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Following a brief historical perspective on channel coding,
an introduction to space–time block codes is given. The various
space–time codes considered are then concatenated with a range of
channel codecs, such as convolutional and block-based turbo codes
as well as conventional and turbo trellis codes. The associated
estimated complexity issues and memory requirements are also
considered. These discussions are followed by a performance study
of various space–time and channel-coded transceivers. Our aim
is first to identify a space–time code/channel code combination
constituting a good engineering tradeoff in terms of its effective
throughput, bit-error-rate performance, and estimated complexity.
Specifically, the issue of bit-to-symbol mapping is addressed in the
context of convolutional codes (CCs) and convolutional coding
as well as Bose–Chaudhuri–Hocquenghem coding-based turbo
codes in conjunction with an attractive unity-rate space–time
code and multilevel modulation is detailed. It is concluded that
over the nondispersive or narrow-band fading channels, the
best performance versus complexity tradeoff is constituted by
Alamouti’s twin-antenna block space–time code concatenated with
turbo convolutional codes. Further comparisons with space–time
trellis codes result in similar conclusions.

Keywords—Channel coding, concatenated coding, FEC, history
of channel coding, space–time coding, STBC, STTC.

I. INTRODUCTION

The third-generation (3G) mobile communications stan-
dards [1] are expected to provide a wide range of user ser-
vices, spanning from voice to high-rate data services, sup-
porting rates of at least 144 kb/s in vehicular, 384 kb/s in
outdoor-to-indoor, and 2 Mb/s in indoor as well as picocel-
lular applications [1].

In an effort to support such high rates, the bit/symbol ca-
pacity of band-limited wireless channels can be increased
by employing multiple antennas [2]. The classic approach
is to use multiple antennas at the receiver and employ max-
imum ratio combining (MRC) [3]–[5] of the received sig-
nals for improving the performance. However, applying re-
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ceiver diversity at the mobile stations (MSs) increases their
complexity. Hence, receiver diversity techniques typically
have been applied at the base stations (BSs), although the
Japanese personal handyphone system, know as PHS, em-
ploys second-order diversity, whereas the second receiver di-
versity antenna is invisible, since it is inside the handset (BS).
In contrast, BSs provide services for many MSs and, hence,
upgrading the BS’s receivers in order to support antenna di-
versity is economically more viable. However, the drawback
of this scheme is that it only provides diversity gain for the
BSs’ receivers.

In the past, different transmit diversity techniques have
been introduced in order to provide diversity gain for MSs
by upgrading the BSs. These transmit diversity techniques
can be classified into three main categories: 1) schemes
using information feedback [6], [7]; 2) arrangements in-
voking feedforward or training information [8]–[10]; and 3)
blind schemes [11], [12]. Recently, Tarokhet al. proposed
space–time trellis (STT) coding [13]–[19] by jointly de-
signing the channel coding, modulation, transmit diversity,
and the optional receiver diversity scheme. The performance
criteria for designing STT codes were derived in [13] under
the assumption that the channel is fading slowly and that the
fading is frequency nonselective. These advances were then
also extended to fast fading channels. The encoding and
decoding complexity of theseSTT codesis comparable to
that of conventional trellis codes [20]–[22] often employed
in practice over nondispersive Gaussian channels.

STT codes [13]–[18] perform extremely well at the cost
of relatively high complexity. In addressing the issue of de-
coding complexity, Alamouti [23] discovered a remarkable
scheme for transmission using two transmit antennas. A
simple decoding algorithm was also introduced by Alamouti
[23], which can be generalized to an arbitrary number of
receiver antennas. This scheme is significantly less complex
than STT coding using two transmitter antennas, although
there is a loss in performance [24]. Despite the associated
performance penalty, Alamouti’s scheme is appealing in
terms of its simplicity and performance. This proposal
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motivated Tarokhet al. [24], [25] to generalize Alamouti’s
scheme to an arbitrary number of transmitter antennas,
leading to the concept of space–time block (STB) codes.

Intrigued by the decoding simplicity of the STB codes
proposed in [23]–[25], we commence our discourse in this
paper by detailing their encoding and decoding process.
Subsequently, we investigate the performance of the STB
codes over perfectly interleaved nondispersive Rayleigh
fading channels. A similar study of STT codes employed
over wide-band correlated fading channels is provided in
[26]. A system that consists of STB codes and different
channel coders will be proposed. Finally, the performance
and estimated complexity of the different systems will be
compared and tabulated.

Following a brief historical perspective on channel coding
in Section II, a rudimentary introduction to STB codes is
given in Section IV and channel-coded space–time codes in
Section V. The associated estimated complexity issues and
memory requirements are addressed in Section V-C. The
bulk of this contribution is constituted by the performance
study of various space–time and channel-coded transceivers
in Section VI. Our aim is first to identify a STB code/channel
code combination constituting a good engineering tradeoff in
terms of its effective throughput, bit-error-rate (BER) perfor-
mance, and estimated complexity in Section VI-A. Specif-
ically, the issue of bit-to-symbol mapping is addressed in
the context of convolution codes and convolutional coding
as well as Bose–Chaudhuri–Hocquenghem (BCH) coding-
based turbo codes in conjunction with an attractive unity-rate
space–time code and multilevel modulation in Section VI-B.
These schemes are also benchmarked against a range of pow-
erful trellis-coded modulation (TCM) and turbo trellis-coded
modulation (TTCM) schemes. The merits of the various con-
catenated channel-coded and STB-coded schemes are high-
lighted in Section VI-D in the context of their coding gain
versus estimated complexity tradeoffs. Our discussions are
also extended to the comparison of channel-coded STB codes
and STT codes in Section VI-E.

II. HISTORICAL PERSPECTIVE ONCHANNEL CODING

The history of channel coding and forward error cor-
rection (FEC) coding dates back to Shannon’s pioneering
work [27] in 1948, predicting that arbitrarily reliable com-
munications is achievable with the aid of channel coding,
upon adding redundant information to the transmitted
messages. However, Shannon refrained from proposing
explicit channel-coding schemes for practical implementa-
tions. Furthermore, although upon increasing the amount
of redundancy added the associated information delay
increases, he did not specify the maximum delay that may
have to be tolerated in order to be able to communicate near
the Shannon limit. In recent years, researchers have been
endeavoring to reduce the amount of latency inflicted, e.g.,
by a turbo codec’s interleaver that has to be tolerated for the
sake of attaining a given target performance.

Historically, one of the first practical FEC codes was the
single error-correcting Hamming code [28], which was a

block code proposed in 1950. Convolutional FEC codes that
were discovered by Elias date back to 1955 [29]. Wozencraft
and Reiffen [30], [31] as well as Fano [32] and Massey
[33] have proposed various algorithms for their decoding.
A major milestone in the history of convolutional error cor-
rection coding was the discovery of a maximum likelihood
sequence estimation algorithm by Viterbi [34] in 1967. A
classic interpretation of the Viterbi algorithm (VA) can be
found, e.g., in Forney’s often-quoted paper [35]. One of the
first practical applications of convolutional codes (CCs) was
proposed by Heller and Jacobs [36] during the seventies.

We note here that the VA does not result in minimum BER,
it rather finds the most likely transmitted sequence of trans-
mitted bits. However, it performs close to the minimum pos-
sible BER, which can be achieved only with the aid of the ex-
tremely complex full-search algorithm evaluating the proba-
bility of all possible binary strings of a -bit message. The
minimum BER decoding algorithm was proposed in 1974 by
Bahlet al.[37], which was termed the maximuma posteriori
(MAP) algorithm. Although the MAP algorithm slightly out-
performs the VA in BER terms, because of its significantly
higher complexity, it was rarely used in practice until turbo
codes were contrived by Berrouet al. in 1993 [38], [39].

Focusing our attention on block codes, the single-error
correcting Hamming block code was too weak for practical
applications. An important practical milestone was the dis-
covery of the family of multiple error correcting BCH bi-
nary block codes [40] in 1959 and in 1960 [41], [42]. In
1960, Peterson [43] recognized that these codes exhibit a
cyclic structure, implying that all cyclically shifted versions
of a legitimate codeword are also legitimate codewords. The
first method for constructing trellises for linear block codes
was proposed by Wolf [44] in 1978. Due to the associated
high complexity, there was only limited research in trellis
decoding of linear block codes [45], [46]. It was in 1988
when Forney [47] showed that some block codes have rela-
tively simple trellis structures. Motivated by Forney’s work,
Honary, Markarian, and Farrellet al. [45], [48]–[51] as well
as Lin and Kasamiet al. [46], [52], [53] proposed various
methods for reducing the associated decoder complexity. The
Chase algorithm [54] is one of the most popular techniques
used for near maximum likelihood decoding of block codes.

In 1961, Gorenstein and Zierler [55] extended binary
coding theory to treat nonbinary codes as well, where code
symbols constitute a number of bits, and this led to the
birth of burst-error–correcting codes. They also contrived
a combination of algorithms, which is referred to as the
Peterson–Gorenstein–Zierler (PGZ) algorithm. In 1960, a
prominent nonbinary subset of BCH codes was discovered
by Reed and Solomon [56]; they were named Reed–Solomon
(RS) codes after their inventors. These codes exhibit cer-
tain optimality properties, since their codewords have the
highest possible minimum distance between the legitimate
codewords for a given code rate. This, however, does not
necessarily guarantee attaining the lowest possible BER.
The PGZ decoder can also be invoked for decoding nonbi-
nary RS codes. A range of powerful decoding algorithms for
RS codes was found by Berlekamp [57], [58] and Massey
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[59], [60]. Various soft decision-decoding algorithms were
proposed for soft decoding of RS codes by Oh and Sweeney
[61], [62], Burgesset al. [63], and Honary [45]. In recent
years, RS codes have found many practical applications,
e.g., in compact disc players, in deep-space scenarios [64],
and in the family of digital video broadcasting (DVB)
schemes [65], which were standardized by the European
Telecommunications Standardization Institute.

