtraction –1) is scheduled at CS 3 and allocated to
subtractor S1. A1 is idle during both CS 2 and 3, while S1

is idle during CS 1 and 2. Let
us assume that after CS 3,
control returns to CS 1 (typical
in designs originating from
VHDL processes). We can
utilise A1 and S1 during CS 2
to invert –1 and +1
respectively. Thus, we invert
both, without inserting any new
modules. Note that only one
adder and one subtractor are available in the example, so
applying duplication would necessarily lead to physical
duplication. Therefore, considering both algorithmic
inversion and duplication testing within a DFG provides
maximum flexibility.

3. High-level Synthesis Background

To validate our approach, we have used the Multiple
Objective Optimisation in Data and control path Synthesis
(MOODS) High-Level Synthesis Suite [8]. However, our
framework is generic and can be applied to any other
iterative, transformation-based and cost function driven
system. In this section, we briefly mention those elements
of MOODS functionality that are essential for our work.

When the tool is first invoked, the VHDL input is
parsed, and an initial, naïve realisation of the system is
formulated. In this realisation, every operation is
scheduled at a dedicated CS and allocated to a dedicated
data path unit. Clearly, it is the most inefficient of all
possible implementations, but it serves as a starting point
for subsequent refinement.

Optimisation proceeds through multiple repetitions of
the optimisation loop shown in figure 4, and depends on
the set of available transforms, a cost function reflecting
designer requirements, and the controlling algorithm.

High-level synthesis transforms are typically related to
allocation (e.g. sharing two hardware units) or scheduling
(e.g. merging two control steps). In the current version of
MOODS, roughly 20 transforms are available.

The whole optimisation process is controlled by a cost
function of the form

nn acacacCost ×++×+×= L2211
(1)

where :
ai are user specifications (typically n=3, and a1, a2, a3

correspond to area, delay and clock period)
ci are weight constants reflecting priorities (high or low)

It is through this function that a particular transform at a
particular state of the design is characterised as beneficial
or degrading.

Finally, all decisions that need to be taken during
optimisation are made using a suitable algorithm. In
MOODS, both simulated annealing and goal-oriented
heuristics are currently available [8].

We are now able to explain the optimisation loop
(figure 4). In the transform and data selection phase, the
algorithm chooses a transform and suitable data. During
the validity check phase, it is determined whether or not
the transform can be applied at the given moment (several
dependencies may prevent it). If the validity check
succeeds, then the cost function is used during the cost
estimation phase to calculate the impact of the transform

Figure 2. Inversion Testing

Comparator

Error

Module 1

Module 2

Functional

Output

Functional Input

1

2

3

+1

*2

-1

*1

A1

S1

M2M1

Figure 3. Algorithmic
inversion : motivational

example

on the design
“quality”. Then the
algorithm once
more directs the
system to apply or
reject the trans-
form, and finally it
determines whe-
ther or not more
transforms will be
considered.

Clearly, utilising
an existing high-
level synthesis fra-
mework enables us
to take advantage
of its existing fea-
tures. One such
feature that is gre-
atly exploited here
is the chaining
property. Two
operations are said
to be chained if
they are scheduled
for serial exe-
cution within the
same CS. Obvi-
ously, the only
reason why serial (as opposed to parallel) execution
would be needed is data dependency. Chained operations
are the result of merging associated (consecutive) control
steps. When such merging is applied, steps are clearly
saved, but the clock period may need to be lengthened, so
that the series of operations can fit in a single step.

4. Versatile Implementation

As shown in section 3, optimisation within a system like
MOODS relies on the following elements : transforms, the
cost function and an algorithm. Therefore, to introduce a
new functionality, one needs to define appropriate
transforms to implement the functionality, provide a
supplement to the cost function to reflect new concepts,
and also choose an algorithm to automate the process.