Inspired by the ancient theory of residue number systems
(RNS) [66]–[68], which constitute a promising number
system for supporting fast arithmetic operations [66], [67],
a novel class of nonbinary codes referred to as redundant
(RRNS) codes were introduced in 1967. An RRNS code is a
maximum–minimum distance block code, exhibiting similar
distance properties to RS codes. Watson and Hastings [68]
as well as Krishnaet al.[69], [70] exploited the properties of
the RRNS for detecting or correcting a single error and also
for detecting multiple errors. Recently, the soft decoding of
RRNS codes was proposed in [71].

During the early 1970s, FEC codes were incorporated in
various deep-space and satellite communications systems
and, in the 1980s, they also became common in virtually
all cellular mobile radio systems. However, for a long time,
FEC codes and modulation have been treated as distinct
subjects in communication systems. By integrating FEC
and modulation, in 1987, Ungerboeck [20]–[22] proposed
TCM, which is capable of achieving significant coding
gains over power and band-limited transmission media. A
further historic breakthrough was the invention of turbo
codes by Berrouet al.[38], [39] in 1993, which facilitate the
operation of communications systems near Shannon limits.
Since its recent invention, turbo coding has evolved at an
unprecedented rate and has reached a state of maturity within
just a few years due to the intensive research efforts of the
turbo coding community. As a result of this dramatic evolu-
tion, turbo coding has also found its way into standardized
systems, such as, e.g., the recently ratified 3G mobile radio
systems [72]. Even more impressive performance gains can
be attained with the aid of turbo coding in the context of
video broadcast systems, where the associated system delay
is less critical, than in delay-sensitive interactive systems.

Turbo coding is based on a composite codec constituted
of two parallel concatenated codecs. More specifically, in
their proposed scheme, Berrouet al. [38], [39] used a par-
allel concatenation of two recursive systematic convolutional
(RSC) codes, accommodating the turbo interleaver between
the two encoders. At the decoder, an iterative structure using
a modified version of the classic minimum BER MAP al-
gorithm invented by Bahlet al. [37] was invoked by Berrou
et al. in order to decode these parallel concatenated codes.
Again, since 1993, a large body of work has been carried out
in the area aiming, e.g., at reducing the associated decoder
complexity. Practical reduced-complexity decoders are, e.g.,
the maximum logarithmic MAP (Max-Log-MAP) algorithm
proposed by Koch and Baier [73], as well as by Erfanianet
al. [74], the Log-MAP algorithm suggested by Robertsonet
al. [75], and the SOVA algorithm advocated by Hagenauer
as well as Hoeher [76], [77]. Le Goffet al.[78], Wachsmann

and Huber [79] as well as Robertson and Worz [80] suggested
using these codes in conjunction with bandwidth efficient
modulation schemes. Further advances in understanding the
excellent performance of the codes are due, e.g., to Benedetto
and Montorsi [81], [82] and Perezet al. [83]. During the
mid-1990s, Hagenaueret al.[84] as well as Pyndiah [85] ex-
tended the turbo concept to parallel concatenated block codes
as well. Nicklet al.[86] show that Shannon’s limit can be ap-
proached within 0.27 dB by employing a simple turbo Ham-
ming code. In [87], Acikel and Ryan proposed an efficient
procedure for designing the puncturing patterns for high-rate
turbo CCs. Jung and Nasshan [88], [89] characterized the
achievable turbo-coded performance under the constraints of
short transmission frame lengths, which is characteristic of
interactive speech systems. In collaboration with Blanz, they
also applied turbo codes to a CDMA system using joint de-
tection and antenna diversity [90]. Barbulescu and Pietrobon
addressed the issues of interleaver design [91]. The tutorial
paper by Sklar [92] is also highly recommended as back-
ground reading.

Driven by the desire to support high data rates for a wide
range of bearer services, Tarokhet al. [13] proposed STT
codes in 1998. By jointly designing the FEC, modulation,
transmit diversity, and optional receive diversity scheme,
they increased the throughput of band-limited wireless
channels. A few months later, Alamouti [23] invented a
low-complexity STB code, which offers significantly lower
complexity at the cost of a slight performance degradation.
Alamouti’s invention motivated Tarokhet al. [24], [25] to
generalize Alamouti’s scheme to an arbitrary number of
transmitter antennas. Then, Bauchet al. [93], [94], Agrawal
[95], Li et al. [96], [97], and Naguibet al. [98] extended
the research of STB and STT codes from considering
narrow-band channels to dispersive channels [13], [17],
[23], [25], [98].

The evolution of channel-coding research over the past 50
years since Shannon’s seminal contribution [27] is shown
in Fig. 1. These milestones have also been incorporated
in the range of monographs and textbooks summarized in
Fig. 2. At the time of this writing, the Shannon limit has
been approached for transmission over Gaussian channels
within 0.27 dB [86]. Now the challenge is to contrive FEC
schemes, which are capable of achieving a performance near
thecapacity of wireless channels. The design of an attractive
channel-coding and modulation scheme depends on a range
of competing factors, which are portrayed in Fig. 3. The
message of this illustration is multifold. For example, given
a certain transmission channel, it is always feasible to design
a joint coding and modulation scheme, which can further
reduce the BER achieved. This typically implies, however,
further complexity and costs and coding/interleaving delay
as well as reduced effective throughput. Different solu-
tions accrue when optimizing different codec features. For
example, in many applications, the most important codec
parameters is the achievable coding gain, which quantifies
the amount of bit-energy reduction at a certain target BER
attained by a codec. Naturally, transmitted power reduction
is extremely important in battery-powered devices. This
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Fig. 1. Brief history of channel coding.

transmitter power reduction is only achievable at the cost
of an increased implementational complexity, which itself
typically increases the power consumption and, hence,
erodes some of the power gain.

Viewing this system-optimization problem from a dif-
ferent perspective, it is feasible to transmit at a higher bit
rate in a given fixed bandwidth by increasing the number
of bits per modulated symbol. However, when aiming for a
given target BER, the channel coding rate has to be reduced
in order to increase the transmission integrity. Naturally,
this reduces theeffective throughputof the system and
results in an overall increased system complexity. When
the channel’s characteristic and the associated bit-error
statistics change, different solutions may become more
attractive. This is because Gaussian channels, narrow-band
and wide-band Rayleigh fading, or various Nakagami fading

channels inflict different impairment. This paper examines
these design tradeoffs and proposes a range of practical
solutions. Following the above historical perspective on
channel coding, in Section III, we will focus our attention on
the family of space–time codes. The motivation of the forth-
coming section is to portray space–time codes as a solution
to creating attractive coding scheme for transmission over
fading wireless rather than conventional Gaussian channels.

III. OVERVIEW OF SPACE–TIME CODES

In this section, we present a brief overview of STB codes
by considering the classic MRC technique [23], [99], [100].
The introduction of this classic technique is important for
understanding the construction of STB codes.
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Fig. 2. Milestones in channel coding.

Fig. 3. Factors affecting the design of channel coding and
modulation schemes.

A. Maximum Ratio Combining

In conventional transmission systems, we have a single
transmitter, which transmits information to a single receiver.

In Rayleigh fading channels, the transmitted symbols expe-
rience severe magnitude fluctuation and phase rotation. In
order to mitigate this problem, we can employ several re-
ceivers that receive replicas of the same transmitted symbol
through independent fading paths. Even if a particular path is
severely faded, we may still be able to recover a reliable es-
timate of the transmitted symbols through other propagation
paths. However, at the station, we have to combine the re-
ceived symbols of the different propagation paths, which in-
volves additional complexity. An optimal combining method
often used in practice is referred to as the MRC technique
[23], [99], [100].

Fig. 4 shows the baseband representation of the classic
MRC technique in conjunction with two receivers. At a par-
ticular instant, a symbol is transmitted. As we can see
from the figure, the transmitted symbolpropagates through
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Fig. 4. Baseband representation of the MRC technique using two
receivers.

two different channels, namely, and . For simplicity, all
channels are assumed to be constituted of a single nondisper-
sive or flat-fading propagation path and can be modeled as
complex multiplicative distortion, which consists of a mag-
nitude and phase response given by

(1)

(2)

where , are the fading magnitudes and, are the
phase values. Noise is unavoidably added by each receiver,
as shown in Fig. 4. Hence, the resulting received baseband
signals are

(3)

(4)

where and are complex noise samples. In matrix form,
this can be written as

(5)

Assuming that perfect channel information is available, the
received signals and can be multiplied by the conju-
gate of the complex channel transfer functionsand ,
respectively, in order to remove the channel’s effects. Then,
the corresponding signals are combined at the input of the
maximum likelihood detector of Fig. 4 according to

(6)

The combined signal is then passed to the maximum like-
lihood detector, as shown in Fig. 4. The most likely trans-
mitted symbol is determined by the maximum likelihood de-
tector based on the Euclidean distances between the com-

bined signal and all possible transmitted symbols. The sim-
plified decision rule is based on choosingif and only if

(7)

where is the Euclidean distance between signals
and and the index spans all possible transmitted sig-

nals. From (7), we can see that maximum likelihood trans-
mitted symbol is the one having the minimum Euclidean dis-
tance from the combined signal.

IV. SPACE–TIME BLOCK CODES

In Section III, we have introduced briefly the classic MRC
technique. In this section we will present the basic principles
of STB codes following the seminal contributions by Tarokh
et al.[23]–[25]. In analogy to the MRC matrix formula of (5),
a STB code describing the relationship between the original
transmitted signal and the signal replicas artificially cre-
ated at the transmitter for transmission over various diver-
sity channels is defined by an dimensional transmis-
sion matrix. The entries of the matrix are constituted of linear
combinations of the-ary input symbols and
their conjugates. The-ary input symbols are
used to represent the information-bearing binary bits to be
transmitted over the transmit diversity channels. In a signal
constellation having constellation points, a numberof
binary bits are used to represent a symbol. Hence, a block
of binary bits are entered into the STB encoder at a time
and it is, therefore, referred to as a STB code. The number
of transmitter antennas isand represents the number of
time slots used to transmitinput symbols. Hence, a general
form of the transmission matrix of a STB code is written as

(8)

where the entries represent linear combinations of the
symbols and their conjugates. More specif-
ically, the entries , where are transmitted si-
multaneously from transmit antennas in each time
slot . For example, in time slot , sig-
nals are transmitted simultaneously from
transmit antennas . We can see in the
transmission matrix defined in (8) that encoding is carried out
in both space and time; hence, the term space–time coding.

The transmission matrix in (8) (which defines the
STB code) is based on a complex generalized orthogonal de-
sign, as defined in [23]–[25]. Since there aresymbols trans-
mitted over time slots, the code rate of the STB code is
given by

(9)

At the receiving end, one can have an arbitrary number
of receivers. It was shown in [23] that the associated
diversity order is . A combining technique [23]–[25]
similar to MRC can be applied at the receiving end, which
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Table 1
Encoding and Transmission Process for theG STB Code of (10)

may be generalized to receivers. Current state-of-the-art
designs assume the associated diversity channels to be flat
fading channels. A possible approach to satisfying this con-
dition for high-rate transmissions over frequency-selective
channels is to split the high-rate bit stream into a large
number of low-rate streams transmitted over flat-fading
subchannels. This can be achieved with the aid of orthogonal
frequency division multiplexing (OFDM) [101]. Then, the
complex fading envelope may be considered constant over

consecutive time slots.

A. Twin-Transmitter-Based STB Code

As mentioned above, the simplest form of STB codes,
which is a simple twin-transmitter-based scheme associated
with , was proposed by Alamouti in [23]. The trans-
mission matrix is

(10)

We can see in the transmission matrix that there are
(number of columns in the matrix ) transmitters,
possible input symbols, namely, , and the code spans
over (number of rows in the matrix ) time slots.
Since and , the code rate given by (9) is unity.
The associated encoding and transmission process is shown
in Table 1.

At any given time instant , two signals are simultane-
ously transmitted from the antennas and . For ex-
ample, in the first time slot associated with , signal
is transmitted from antenna andsimultaneouslysignal

is transmitted from antenna . In the next time slot cor-
responding to , signals and (the conjugates of
symbols and ) are simultaneously transmitted from an-
tennas and , respectively.

1) Space–Time Code Using One Receiver:Let us
now consider an example of encoding and decoding the

STB code of (10) using one receiver. This example can
be readily extended to an arbitrary number of receivers. In
Fig. 5, we show the baseband representation of a simple
two-transmitter STB code, namely, that of the code seen
in (10) using one receiver. We can see from the figure that
there are two transmitters, namely, as well as and
they transmit two signals simultaneously. As mentioned
earlier, the complex fading envelope is assumed to be
constant across the corresponding two consecutive time
slots. Therefore, one can write

(11)

(12)

Fig. 5. Baseband representation of the simple twin-transmitter
STB codeG of (10) using one receiver.

Independent noise samples are added by the receiver in each
time slot and hence the signals received over nondispersive
or narrow-band channels can be expressed with the aid of
(10) as

(13)

(14)

where is the first received signal and is the second. Note
that the received signal consists of the transmitted signals

and , while consists of their conjugates. In order to
determine the transmitted symbols, we have to extract the
signals and from the received signals and . There-
fore, both signals and are passed to the combiner, as
shown in Fig. 5. In the combiner—aided by the channel es-
timator, which provides perfect estimation of the diversity
channels in this example—simple signal processing is per-
formed in order to separate the signalsand . Specifi-
cally, in order to extract the signal , the received signals
and are combined according to

(15)

Similarly, for signal , we generate

(16)

Clearly, from (15) and (16), we can see that we have sep-
arated the signals and by simple multiplications and
additions. Due to the orthogonality of the STB code in
(10) [24], the unwanted signal is canceled out in (15) and
vice versa, signal is removed from (16). Both signals
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Fig. 6. Baseband representation of the simple twin-transmitter STB codeG of (10) using two
receivers.

and are then passed to the maximum likelihood detector of
Fig. 5, which applies (7) to determine the most likely trans-
mitted symbols.

From (15) and (16), we can derive a simple rule of thumb
for manipulating the received signal in order to extract a
symbol . For each received signal , we would have a
linear combination of the transmitted signalsconvolved
with the corresponding channel impulse response (CIR).
The nondispersive CIR is assumed to be constituted by a
single CIR tap corresponding to a complex multiplicative
factor. The conjugate of the CIR should be multiplied with
the received signal , if is in the expression of the re-
ceived signal . However, if the conjugate of , namely,
is present in the expression, we should then multiply the CIR

with the conjugate of the received signal, namely, .
The product should then be added to or subtracted from the
intermediate result, depending on the sign of the term in the
expression of the received signal.

2) Space–Time Code Using Two Receivers:In Sec-
tion IV-A1, we have shown an example of the encoding and
decoding process for the STB code of (10) using one re-
ceiver. However, this example can be readily extended to an
arbitrary number of receivers. The encoding and transmis-
sion sequence will be identical to the case of a single receiver.
For illustration, we discuss the specific case of two trans-
mitters and two receivers, as shown in Fig. 6. We will show,
however, that the generalization toreceivers is straightfor-
ward. In Fig. 6, the subscriptin the notation , , and

represents the receiver index. By contrast, the subscript
denotes the transmitter index in the CIR, but it denotes

the time slot in and . Therefore, at the first receiver
, we have

(17)

(18)

while at receiver , we have

(19)

(20)

We can, however, generalize these equations to

(21)

(22)

where and is the number of receivers, which
is equal to two in this example. At the combiner of Fig. 6,
the received signals are combined to extract the transmitted
signals and from the received signals , , , and

according to

(23)

(24)

Again, we can generalize the above expressions tore-
ceivers, yielding

(25)

(26)

Finally, we can simplify (23) and (24) to

(27)

(28)

194 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 2, FEBRUARY 2002



In the generalized form of receivers, we have

(29)

(30)

Signals and are finally derived and passed to the max-
imum likelihood detector seen in Fig. 6. Again, (7) is applied
to determine the maximum likelihood transmitted symbols.

We observe in (29) that signal is multiplied by a term re-
lated to the fading amplitudes, namely, . Hence,
in order to acquire a high-reliability signal , the amplitudes
of the CIRs must be large. If the number of receivers is equal
to one, i.e., , then (29) is simplified to (15). In (15), we
can see that there are two fading amplitude terms, i.e., two
independent paths associated with transmitting the symbol

. Therefore, if either of the paths is in a deep fade, the
other path may still may provide a high reliability for the
transmitted signal . This explains why the performance of
a system having two transmitters and one receiver is better
than that of a system employing one transmitter and one re-
ceiver. On the other hand, in the conventional single-trans-
mitter single-receiver system, there is only a single propaga-
tion path, which may be severely attenuated by a deep fade.
To elaborate further, if the number of receivers is increased
to , (27) results from (29). We can see in (27) that there
are now twice as many propagation paths, as in (15). This
increases the probability of providing a high reliability for
signal .

B. Other STB Codes

In Section IV-A, we have detailed Alamouti’s simple two-
transmitter STB code, namely, the code of (10). This
code is significantly less complex than the STT codes of
[13]–[18], which use two transmit antennas. However, again,
there is a performance loss compared to the STT codes of
[13]–[18]. Despite its performance loss, Alamouti’s scheme
[23] is appealing in terms of its simplicity. This motivated
Tarokhet al. [24] to search for similar schemes using more
than two transmit antennas. In [24], the theory of orthogonal
code design was invoked in order to construct STB codes
having more than two transmitters. The half-rate STB code
employing three transmitters was defined [24]

(31)

Table 2
Different STB Codes

and the four-transmitter half-rate STB code was specified
[24]

(32)

By employing the STB codes and , we can see that
the bandwidth efficiency has been reduced by a factor of two
compared to the STB code . Furthermore, the number of
transmission slots across that the channels is required to have
a constant fading envelope is eight, namely, four times higher
than that of the space–time code .

In order to increase the associated bandwidth efficiency,
Tarokhet al.constructed the three-quarter rate so-called gen-
eralized complex orthogonal sporadic codes [24], [25]. The
corresponding three-quarter rate three-transmitter STB code
is given by [24]

(33)

while the three-quarter rate four-transmitter STB code is de-
fined as shown in (34) at the bottom of the next page [24].

In Table 2, we summarize the parameters associated with
all STB codes proposed by Alamouti [23] as well as Tarokh
et al. [24], [25]. The decoding algorithms and the corre-
sponding performances of the STB codes were given in [25].

V. CHANNEL-CODED SPACE–TIME BLOCK CODES

In Section IV, we have given a detailed illustration of
the concept of STB codes. Recently, Bauch [102] derived
a simple symbol-by-symbol MAP decoding rule for STB
codes. The soft-outputs provided by the space–time MAP
decoder can be used as the input to channel decoders such
as, e.g., turbo codes, which may be concatenated for further
improving the system’s performance. Accordingly, in this

LIEW AND HANZO: SPACE–TIME CODES AND CONCATENATED CHANNEL CODES 195



Fig. 7. System overview of STB codes and different channel coding schemes.

section, we concatenate STB codes with CCs [29], [103],
[104], turbo convolutional (TC) codes [38], [39], turbo
BCH (TBCH) codes [84], TCM [20], [21], and TTCM
[80]. The performances and estimated complexities of the
schemes will be studied and compared. We will also address
the issue of mapping channel-coded bits of the TC and
TBCH schemes to different protection classes in multilevel
modulations [101].

CCs were first suggested by Elias [29] in 1955. The VA
was proposed by Viterbi [34], [35] in 1967 for the maximum
likelihood decoding of CCs. As an alternative decoder, the
more complex MAP algorithm, which provides the optimum
BER performance, was proposed by Bahl [37], although this
was not significantly better than that of the VA. In the early
1970s, CCs were used in deep-space and satellite communi-
cations. They were then also adopted by the Global System
of Mobile Communications (GSM) [72] for the pan-Euro-
pean digital cellular mobile radio system.