4.1 On-line test insertion transforms

In order to include test resource insertion within the
synthesis framework, three additional transforms have
been implemented in about 2000 lines of C++ code
(including test, estimate and perform functions for each).
Two of the transforms implement test resource insertion
(one for duplication and one for inversion), and the third
one implements removal of (previously inserted) test
resources. This last transform serves as an “undo”
transform and is needed whenever a “step back and try an
alternative route” approach is to be adopted.

Note that the resulting design immediately after test
insertion is, once more, naïve; it is the subsequent
optimisation steps that produce efficient designs. This is
clarified in figure 5. Without loss of generality, we assume

that it is the du-
plication testing
scheme that is
being applied.
The original sta-
te of part of a
DFG is shown in
5a. Operations
#1 and #2 (of the
same kind) are
scheduled for the
same CS, N, and
allocated to units
C1 and C2 re-
spectively. In 5b,
duplication (#2´)
and comparison
(!=) operations

for #2 have been inserted. Two new CSs have been added
for this purpose, while the new operations have been
allocated to new data path units. For the sake of the
discussion we assume that the clock period is long enough
for #2´ and != to be chained within a single CS.
Optimisation can then proceed to either the situation of 5c
or that of 5d. If hardware saving is the primary designer
goal, then modules for #1 and #2´ will be shared (as in
5c), but an additional CS N+1 will have to be tolerated
(since C1 is active during both N and N+1, therefore N
and N+1 cannot be merged). Alternatively, if speed is
more important than area, then we end up with the
situation of 5d, where no CS needs to be added, but the
price is the area of the additional module C3. Note that the
decision regarding which of the two optimisation paths
will be followed is taken automatically by the system,
using eq. (1). Therefore, we have shown that our approach
gives the designer the flexibility to choose between time
or hardware redundancy, instead of imposing a particular
strategy. Further, we have demonstrated a counter-
intuitive result : a naïve start leads to a versatile process.

Finally, in order for the testing scheme to be valid, an
operation and its duplicate cannot be assigned to the same
unit (e.g. C2 and C3 in figure 5b must not be shared). For
this purpose, the (existing) unit sharing transform test
phase has been supplemented with appropriate checking.

4.2 A metric for on-line testability

Using the cost function (eq. (1)) with only its usual area
and timing parameters, causes the test insertion transforms
to look very expensive (since they are introducing both
new units and new control steps, as seen in the transition
from figure 5a to 5b). Therefore, eq. (1) needs to be
expanded to reflect the benefit of our transforms, that is
increased on-line testability. Using the terminology of
section 3, n must take the value 4, and a metric a4 for on-
line testability needs to be defined and included in (1),
together with the appropriate weight c4. The following
expression is proposed as such a metric :

() ()[]4
1

3122114 log1 σσσσ +×+−××+×== −
− LPPPTa lineon

(2)

where :
P1% is the percentage of operations made on-line testable
P2% is the average (per module) idle time availability

transform
and data
selection

execution

validity test

cost
estimation

transformation
valid?

perform
transformation?

perform
another

transformation?

yes

yes

no

no

no

yes

end

Figure 4 : High-level synthesis
iterative optimisation loop

optimisation
loop

Figure 5. Introducing a testing scheme

#2#1 C2C1 #2 C2#1 C1

#2’ C3

!=

(a) Original state (b) Immediately after
test resource insertion

#2#1 C2C1

(c) Optimising for area (d) Optimising for speed

#2#1 C2C1

!=

#2’ C1
!=

#2’

C3

N N

N+1

N+2

N

N

N+1

L (measured in control steps) is the average (per
instruction) error latency*

σ1, σ2, σ3, σ4 are constants
The first term σ1×P1 signifies that the more the testable

operations within the design, the more testable the whole
design is. The second term σ2×P2× (1-P1) reflects the fact
(because of P2) that designs with considerable idle time
will produce more compact on-line testable realisations.
Therefore, in the first stages of optimisation (when P1→0)
the existence of idle time is an advantage; when most of
the operations have been made on-line testable (therefore
P1→1), idle time is not needed anymore and this term
gradually comes out of play (because of 1-P1). As for the
third term σ3× [log(L-1)+σ4], it simply reflects the fact that
the sooner the fault is detected the better.