In 1993, Berrouet al. [38], [39] proposed a novel channel
code, referred to as a turbo code. The turbo encoder consists
of two component encoders. Generally, CCs are used as the
component encoders and the corresponding turbo codes are
termed here as a TC code. However, BCH [72], [105] codes
can also be employed as their component codes, resulting in
the TBCH codes. They have been shown, e.g., by Hagenauer
et al.[84] and Niklet al.[86] to perform impressively at near-
unity coding rates, although at a higher decoding complexity
than that of the corresponding-rate TCs.

In 1987, Ungerboeck [20], [21] invented TCM by com-
bining the design of channel coding and modulation. TCM
optimizes the Euclidean distance between codewords and
hence maximizes the coding gain. In [80], Robertsonet al.

applied the basic idea of turbo codes [38], [39] to TCM by re-
taining the important properties and advantages of both struc-
tures. In the resultant TTCM scheme, two Ungerboeck codes
[20], [21] are employed in combination with TCM as com-
ponent codes in an overall structure similar to that of turbo
codes.

A. System Overview

A schematic of the proposed concatenated STB codes and
the different channel coding schemes is shown in Fig. 7. As
mentioned above, the investigated channel coding schemes
are CC, TC codes, TBCH codes, TCM, and TTCM. The
information source in the transmitter of Fig. 7 generates
random data bits. The information bits are then encoded by
each of the above five different channel coding schemes.
However, as seen in Fig. 7 only the output binary bits of the
CC, TBCH, and TC coding schemes are channel interleaved.
The role of the interleaver will be detailed in Section VI-B.

The output bits of the TCM and TTCM scheme are passed
directly to the mapper in Fig. 7, which employs two different
mapping techniques. Gray mapping [78], [105] is used for
the CC, TBCH, and TC schemes, whereas set-partitioning
[20]–[22], [80] is utilized for the TCM and TTCM scheme.
Different modulation schemes are employed, namely, binary
phase shift keying (BPSK), quadrature phase shift keying
(QPSK), 8-level phase shift keying (8PSK), 16-level quadra-
ture amplitude modulation (16QAM), and 64-level quadra-
ture amplitude modulation (64QAM) [101].

Following the mapper, the channel-coded symbols are
passed to the STB encoder, as shown in Fig. 7. Below,
we will investigate the performance of all the previously

(34)

196 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 2, FEBRUARY 2002



mentioned STB codes, namely, that of the, , , ,
and codes proposed in [23]–[25]. The corresponding
transmission matrices are given in (10) and (31)–(34),
respectively. The coding rate and number of transmitters of
the associated STB codes is shown in Table 2. The channels
are uncorrelated (or synonymously perfectly interleaved)
narrow-band or nondispersive Rayleigh fading channels.
This assumption does not contradict to requiring a constant
channel magnitude and phase over(number of rows in
the transmission matrix) consecutive symbols, since upon
applying a sufficiently long channel interleaving depth,
the channels’ fading envelope can indeed become near
uncorrelated. We assumed that the narrow-band fading
amplitudes received from each transmitter antenna are
mutually uncorrelated Rayleigh distributed processes. The
average signal power received from each transmitter antenna
is the same. Furthermore, we assume that the receiver has
a perfect estimate of the channels’ fading amplitudes. In
practice, the channels’ fading amplitude can be estimated,
e.g., with the aid of pilot symbols [101].

At the receiver, the number of receiver antennas con-
stitutes a design parameter, which is fixed to one unless
specified otherwise. The STB decoders apply the MAP or
Log-MAP decoding algorithm of [102] for the decoding
of the signals received from the different antennas. Due
to its implementational simplicity, the Log-MAP decoding
algorithm is preferred in the proposed system. The soft
outputs associated with the received bits or symbols are
passed through the channel deinterleaver or directly to the
TCM/TTCM decoder, respectively, as seen in Fig. 7. The
channel-deinterleaved soft outputs of the received bits are
then passed to the CC, TC, or TBCH decoders. The VA [34],
[35] is applied in the CC and TCM decoder. By contrast, all
turbo decoder schemes apply the Log-MAP [39], [80], [84]
decoding algorithm. The decoded bits are finally passed to
the information sink for calculation of the BER, as shown
in Fig. 7.

B. Channel-Codec Parameters

In Fig. 7, we have given an overview of the proposed
system. As we can see in Fig. 7, there are different channel
encoders to be considered, namely, the CC, TC, TBCH,
TCM, and TTCM schemes. In this section, we present
the parameters of all the channel codecs to be used in our
investigations.

Table 3 shows the parameters of each channel encoder
proposed in the system. We commence with the most
well-known channel code, namely, the CC. A CC is de-
scribed by three parameters, , and and it is denoted
as ( ). At each instant, a ( ) encoder
accepts input bits and outputs coded bits. The constraint
length of the code is and the number of encoder states is
equal to . The channel-coded rate is given by

(35)

Different code rates can be obtained by suitable puncturing
[106] and we will elaborate on this issue later in the section.

Table 3
Parameters of the Different Channel Encoders Used in Fig. 7

The first entry of Table 3 is the CC ( ), which
was adopted by the GSM standardization committee in
1982 [72], [107]. Then, in 1996, a more powerful CC, the

( ) arrangement, was employed by the DVB [65]
standard for television, sound, and data services. Recently,
the Universal Mobile Telecommunication System (UMTS)
proposed the use of the ( ) scheme, which is also
shown in Table 3. The implementation of this scheme is
about 16 times more complex than that of the( )
scheme adopted by GSM some 15 years ago. This clearly
shows that the advances of integrated circuit technology
have substantially contributed to the performance improve-
ment of mobile communication systems.

As mentioned earlier, a turbo encoder consists of two
component encoders. Generally, two identical RSC codes
are used. Berrouet al. [38], [39] used two constraint length

, RSC codes, each having four trellis states. We
denote a TC code as ( ), where , , and
have their usual interpretations, as in CC. In [38] and
[39], the MAP algorithm [37] was employed for iterative
decoding. However, in our systems, the Log-MAP decoding
algorithm [75] is utilized. The Log-MAP algorithm is a
more attractive version of the MAP algorithm, since it
operates in the logarithmic domain in order to reduce the
computational complexity and to mitigate the numerical
problems associated with the MAP algorithm [75]. The
number of turbo iterations was set to eight, since this yielded
a performance close to the optimum performance associated
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Table 4
Simulation Parameters Associated With the CC and TCM
Channel Encoders in Fig. 7

with an infinite number of iterations. In our investigations,
we will consider the TC code ( ), proposed in [38],
[39]. However, the more complex ( ) code [108]
was proposed by UMTS to be employed in the 3G mobile
communication systems [1], [72], [109]. The ( )
code is also interesting, since it is expected to provide
further significant coding gains over that of the ( )
and ( ) code.

BCH codes [72] are used as the component codes in the
TBCH codes of Table 3. Again, TBCH codes have been
shown, e.g., by Hagenaueret al. [84] and Nikl et al. [86] to
perform impressively at near-unity coding rates, although
at high complexity. Hence, in our study, the BCH compo-
nent codes ( ), ( ), ( ), and

( ) are employed, as shown in Table 3. Finally,
we also investigate TCM and TTCM. Both of them are
employed in 8PSK and 16QAM modulation modes. This
results in 8PSK-TCM, 16QAM-TCM, 8PSK-TTCM, and
16QAM-TTCM, respectively.

In Table 3, we give the encoding and decoding parame-
ters of the different channel encoders employed. However, as
mentioned earlier, we can design codes of variable code rates

by employing suitable puncturing patterns. By combining
puncturing with different modulation modes, we could de-
sign a system having a range of various throughputs, ex-
pressed in terms of the number of bits per symbol (BPS),
as shown in Tables 4 and 5. Some of the parameters in Ta-
bles 4 and 5 are discussed in depth during our further dis-
course, but significantly more information can be gleaned
concerning these systems by carefully studying both tables.

In Table 4, we summarize the simulation parameters of the
CC and TCM schemes employed. Since there are two coded
bits ( ) for each data bit ( ), we have two possible
puncturing patterns, as shown in Table 4. A binary 1 means
that the coded bit is transmitted, whereas a binary 0 implies
that the coded bit is punctured. Accordingly, the puncturing
pattern (1, 1) simply implies that no puncturing is applied

and, hence, results in a half-rate CC. However, in the DVB
standard [65], different puncturing patterns were proposed
for the ( ) code, which result in different coding
rates. These are also shown in Table 4.

In Table 5, the simulation parameters of three different
turbo schemes, namely, those of the TC, TBCH, and TTCM
arrangements are given. Again, different code rates can be
designed using suitable puncturing patterns, where the punc-
turing patterns seen in Table 5 consist of two parts. Specif-
ically, the associated different puncturing patterns represent
the puncturing patterns of the parity bits emanating from the
first and the second encoder, respectively. These patterns are
different from the puncturing patterns seen in Table 4. For
the ( ) scheme, different puncturing patterns are em-
ployed for the various code rates. The puncturing patterns
were optimized experimentally by simulation in order to at-
tain the best possible BER performance. The design proce-
dure for punctured turbo codes was proposed by Acikelet al.
[87] in the context of BPSK and QPSK.

C. Complexity Issues and Memory Requirements

In this section, the complexity issues and memory require-
ments of the proposed system are addressed. We will mainly
focus on the relative estimated complexity and memory re-
quirements of the proposed channel decoders rather than at-
tempting to determine their exact complexity. Therefore, sev-
eral assumptions are made in order to simplify our compar-
ative study. In our simplified approach, the estimated com-
plexity of the whole system is deemed to depend only on
that of the channel decoders. In other words, the complexity
associated with the modulator, demodulator, space–time en-
coder, and decoder as well as channel encoders are assumed
to be insignificant compared to the complexity of channel de-
coders.

Since the estimated complexity of the channel decoders
depends directly on the number of trellis transitions, the
number of trellis transitions per information data bit will
be used as the basis of our comparison. Several channel
encoder schemes in Table 3 are composed of CCs. For the
binary CC ( ), two trellis transitions diverge from
each of the states. Hence, we can approximate the
complexity of a ( ) code as

(36)

The number of trellis transitions in the Log-MAP decoding
algorithm is assumed to be three times greater, than that of the
conventional VA, since the Log-MAP algorithm has to per-
form forward as well as backward recursion and soft output
calculations, which results in traversing through the trellis
three times. The reader is referred to [37] for further details
of the algorithm. For TC codes, we apply the Log-MAP de-
coding algorithm for iterative decoding, assisted by the two
component decoders. Upon taking into account the number
of turbo decoding iterations as well, the complexity of TC
decoding is approximated by

(37)
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Table 5
Simulation Parameters Associated With the TC, TBCH, and TTCM Channel Encoders in Fig. 7

In TCM, we construct a nonbinary decoding trellis [22].
The TCM schemes of Table 3 have trellis branches
diverging from each trellis state, where is the number
of transmitted bits per modulation symbol. However, for each
trellis transition, we have transmitted information
data bits, since the TCM encoder typically adds one parity
bit per nonbinary symbol. Therefore, we can estimate the
complexity of the proposed TCM schemes as

(38)

Similarly to TC, TTCM consists of two TCM codes and the
Log-MAP decoding algorithm [80] is employed for itera-
tive decoding. The associated TTCM complexity is then es-
timated as

(39)

For ( ) codes, the complexity estimation is not
as straightforward as in the previous cases. Its component
codes are ( ) codes and the decoding trellis can be
divided into three sections [44]. Assuming that ,
for every decoding instant, the number of trellis states is
given [44]

.
(40)

It can be readily shown that

(41)

(42)
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Upon using the approximation
, we can write the number of

decoding trellis states per information data bit as

(43)

Having derived the number of decoding trellis states per in-
formation data bit, we can approximate the complexity of
TBCH codes as

(44)

With the complexity of each channel decoder in hands,
we will now derive their approximate memory require-
ments. Typically, the memory requirement of a channel
decoder depends directly on the number of trellis states
in the entire coded block. Therefore, in this section, the
number of trellis states per coded block serves as the basis
of a relative memory requirement comparison between the
channel decoders studied. For a binary CC, observation of
the VA has shown that typically all surviving paths of the
current trellis state emerge from trellis states not “older”
than approximately five times the constraint length[101].
Therefore, at any decoding instant, only a section of
trellis transitions has to be stored. We can then approximate
the associated memory requirement as

(45)

Again, as highlighted in [37], the Log-MAP algorithm re-
quires the storage of, , and values. Hence, for the same
number of decoding trellis states, the Log-MAP algorithm re-
quires about three times more memory than the classic VA.
Consequently, we can estimate the memory requirement of
the TC code as

(46)

Similarly to CCs, we can approximate the memory re-
quirements of TCM as

(47)

Following similar arguments, the memory requirements of
TTCM employing the Log-MAP algorithm can be approxi-
mated as

(48)
The estimation of the memory requirements of TBCH

codes is again different from that of the other channel codes
considered. Specifically, their memory requirement does not
directly depend on the number of decoding trellis states in
a coded TBCH block. Instead, it depends on the number of

decoding trellis states in the constituent BCH codewords.
From (43), we can estimate the associated memory require-
ments as

(49)

Applying (36)–(49), we summarize the estimated com-
plexity and memory requirements of the channel decoders
characterized in Table 3. Explicitly, assuming that there are
10 000 information data bits per coded block, the associated
estimated complexity and memory requirements are then
given in Table 6. Note that the block length of TCM and
TTCM is expressed in terms of the number of symbols per
coded block, since these schemes are symbol-oriented rather
than bit-oriented.

VI. PERFORMANCERESULTS

In this section, unless otherwise stated, all simulation re-
sults are obtained over uncorrelated (or perfectly interleaved)
narrow-band or nondispersive Rayleigh fading channels. As
stated before, this does not contradict requiring a constant
channel magnitude and phase overconsecutive time slots
in (8), since upon applying a sufficiently high interleaving
depth, the channel’s fading envelope can be indeed uncorre-
lated. Our assumptions are that:

1) the fading amplitudes are constant acrossconsecu-
tive transmission slots of the STB codes’ transmission
matrix;

2) the average signal power received from each trans-
mitter antenna is the same;

3) the receiver has perfect knowledge of the channels’
fading amplitudes.

We note that the above assumptions are unrealistic, yielding
the best-case performance, nonetheless facilitating the per-
formance comparison of the various techniques under iden-
tical circumstances.

In the following sections, we compare the performance of
various combinations of STB codes and channel codes. As
mentioned earlier, various code rates can be used for both
the STB codes and for the associated channel codes. The dif-
ferent modulation schemes employed result in various effec-
tive throughputs. Hence, for a fair comparison, all different
systems are compared on the basis of the same effective BPS
throughput given by

(50)

where and are the code rates of the STB code and
the channel code, respectively.

A. Performance Comparison of Various STB Codes Without
Channel Codecs

In this section, the performances of various STB codes
without channel codes are investigated and compared. All
the investigated STB codes, namely, the, , , ,
and codes [23]–[25] have their corresponding transmis-
sion matrices given in (10) and (31)–(34), respectively. The
encoding parameters are summarized in Table 2.
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Table 6
Complexity and Memory Requirements of the Different Channel Decoders Characterized in Table 3

1) Maximum Ratio Combining and the Space–Time
Code : Fig. 8 shows the performance of MRC and the
space–time code using BPSK over uncorrelated Rayleigh
fading channels. It is assumed that the total power received
from both transmit antennas in the space–time-coded system
using of (10) is the same as the transmit power of the
single transmit antenna assisted MRC system. It can be seen
in Fig. 8 that the performance of the space–time code
is about 3 dB worse than that of the MRC technique using
two receivers, even though both systems have the same
diversity order of two—the code uses two transmitters,
while the MRC scheme two receivers. The 3-dB penalty
is incurred because the transmit power of each antenna in
the space–time-coded arrangement is only half of the
transmit power in the MRC assisted system. It is shown in
Fig. 8, however, that at a BER of 10, a diversity gain
of 20 dB is achieved by the space–time code. If we
increase the diversity order to four by using two receivers,
the space–time code achieves a diversity gain of 32
dB. However, there is still a 3-dB performance penalty
as compared to the conventional MRC technique using
four receivers. The advantage of the space–time-coded
scheme is nonetheless that the increased complexity of the
space–time-coded transmitter is more affordable at the BS
than at the MS, where the MRC receiver would have to be
located.

Fig. 8. Performance comparison of the MRC technique and
space–time codeG using BPSK over uncorrelated Rayleigh
fading channels.

2) Performance of 1-BPS Schemes:Figs. 9 and 10 com-
pare the performances of the space–time codes, , and

having an effective throughput of 1 BPS over uncorre-
lated Rayleigh fading channels using one and two receivers,
respectively. BPSK modulation was employed in conjunc-
tion with the space–time code . As shown in Table 2, the

LIEW AND HANZO: SPACE–TIME CODES AND CONCATENATED CHANNEL CODES 201



Fig. 9. Performance comparison of the space–time codesG ,G
andG of Table 2 at an effective throughput of 1 BPS using one
receiver over uncorrelated Rayleigh fading channels.

Fig. 10. Performance comparison of the space–time codesG ,
G , andG of Table 2 at an effective throughput of 1 BPS using
two receivers over uncorrelated Rayleigh fading channels.

space–time codes and are half-rate codes. Therefore,
QPSK modulation was used in the context of and
in order to retain a throughput of 1 BPS. It can be seen in
Fig. 9 that at a BER of 10 , the space–time codes and

give about 5- and 7.5-dB gain over the code, respec-
tively. If the number of receivers is increased to two, as shown
in Fig. 10, the associated gain reduces to about 1- and
3.5-dB, respectively. The reason is that over the perfectly in-
terleaved flat-fading channel considered much of the attain-
able diversity gain is already achieved using thecode and
two receivers. The associated gains of the various schemes at
a BER of 10 are summarized in Table 7.

3) Performance of 2-BPS Schemes:In Fig. 11, we
compare the performances of the space–time codes

and proposed in [23]–[25] using the
encoding parameters summarized in Table 2. The perfor-
mance results were obtained over uncorrelated Rayleigh
fading channels using one receiver and the effective
throughput of the system is about 2 BPS. For thecode,

Table 7
Coding Gain of the STB Codes of Table 2 Over Uncorrelated
Rayleigh Fading Channels at BER= 10

Fig. 11. Performance comparison of the space–time codesG ,
G ,G ,H , andH at an effective throughput of approximately 2
BPS using one receiver over uncorrelated Rayleigh fading channels.
Associated parameters of the space–time codes are summarized in
Table 2.

QPSK modulation is used, while the and codes
employ 16QAM conveying 4 BPS. Hence, the effective
throughput is 2 BPS, since and are half-rate codes.
Since the code rate of the and codes is 3/4, 8PSK
modulation was employed in this context, resulting in a
throughput of 3 3/4 2.25 BPS, which is approximately
2 BPS. We can see in Fig. 11 that at high BERs or low

values, the code slightly outperforms the others.
However, the situation is reversed when the system is
operated at a low BER or high values. At a BER of
10 , the code only gives a diversity gain of 5 dB over
the code. This is a 2.5-dB loss compared to the 7.5-dB
gain achieved by the system transmitting at an effective
throughput of 1 BPS in the previous section. This is because
the more vulnerable 16QAM scheme was used for the
space–time code . Since the 16QAM signal constellation
is more densely packed compared to QPSK, it is more prone
to errors. Moreover, the space–time code has no error
correction capability to correct the extra errors induced
by employing a more vulnerable higher order modulation
scheme. Hence, this results in a poorer performance. If
the throughput of the system is increased by employing a
higher order modulation scheme, the space–time code
will suffer even higher performance degradations, as shown
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Fig. 12. Performance comparison of the space–time codesG ,
G , G , H , andH of Table 2 at an effective throughput of 3
BPS using one receiver over uncorrelated Rayleigh fading channels.