Note that eq. (2) is ultimately normalised over its
maximum value (obtained for P1=100% and L→0), and so
Ton-line is expressed in %.

4.3 Algorithm

As mentioned in section 3, simulated annealing [8] is
readily available within MOODS. Its advantage is
generality (whatever can be quantified can also be
optimised for); its drawback is low speed. Thus, fast area-
or delay-oriented heuristics are also available [8]. In this
work, we take advantage of the generic nature of
simulated annealing to optimise for testability (that is,
introduce on-line testing by means of the discussed
transforms), and then use the heuristics to optimise for
speed and / or area (as directed by designer goals).

5. Experimental results

In this section, we present the results of our
experimentation. Three High-Level Synthesis Workshop
benchmarks, namely tseng (1991), diffeq (1992) and qrs
(1995), are used to illustrate our results.

5.1 Synthesis results

In all experiments, benchmarks have initially been
synthesized behaviourally using the MOODS system.
Subsequently, Synplicity Synplify Pro Version 6.2 has
been used for RTL synthesis, while Xilinx Design
Manager version 3.1i has been used for the final
implementation. The results are shown in tables 1 – 8.

The first row of each of the tables corresponds to the
untestable design, while the second, third and fourth (and
fifth on table 1) rows show testable implementations
produced using several combinations of user
requirements. Area and performance penalties are reported
with respect to the corresponding untestable design.

Designer priorities (regarding area, delay, on-line
testability and clock period) for each particular experiment
are given in the first four columns. Designer clock period
requirements are reported on a scale of “relaxed” to “very
strict”, where relaxed means that the period is long
enough for the system to do as much chaining as possible,

*
The term error latency refers to the number of control steps that elapse

between the occurrence and the detection of a fault.

while other classifications allow less and less chaining. In
theory, allowing chaining is expected to lead to smaller
realisations and fewer control steps, but low frequencies,
while preventing chaining retains a high frequency value
but gives rise to more control steps.

The next two columns report the area statistics of the
corresponding designs (in FPGA slices), together with the
associated area overhead percentage.

The next four columns show performance statistics.
Number of clock cycles, maximum achievable frequency,
minimum delay and the worst case delay degradation are
all reported. Minimum delay is equal to (cycles /
maximum frequency). That is, the reported values for the
worst case degradation reflect the degradation in delay
that would be suffered, if the designer required maximum
frequency. To illustrate this point, let us refer to the
second row of table 1. The total delay is reported to be
degraded 12 times with respect to the corresponding
untestable design. However, this only applies if the
designer requires a maximum (48 MHz) frequency for the
original design. If a lower value was enough for the
untestable version, then the actual delay degradation
would be much more tolerable. In other words, the
reported delay degradation is as pessimistic as possible
and the actual degradation can only be evaluated within
the context of each particular application.

Finally, the last two columns report testability
evaluation. This includes the applied testing technique*

and the resulting testability value (calculated by eq. (2)).
“Mixed” technique refers to cases where some operations
are duplicated and some others inverted. All operations
are made on-line testable; whenever testability is not
100%, this is due to non-zero error latency.

Table 1 shows synthesis results for the Tseng
benchmark. In this small design, we can easily verify our
predictions about the relationship between clock period
requirements and design size. Indeed, the most compact
on-line testable design in this case, is the one in the
second row, which corresponds to relaxed period
specification, leading to inversion testing and resulting in
chains of the form (operation, inverse) executed serially
within the same CS. A severe degradation in frequency is
suffered (since there is data dependency between an
operation and its inverse, as figure 2 shows). A much
faster (yet somewhat bigger) realisation is that of the
fourth row, where strict period specification leads to
duplication (CS merging in a duplicated operation leads to
insignificant frequency degradation, since an operation
and its duplicate are scheduled to be executed in parallel).
Even higher frequency values can be achieved. The third
and fifth rows of the same table show such examples.