Section VI-A4. Since the space–time code of Table 2
is also a half-rate code, similarly to the code, it suffers
from the same drawbacks.

In Fig. 11, we also show the performance of the three-
quarter rate space–time codes and of Table 2. Both
the and codes have the same diversity order of four in
conjunction with one receiver. However, at a BER of 10,
the performance of the code is about 0.5 dB better than
that of the code. This is again due to the higher order
modulation employed in conjunction with the half-rate code

in order to maintain the same throughput. As noted ear-
lier, the higher order modulation schemes are more suscep-
tible to errors and hence the performance of the system in
conjunction with the or code of Table 2 is worse than
that of the or code having the same diversity order,
respectively. The associated gains of the various schemes at
a BER of 10 are summarized in Table 7.

4) Performance of 3-BPS Schemes:Figs. 12 and 13 show
performance comparisons for the space–time codes, ,

, , and of Table 2 at an effective throughput of 3
BPS over uncorrelated Rayleigh fading channels using one
and two receivers, respectively. When using thecode, we
employ 8PSK modulation. Since and are half-rate
codes, 64QAM is employed in order to obtain an effective
throughput of 3 BPS. By contrast, for the and codes,
which have a code rate of 3/4, 16QAM was used in order to
ensure the same throughput of 43/4 3 BPS.

In Fig. 12 we can see that at a BER of 10, the diversity
gain of the code over the code is further reduced to
about 3 dB. There is only a marginal diversity gain for the
code over the code. As alluded to in the previous section,
64QAM in conjunction with the space–time code or
has a densely packed signal constellation and, hence, this
scheme is prone to errors. At the higher BER of 10, the
code outperforms the and codes by approximately 3
and 4 dB, respectively.

Due to the associated higher order modulation scheme em-
ployed, we can see in Fig. 12 that at a BER of 10, the

Fig. 13. Performance comparison of the space–time codesG ,
G ,G ,H , andH of Table 2 at an effective throughput of 3 BPS
using two receivers over uncorrelated Rayleigh fading channels.

and codes of Table 2 outperform both the and the
codes. Specifically, we can see that thecode attains about
2-dB gain over the code, even though it has a lower di-
versity order.

If we increase the number of receivers to two, a scenario
characterized in Fig. 13, the performance degradation of the
space–time codes and is even more pronounced. At
a BER of 10 , the performance gain of the code over
the code is approximately 4 dB compared to the 0.5-dB
gain, when the system’s effective throughput is only 2 BPS,
as shown in Fig. 11.

Studying Figs. 9–13, we may conclude two important
points. First, the space–time codes and of Table 2
suffer from having a code rate of half, since this significantly
reduces the effective throughput of the system. In order to
maintain the same throughput as the unity rate code,
higher order modulation schemes, such as 64QAM, have
to be employed. This results in more channel errors, since
the constellation points of the higher order modulation
schemes are more densely packed. Due to their lack of
error correcting capability, the and codes suffer
performance losses compared to thecode. Second, if the
number of receivers is increased to two, the performance
gain of the , , , or codes over the code
becomes smaller. The reason behind this phenomenon is that
much of the attainable diversity gain was already achieved
using the code and two receivers. The associated gains
of the various schemes at a BER of 10are summarized
in Table 7.

5) Channel-Coded STB Codes:In the previous sections,
we have shown that without channel coding, the performance
of the unity-rate space–time code is inferior to the lower
rate space–time codes, namely, to that of the, , ,
and schemes. Since the space–time codehas a unity
code rate, half-rate turbo codes can be employed for im-
proving the performance of the system. In Fig. 14, we com-
pare the performance of the half-rate ( ) code con-
catenated with the space–time code and with the STB
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Fig. 14. Performance comparison of the half-rateTC(2; 1; 4) code
concatenated with the space–time codeG and the STB codesG
andH . Associated parameters are shown in Tables 2, 3, and 5. All
simulation results were obtained at an effective throughput of 3 BPS
over uncorrelated Rayleigh fading channels.

codes and . Both the space–time codes and
have a diversity gain of four and a code rate of 1/2 and 3/4,
respectively. The associated parameters are shown in Tables
2, 3, and 5. Suitable modulation schemes were chosen so that
all systems had the same throughput of 3 BPS. All simula-
tion results were obtained over uncorrelated Rayleigh fading
channels.

From Fig. 14, we can see that a huge performance
improvement is achieved by concatenating the space–time
code with the half-rate code ( ). At a BER of
10 , this concatenated scheme attains a coding gain of 16
and 13 dB compared to the space–time codesand ,
respectively. This clearly shows that it is better to invest
the parity bits associated with the code-rate reduction in
the concatenated turbo code, rather than in nonunity-rate
STB codes. In Fig. 14, we also show the performance of
the space–time code concatenated with the punctured
two-third-rate code ( ). Fig. 14 shows that the

( ) code improves the performance of the system
tremendously, attaining a coding gain of 11 dB compared to
the nonturbo-coded space–time code at BER .
However, its performance is still inferior to that of the
half-rate ( )-coded space–time code .

In conclusion, in Fig. 14, we have seen that the reduc-
tion in coding rate is best assigned to turbo channel codes,
rather than space–time codes. Therefore, in all our forth-
coming simulations, all channel codecs of Table 3 are con-
catenated with the unity-rate space–time code, instead of
the nonunity-rate space–time codes, , , and of
Table 2.

B. Mapping Binary Channel Codes to Multilevel
Modulation

As mentioned earlier in our investigations, different mod-
ulation schemes are employed in conjunction with the bi-
nary channel codecs CC, TC, and TBCH. Specifically, the

modulation schemes used are BPSK, QPSK, 8PSK, 16QAM,
and 64QAM. Gray mapping [100], [101], [105] is employed
to map the bits to the QPSK, 8PSK, 16QAM, and 64QAM
symbols. In higher order modulation schemes, such as 8PSK,
16QAM, and 64QAM, there are several transmitted bits per
constellation point. However, the different bit positions of
the constellation points have different noise-protection dis-
tances [101]. More explicitly, the protection distance is the
Euclidean distance from one constellation point to another,
which results in the corruption of a particular bit. A larger
noise-protection distance results in a higher integrity of the
bit and vice versa. Therefore, for the different bit positions
in the symbol, we have different protections for the trans-
mitted bits within the phaser constellation of the nonbinary
modulation schemes. It can be readily shown that in 8PSK
and 16QAM, we have two protection classes, namely, class
I and II [101], [105], where the class I transmitted bits are
more protected. Similarly, in 64QAM, we have three protec-
tion classes, namely, I, II, and III [101], where the transmitted
bits in class I are most protected, followed by class II and
class III.

In our system, the parity bits are generated by binary
channel encoders, such as the CC, TC, and TBCH schemes
for protecting the binary data bits. However it is not intuitive
whether the integrity of the data or parity bits is more
important in yielding a better overall BER performance. For
example, if the parity bits are more important, it is better
to allocate the parity bits to the better protection classes in
higher order modulation scheme and vice versa. Therefore,
in this section, we will investigate the performance of
different channel codes along with different bit mapping
schemes. The effect of the bit interleaver seen in Fig. 7 is
studied in conjunction with binary channel codes as well.

1) Turbo Convolutional Codes—Data and Parity Bit
Mapping: We commence by studying half-rate TC codes,
which are characterized in Table 3. An equal number of
parity and data bits are generated by the half-rate TC codes
and they are mapped to the protection classes of the 16QAM
scheme considered. Again, in the Gray-mapping-assisted
16QAM constellation, there are two protection classes [101],
class I and II, depending on the bit position. Explicitly, there
are 4 BPS in the 16QAM constellation and two of the bit
positions are more protected than the remaining two bits.

In Fig. 15, we compare the performance of various parity
and data bit mapping schemes for the: 1) ( ); 2)

( ); and 3) ( ) codes. The curve marked by
triangles represents the performance of the TC codes, when
allocating the parity bits to the higher integrity protection
class I and the data bits to the lower integrity protection class
II. On the other hand, the performance curve marked by dia-
monds indicates the allocation of data bits to protection class
I, while the parity bits are assigned to protection class II.

In Fig. 15(a), we can see that at low values, the per-
formance of the ( ) code when allocating the parity
bits to protection class I is worse than allocating the data bits
to protection class I. However, for values in excess
of about 4 dB, the situation is reversed. At a BER of 10,
there is a performance gain of about 1 dB when using the
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(a)

(b)

(c)

Fig. 15. Performance comparison of various data and parity bit
allocation schemes for the (a)TC(2; 1; 3), (b)TC(2;1; 4), and (c)
TC(2;1; 5) codes, where the parameters are shown in Table 3. All
simulation results were obtained upon employing the space–time
codeG using one receiver and 16QAM over uncorrelated Rayleigh
fading channels at an effective throughput of 2 BPS.