Tables 2 – 4 and 5 – 8 show our results for the more
complicated Diffeq and Qrs benchmarks respectively.
Because of increased complexity (especially in the Qrs
case), the results do not reflect the relationships between
design characteristics as clearly as in the previous case.
Nevertheless, in tables 2 – 4, nine different self-checking
realisations of Diffeq are presented, providing on-line
testing for hardware overhead between 37.2% and
103.8%, in as few as 13 and as many as 30 clock cycles,

*
The choice of technique is also made within simulated annealing.

with a maximum frequency between 6 – 40 MHz, and a
worst case delay degradation between 44% and 760%.
Similarly, in tables 5 – 8, twelve self-checking realisations
of the Qrs design can be found, providing on-line testing
for a hardware overhead between 52.3% and 131%, in 31
– 144 clock cycles, with a maximum frequency between
0.8 - 7.1 MHz, and a worst case delay degradation of 65%
- 1430%.

It is to be noted that all size and frequency values are
those reported by the implementer tool. Therefore, they
are the most realistic we can get, and they reflect all low
level optimisations as well as the high-level ones.

Comparison of the achieved results with those of other
approaches ([3, 4, 5, 6]) is hard to carry out, since RT and
gate level synthesis in each case are performed by
different tools and different technologies are targeted. In
any case, though, the most important feature of our
approach demonstrated in this section is not hardware
savings or improved performance; rather, it is fast design
space exploration, with minimal designer effort (limited
to changing priority settings), provided by fully
automating on-line test resource insertion within
behavioural synthesis. Ultimately, it is the designer who
makes the decision regarding which one of the realisations
best accommodates his or her needs. None of them can be
favoured or rejected in advance; each one can only be
evaluated in the context of the project the design is part of.
Further, even if a synthesis session fails to meet designer’s
requirements (as is probably the case e.g. in the last row of
table 8, where a hardware penalty of 131% and
considerable delay penalty are reported), an alternative
realisation can be obtained efficiently and painlessly,
simply by changing a limited number of settings and
repeating the session. As the tables show, much better
results are very likely to be achieved (for example, row 3
of table 5 gives a hardware overhead of just 56.6%).

5.2 Simulation results

In order to verify that our implementations in fact detect
system faults, we have conducted a number of fault
injection and simulation experiments. We have been
experimenting with the Tseng benchmark mentioned
above, and we performed fault simulations using a
variation of the transparent fault injection technique
presented in [9]. In this method, the VHDL architecture of
every RTL module is replaced by an alternative
architecture, which includes structures to simulate faulty
behaviour in the presence of each modelled fault.

The single stuck-at fault model is used. While this
model is not “literally” valid in the on-line context (since
any signal “physically” stuck at a value should have been
detected during production test), it still provides a
convenient way to emulate faulty behaviour. Therefore, it
would be better to say that we simulated against defects
whose effect can be modelled using stuck-at faults.
Further, we targeted faults in data path units only, while

the controller,
interconnect, sto-
rage, and “glue”
logic parts are
considered for the

time being to be fault free. Finally, introduced
comparators are also for the purposes of the current state
of our work regarded as fault free.

We simulated against random faults, for a variety of
random inputs. Thus, we imitated the behaviour of a
system for which we cannot know the functional inputs a
priori. Table 9 shows our results. Masked faults refer to
faults that do not corrupt module outputs; therefore they
should not be detected. Due to the fault secure nature of
duplication and invertion testing, we expect that all non-
masked faults will be detected. Indeed, this is verified by
the presented results.