( ) arrangement with the parity bits allocated to pro-
tection class I. We surmise that by protecting the parity bits
better, we render the ( ) code more powerful. This
is related to the observation that stronger channel codes typi-
cally perform worse than weaker codes at low values,
but naturally, these stronger codes outperform their less pow-
erful counterparts at high values. This is justified by
the fact that the more powerful and, hence, higher minimum
distance codes are expected to inflict a higher number de-
coding errors in case of an erroneous decision, which fre-
quently occur under conditions. This is further justi-
fied in Fig. 16. Here, we show the performance of hard-de-
cision algebraic decoding of the ( ), ( ),
and ( ) codes using BPSK over additive white

Fig. 16. Performance comparison of hard decision algebraic
decoding of different BCH codes having approximately the same
code rate ofR = 0:57, using BPSK over AWGN channels.

gaussian noise (AWGN) channels. All BCH codes charac-
terized in Fig. 16 have approximately the same code rate,
which is . From Fig. 16, we can see that at a BER
of 10 , the performance of the BCH codes improves with
an increasing codeword length. However, at a high BER
or low value, we can see that the performance of
the ( ) code is better than that of the ( )
and ( ) codes, which are stronger channel codes,
i.e., because stronger codes have many codewords having a
large free distance. At low signal-to-noise ratios, we have
bad channel conditions and, hence, the channel might corrupt
even those codewords having a large free distance. Once they
are corrupted, they produce many erroneous information bits,
a phenomenon which results in a poorer BER performance.

In Fig. 15(b), we show the performance of the ( )
code using the same data and parity bit allocation as in
Fig. 15(a). The figure clearly shows that the ( )
scheme exhibits a better performance for values
below about 4.7 dB, if the data bits are more strongly
protected than the parity bits. It is also seen from the figure
that the situation is reversed for values above this
point. This phenomenon is different from the behavior
of the ( ) scheme, since the crossover point of
the curves occurs at a significantly lower BER. The same
situation can be observed for the BCH codes characterized
in Fig. 16, where we can see that the performance curve of
the ( ) code crosses the performance curve of
the ( ) scheme at 4 dB. This value is
lower than the crossover point of the performance curves of
the ( ) and ( ) codes. Hence, the trend is
that the crossover point of stronger codes is shifted to right
of the figure. Hence, the crossover point of the performance
curves of stronger codes will occur at lower BERs and
shifted to the right on the scale. From the above
argument, we can speculate also in the context of TC codes
that since the ( ) scheme is a stronger code than
the ( ) arrangement, the crossover point of the
associated performance curves for ( ) is at a lower
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BER than that of the ( ) code and appears to be
shifted to right on the scale.

Let us now consider the same performance curves in the
context of the significantly stronger ( ) code in
Fig. 15(c). The figure clearly shows that better performance
is yielded in the observed range, when the data bits are more
strongly protected. Unlike in Fig. 15(a) and (b), there is no
visible crossover point in Fig. 15(c). However, judging from
the gradient of both curves, if we were to extrapolate the
curves in Fig. 15(c), they might cross at BER10 . The
issue of data and parity bit mapping to multilevel modulation
schemes was also addressed by Goffet al.[78]. However, the
authors only investigated the performance of the( )
code and stated that better performance is achieved by
protecting the data bits more strongly. Additionally, we note
here that the situation was reversed for the( ) code,
where better performance was achieved by protecting the
parity bits more strongly.

Hence, from the three subfigures of Fig. 15, we can draw
the following conclusions for the mapping of the data and
parity bits to the different protection classes of the mod-
ulated symbol. For weaker half-rate turbo codes, such as
the ( ) arrangement, it is better to protect the parity
bits more strongly. On the other hand, for stronger half-rate
turbo codes, such as the ( ) and ( ) schemes,
better performance is achieved by protecting the data bits
more strongly. From our simulation results, we found that the
same scenario also applies to turbo codes having code rates
lower or higher than half rates, as shown in Table 5. Based on
these facts, we continue our investigations into the effect of
interleavers in an effort to achieve an improved performance.

2) Turbo Convolutional Codes—Interleaver Effects:In
Fig. 7, we have seen that a bit-based channel interleaver
is employed for the CC, TC, and TBCH codes. Since our
performance results are obtained over uncorrelated Rayleigh
fading channels, the purpose of the bit-based interleaver is to
disperse bursts of channel errors within a modulated symbol,
when it experiences a deep fade. This is vital for TC codes
because according to the turbo code structure proposed by
Berrou et al. in [38] and [39], at the output of the turbo
encoder, a data bit is followed by the parity bits generated for
its protection against errors. Therefore, in multilevel modu-
lation schemes a particular modulated symbol could consist
of the data bit and its corresponding parity bits generated
for its protection. If the symbol experiences a deep fade, the
demodulator would provide low-reliability values for both
the data bit and the associated parity bits. In conjunction
with low-reliability information, the turbo decoder may fail
to correct errors induced by the channel. However, we can
separate the data bit from the parity bits generated for its
protection into different modulation symbols. By doing so,
there is a better chance that the demodulator can provide
high-reliability parity bits, which are represented by another
modulation symbol, even if the data bit experienced a deep
fade and vice versa. This will assist the turbo decoder in
correcting errors.

More explicitly, the random interleaver shown in Fig. 7 has
two different effects on the binary channel codes, namely:

Fig. 17. Random-separation-based interleaving.

1) it separates the data bit from the parity bits generated
for its protection into different modulated symbols;

2) it randomly maps the data and parity bits into different
protection classes in multilevel modulation schemes.

The first-level effect of the random interleaver is to improve
the performance of the binary channel codecs. In contrast, the
second-level effect may have a negative impact on the per-
formance of the channel codecs because the data and parity
bits are randomly mapped to the different protection classes
rather than assigning the more vulnerable bits consistently to
the higher integrity protection class.

In order to eliminate the potentially detrimental second
effect of the random interleaver, we propose to invoke a
so-called random-separation-based interleaver. Explicitly,
Fig. 17 shows an example of the random-separation-based
interleaving employed. The objective of random-separa-
tion-based interleaving is to randomly interleave the bits
within the same protection class of the multilevel mod-
ulated symbols. If 8PSK modulation is used, 3 BPS are
transmitted. Hence, for every 3-bit spaced position, the
bits will be randomly interleaved. For example, in Fig. 17,
we randomly interleaved the bit positions 0, 3, 6, 9,.
Similarly, bit positions 1, 4, 7, and 2, 5, 8, will be
randomly interleaved as well.

In Fig. 18, we investigate the effects of both a random in-
terleaver and those of a random-separation-based interleaver
on the performance of the ( ) code. The encoding
parameters of the ( ) code are shown in Table 3.
The simulation results were obtained in conjunction with the
space–time code using one receiver and 16QAM over
uncorrelated Rayleigh fading channels. The performance
curves marked by the triangles and diamonds were obtained
by protecting the parity bits and data bits more strongly,
respectively. Recall that the same performance curves were
also shown in Fig. 15(a).

As mentioned earlier, the random interleaver has two dif-
ferent effects on the performance of binary channel codes. It
randomly maps the data and parity bits into different protec-
tion classes, which might have a negative impact on the per-
formance of the channel codecs. Additionally, it may sepa-
rate the data bits and parity bits generated for their protection
into different modulated symbols, which on the other hand,
may improve the performance. In Fig. 18, the random-in-
terleaver-based performance curve is marked by the hearts,
which is similar to that of the ( )-coded scheme pro-
tecting the parity bits more strongly. This suggests that the
above-mentioned positive effect of the random interleaver is
more pronounced than the negative effect in the context of
the ( )-coded scheme. On the other hand, based on
the evidence of Fig. 15(a), the random-separation-based in-
terleaver was ultimately applied in conjunction with the allo-
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Fig. 18. Performance comparison between different bit-to-symbol
mapping methods for theTC(2; 1; 3) code in conjunction with
the space–time codeG using one receiver and 16QAM over
uncorrelated Rayleigh fading channels at an effective throughput of
2 BPS. Encoding parameters of theTC(2;1; 3) code are shown in
Table 3.

cation of the parity bits, rather than the data bits into protec-
tion class I. The interleaver randomly interleaves the coded
bits within the same protection class of a block of trans-
mitted symbols. Therefore, the parity bits remain more pro-
tected compared to the data bits and yet they have been ran-
domly interleaved within the set of parity bits. In Fig. 18,
the performance of the random-separation-based interleaver,
marked by circles, is about 0.5 dB better than that of the

( )-coded scheme with the parity bits allocated to
protection class I.

Similarly to Fig. 18, Figs. 19 and 20 show the perfor-
mances of the ( ) and ( ) codes, respec-
tively, using different bit-to-symbol mapping methods. All
simulation results were obtained in conjunction with the
space–time code using one receiver and 16QAM over
uncorrelated Rayleigh fading channels. The encoding pa-
rameters of the ( ) and ( ) codes are shown
in Table 3. Unlike Fig. 18, the random-separation-based
interleaver was applied in conjunction with the allocation of
the data bits, rather than the parity bits to protection class I. It
can be seen from Figs. 19 and 20 that the performance of the
random-interleaver and random-separation-based interleaver
is similar. This again suggests that the above-mentioned
positive effect yielded by the random-based interleaver is
more pronounced than its detrimental effect in the context
of both the ( ) and ( ) schemes.

In conclusion, the simulation results presented in this sec-
tion demonstrate that at a BER of 10, the half-rate turbo
codes using a random-separation-based interleaver attain the
best performance, albeit for certain schemes only by a small
margin. Therefore, in our forthcoming performance compar-
isons, we will be employing the random-separation-based in-
terleaver in conjunction with the various TC codes.

3) TBCH Codes:Fig. 21 characterizes the performance
of the ( ) code in conjunction with different
bit-to-symbol mappings to the two protection classes of

Fig. 19. Performance comparison between different bit-to-symbol
mapping methods for theTC(2;1; 4) code in conjunction with
the space–time codeG using one receiver and 16QAM over
uncorrelated Rayleigh fading channels at an effective throughput of
2 BPS. Encoding parameters of theTC(2;1; 4) code are shown in
Table 3.

Fig. 20. Performance comparison between different bit-to-symbol
mapping methods for theTC(2;1; 5) code in conjunction with
the space–time codeG using one receiver and 16QAM over
uncorrelated Rayleigh fading channels at an effective throughput of
2 BPS. Encoding parameters of theTC(2;1; 5) code are shown in
Table 3.