6. Conclusions

In this paper, we have presented an integral, cost
function driven on-line test synthesis framework, which is
able to incorporate a variety of alternative algorithms and
techniques. The three main contributions of this work are :

- Insertion of self-checking resources does not require
any modification of input HDL code, and it is part of the
design optimisation process. This enables efficient and
versatile design space exploration, while designs of
realistic complexity can be made on-line testable with no
additional designer effort. To the best of our knowledge,
this issue is explicitly considered for the first time.

- A metric for on-line testability is proposed and used.
We expect this concept to be useful in other cost function-
driven systems.

- Inversion testing provides an additional degree of
freedom to the system towards minimising overheads.

Current work involves replacing the conventional
comparator modules currently used with fault secure [1]
ones, and modifications to the existing system to
accommodate them.

7. References

[1] M. Nicolaidis, L. Anghel, “Concurrent Checking for VLSI”,
Microelectronic Engineering, Vol. 49, No. 1-2, November 1999,
p. 139-156.
[2] S. Mitra, E.J. McCluskey, “Which concurrent error detection
scheme to choose?”, IEEE International Test Conference, 2000,
p. 985-994.
[3] A. Orailoglu, R. Karri, “Automatic Synthesis of Self-
Recovering VLSI Systems”, IEEE Transactions on Computers,
Vol. 45, No. 2, February 1996, p. 131-142.
[4] K. Wu, R. Karri, “Exploiting Idle cycles for Algorithm Level
Re-Computing”, Design Automation and Test in Europe
(DATE) 2002, p. 842 – 846.
[5] R. Karri, B. Iyer, “Introspection : A Register Transfer Level
Technique for Concurrent Error Detection and Diagnosis in Data
Dominated Designs”, ACM Transactions on Design Automation
of Electronic Systems, Vol. 6, No. 4, October 2001, p. 501-515.
[6] A. Antola, F. Ferrandi, V. Piuri, M. Sami, “Semiconcurrent
Error Detection in Data Paths”, IEEE Transactions on
Computers, Vol. 50, No. 5, May 2001, p.449-465.
[7] P. Oikonomakos, M. Zwolinski, “Using High-Level
Synthesis to Implement On-Line Testability”, IEEE/IEE Real-
Time Embedded Systems Workshop, 2001.
[8] A.C. Williams, “A Behavioural VHDL synthesis system
using data path optimisation”, PhD Thesis, University of
Southampton, 1997.
[9] M. Zwolinski, “Digital System Design with VHDL”, Prentice
Hall, 2000.

faults
injected masked detected escaped
100000 65912 34088 0

TABLE 9 : Tseng benchmark
RT level fault simulation results

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (ns)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Relaxed 146 N/A 7 48 146 N/A N/A 0.0
High High High Relaxed 165 13.0 7 4 1750 12 times Inversion 100.0
High Low High Strict 178 21.9 12 44 273 ~ 87% Inversion 94.0
Low High High Strict 172 17.8 7 38 184 ~ 26% Duplication 100.0
High High High Strict 190 30.1 9 43 209 ~ 43% Mixed 97.2

TABLE 1 : Tseng Benchmark Synthesis Results (Target Technology Xilinx XCV800)

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (ns)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Relaxed 234 N/A 13 31 419 N/A N/A 0.0
High High High Relaxed 321 37.2 14 6 2333 5.5 times Inversion 100.0
High Low High Relaxed 327 39.7 13 7 1857 4.4 times Inversion 100.0
Low High High Relaxed 321 37.2 14 8 1750 4.2 times Inversion 100.0

TABLE 2 : Diffeq Benchmark Synthesis Results (Target Technology Xilinx XCV800, Relaxed Clock Period Requirement)

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (ns)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Moderate 234 N/A 13 31 419 N/A N/A 0.0
High High High Moderate 477 103.8 20 7 2857 6.8 times Mixed 94.3
High Low High Moderate 418 78.6 19 6 3167 7.6 times Inversion 94.3
Low High High Moderate 425 81.6 19 28 679 ~ 62% Duplication 94.3

TABLE 3 : Diffeq Benchmark Synthesis Results (Target Technology Xilinx XCV800, Moderate Clock Period Requirement)

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (ns)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Strict 306 N/A 19 42 452 N/A N/A 0.0
High High High Strict 424 38.6 29 34 853 ~ 88% Mixed 91.4
High Low High Strict 426 39.2 30 39 769 ~ 70% Inversion 91.2
Low High High Strict 422 37.9 26 40 650 ~ 44% Duplication 92.1

TABLE 4 : Diffeq Benchmark Synthesis Results (Target Technology Xilinx XCV800, Strict Clock Period Requirement)

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (us)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Relaxed 470 N/A 34 3.1 11 N/A N/A 0.0
High High High Relaxed 738 57.0 31 1.0 31 2.8 times Mixed 98.7
Low High High Relaxed 736 56.6 31 0.8 39 3.5 times Mixed 97.9
High Low High Relaxed 947 101.5 99 7.1 14 1.3 times Mixed 92.7

TABLE 5 : Qrs Benchmark Synthesis Results (Target Technology Xilinx XCV1000, Relaxed Clock Period Requirement)

Optimisation Settings Synthesis Results
Area Delay TestabilityArea

Priority
Delay

Priority
On-line

Testability
Priority

Clock period
requirement Slices Overhead

(Slices %)
Cycles Maximum

Frequency (MHz)
Minimum
Delay (us)

Worst Case Delay
Degradation

Technique
applied

Value
%

High High - Moderate 457 N/A 34 8.7 4 N/A N/A 0.0
High High High Moderate 780 70.7 36 0.9 40 10 times Mixed 96.6
Low High High Moderate 770 68.5 36 1.2 30 7.5 times Mixed 96.3
High Low High Moderate 904 97.8 96 5.3 18 4.5 times Mixed 93.1

TABLE 6 : Qrs Benchmark Synthesis Results (Target Technology Xilinx XCV1000, Moderate Clock Period Requirement)

Optim isation Settin gs S ynth esis Results
Ar ea Dela y TestabilityArea

P riority
Delay

Priority
O n-line

Testability
Prior ity

Clock period
requirem ent Slices Overhead

(Slices %)
C ycles M a xim um

Frequen cy (M Hz)
M in im um
D elay (us)

W orst Case Dela y
D egradation

Techn ique
applied

V alue
%

High High - Strict 514 N/A 45 2.6 17 N/A N /A 0.0
High High High Strict 844 64 .2 50 1.3 38 2 .2 tim es M ixed 94 .8
Low High High Strict 783 52 .3 49 1.4 35 2 .1 tim es Duplicat ion 95 .2
High Low High Strict 927 80 .4 102 3.7 28 ~ 65% M ixed 92 .9

T ABLE 7 : Qrs Ben chm ark Syn thesis Resu lts (Tar get Technolog y X ilin x XC V1000, Strict Clock P eriod Requirem ent)

Optim isation Settin gs S ynth esis Results
Ar ea Dela y TestabilityArea

P riority
Delay

Priority
O n-line

Testability
Prior ity

Clock period
requirem ent Slices Overhead

(Slices %)
C ycles M a xim um

Frequen cy (M Hz)
M in im um
D elay (us)

W orst Case Dela y
D egradation

Techn ique
applied

V alue
%

High High - V ery Strict 564 N/A 66 19.2 3 N/A N /A 0.0
High High High V ery Strict 1178 108 .9 96 3.9 25 8 .3 tim es M ixed 92 .3
Low High High V ery Strict 1178 108 .9 78 1.8 43 14 .3 tim es Duplicat ion 92 .7
High Low High V ery Strict 1303 131 .0 144 4.4 33 11 tim es M ixed 91 .2

T ABLE 8 : Qrs Ben chm ark Syn thesis Resu lts (T arget Technolog y X ilin x XC V1000, Very Strict C lock P eriod Requirem ent)