8PSK. All simulation results were obtained with the aid
of the space–time code using one receiver and 8PSK
over uncorrelated Rayleigh fading channels. Again, the
encoding parameters of the ( ) code are shown
in Tables 3 and 5. The ( ) code was chosen for
our investigations because the parity bits of the constituent
encoders were not punctured and hence this resulted in a
code rate of . Roughly speaking, for every two
data bits, there is one parity bit. Similarly to 16QAM, in
the Gray-mapping-assisted 8PSK constellation, there are
also two protection classes, depending on the bit position
in the 3-bit symbols. In the three bits of the 8PSK constel-
lation, two of the bit positions are more protected than the
remaining bit. In Fig. 21, we portray the performance of
the ( ) scheme for four different bit-to-symbol
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Fig. 21. Performance comparison between different bit-to-symbol
mapping methods for theTBCH(32; 26) code in conjunction
with the space–time codeG using one receiver and 8PSK over
uncorrelated Rayleigh fading channels at an effective throughput of
2 BPS. Encoding parameters of theTBCH(32;26) code are shown
in Tables 3 and 5.

mapping methods. First, one data bit and one parity bit
was mapped to the two better protected 8PSK bit positions.
The corresponding BER curve is marked by the triangles in
Fig. 21. According to the second method, the data bits were
mapped to the two better protected bit positions of the 8PSK
symbol. This scenario is marked by the diamonds in Fig. 21.
As we can see from the figure, the first mapping method
yields a substantial gain of 1.5 dB at a BER of 10
over the second method. By applying the random-separa-
tion-based interleaver of Fig. 17, while still better protecting
one of the data bits and the parity bit than the remaining
data bits, we disperse the bursty bit errors associated with
a transmitted symbol over several BCH codewords of the
TBCH code. As shown in Fig. 21, the performance curve
marked by the circles shows a slight improvement compared
to the above-mentioned first method, although the difference
is marginal. Finally, we show the performance of applying
random interleaving, which randomly distributes the data
and parity bits between the two 8PSK protection classes. It
can be seen that the associated performance is worse than
that of the first bit-to-symbol mapping method.

Fig. 21 shows that it is better to protect the parity bits
more strongly for the ( ) code and a slight further
improvement can be achieved by applying a random-sepa-
ration-based interleaver. More simulation results were ob-
tained in conjunction with the other TBCH codes shown in
Tables 3 and 5 with the aid of the space–time codeand
64QAM over uncorrelated Rayleigh fading channels. From
the simulation results we have found that all TBCH codes
shown in Tables 3 and 5 perform better, if the parity bits
are more protected. In general, a slight further improvement
can be obtained for TBCH codes, when a random-separa-
tion-based interleaver is applied. A possible explanation is
that the component encoders of the TBCH codes are BCH
encoders, where a block of parity bits is generated by a block
of data bits. Hence, every parity bit has an influence on the

Fig. 22. Performance comparison between the systematic and
nonsystematic half-rateCC(2; 1; 9) code in conjunction with
the space–time codeG and 16QAM over uncorrelated Rayleigh
fading channels at a throughput of 2 BPS. Encoding parameters of
theCC(2; 1; 9) code are shown in Tables 3 and 4.

whole codeword. Moreover, we used high-rate TBCH codes
and, hence, there are more data bits compared to the parity
bits. Hence, in our forthcoming TBCH comparisons, we will
use bit-to-symbol mappers protecting the parity bits better.

4) Convolutional Codes:Let us now investigate the
space–time code in conjunction with the half-rate CC

( ) proposed for UMTS. The ( ) code is
a nonsystematic nonrecursive CC, where the original infor-
mation bits cannot be explicitly recognized in the encoded
sequence. Its associated performance curve is shown in
Fig. 22 marked by the triangles. A random interleaver is
applied in order to disperse the bursty channel errors and the
associated performance curve is marked by the diamonds in
Fig. 22. At a BER of 10 , there is a performance gain of 2.5
dB if the random interleaver is applied. As a further scheme,
we implemented a systematic ( ) code, which was
obtained using a recursive CC [72], [100]. Hence, in this
scenario, we have explicitly separable data bits and parity
bits. In Fig. 22, the performance curve marked by the circles
is obtained by mapping the data bits—rather than the parity
bits—of the systematic ( ) code to protection class
I of the associated 16QAM scheme in conjunction with the
random-separation-based interleaver of Fig. 17. Explicitly,
the data bits rather than the parity bits of the systematic

( ) code are mapped to protection class I of the
associated 16QAM scheme, since for this powerful code,
similar performance trends are expected to those experi-
enced for the ( ). One can see that there is only a
marginal performance improvement over the nonsystematic

( ) code using the random interleaver.

C. Performance Comparison of Various Channel Codecs
Using the Space–Time Code and Multilevel Modulation

In this section, we compare the space–time-coded
performance of all channel codecs summarized in Table 3.
In order to avoid having an excessive number of curves in
one figure, only one channel codec will be characterized

208 PROCEEDINGS OF THE IEEE, VOL. 90, NO. 2, FEBRUARY 2002



Fig. 23. Performance comparison between the half-rate codes
TC(2; 1; 3), TC(2;1; 4), and TC(2;1; 5), where the encoding
parameters are shown in Tables 3 and 5. All simulation results were
obtained with the aid of the space–time codeG using 16QAM
over uncorrelated Rayleigh fading channels and the throughput was
2 BPS.

from each group of the CC, TC, TBCH, TCM, and TTCM
schemes. The choice of the channel codec considered de-
pends on its performance, complexity, and code rate. Unless
otherwise stated, all channel codecs are concatenated with
the space–time code using one receiver. All comparisons
are carried out on the basis of the same BPS throughput over
uncorrelated Rayleigh fading channels. Let us now briefly
discuss in the forthcoming sections how each channel codec
is selected from the codec families considered.

1) Comparison of Turbo Convolutional Codes:In
Fig. 23, we compare the performance of the half-rate turbo
codes ( ), ( ), and ( ), where the
encoding parameters are shown in Tables 3 and 5. The sim-
ulation results were obtained with the aid of the space–time
code using 16QAM over uncorrelated Rayleigh fading
channels. The three performance curves in the figure are
the best performance curves chosen from Figs. 20, 19, and
18 for the half-rate codes ( ), ( ), and

( ), respectively. It can be seen from the figure
that the performance of the turbo codes improves, when we
increase the constraint length of the component codes from
three to five. However, this performance gain is obtained
at the cost of a higher decoding complexity. At a BER of
10 , the ( ) code has an improvement of
approximately 0.25 dB over the ( ) scheme at a
penalty of twice the complexity. However, at the cost of the
same complexity increment over that of the ( ) ar-
rangement, the ( ) scheme only achieves a marginal
performance gain of 0.1 dB at BER 10 . Therefore, in
our following investigations, only the ( ) scheme
will be characterized as it exhibits a significant coding gain
at a moderate complexity. Furthermore, the( ) code
has been adopted by the 3G UTRA mobile communication
system [72].

2) Comparison of Different Rate ( ) Codes: In
their seminal paper on turbo coding [38], [39], Berrouet al.

Fig. 24. Performance of theTC(2;1; 4) code using coding rates
of 1/3, 1/2, and 2/3, where the associated encoding parameters are
shown in Tables 3 and 5. All simulation results were obtained with
the aid of the space–time codeG at an effective throughput of 2
BPS over uncorrelated Rayleigh fading channels.

applied alternate puncturing of the parity bits. This results in
half-rate turbo codes. Additionally, a range of different punc-
turing patterns can be applied, which results in different code
rates [87]. In Fig. 24, we portray the performance of the punc-
tured ( ) code having coding rates of 1/3, 1/2, and
2/3. The associated coding parameters are shown in Tables 3
and 5. Suitable multilevel modulation schemes are chosen so
that all systems have the same effective throughput of 2 BPS.
Explicitly, 64QAM, 16QAM, and 8PSK are used. All simu-
lation results were obtained with the aid of the space–time
code over uncorrelated Rayleigh fading channels. As ex-
pected, from Fig. 24, we can clearly see that the best per-
formance is achieved by the half-rate ( ) scheme.
At a BER of 10 , the half-rate ( ) code achieved a
performance gain of approximately 1 dB over the third-rate
and the two-third-rate ( ) codes. Even though the
third-rate ( ) code has a higher amount of redun-
dancy than the half-rate ( ) scheme, its performance
is worse than that of the half-rate ( ) arrangement.
We speculate that this is because the constellation points in
64 QAM are more densely packed than those of 16QAM.
Therefore, they are more prone to errors and hence the extra
coding power of the third-rate ( ) code is insufficient
to correct the extra errors. This results in a poorer perfor-
mance. On the other hand, there are fewer errors induced by
8PSK, but the two-third-rate ( ) code is a weak code
due to the puncturing of the parity bits. Again, this results in
an inferior performance.

In Fig. 25, we show the performance of the ( )
code at coding rates of 1/2 and 3/4. The associated coding
parameters are shown in Tables 3 and 5. Again, suitable mod-
ulation schemes were chosen so that both systems have the
same effective throughput, namely, 3 BPS. All simulation
results were obtained with the aid of the space–time code

over uncorrelated Rayleigh fading channels. As com-
pared to Fig. 24, the throughputs of the systems in Fig. 25
have been increased from 2 to 3 BPS. In order to maintain
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Fig. 25. Performance of the puncturedTC(2; 1; 4) code at coding
rates of 1/2 and 3/4, where the associated parameters are shown in
Tables 3 and 5. All simulation results were obtained with the aid of
the space–time codeG at an effective throughput of 3 BPS over
uncorrelated Rayleigh fading channels.

a high BPS throughput, 64QAM was employed in conjunc-
tion with the half-rate ( ) code. We can see from the
figure that the performance gain of the half-rate( )
code over the three-quarter-rate ( ) code has been
reduced to only 0.5 dB, as compared to 1 dB over the two-
third-rate ( ) code characterized in Fig. 24. More-
over, the three-quarter-rate ( ) code is weaker than
the two-third-rate ( ) code, since fewer parity bits
are transmitted over the channel. Based on the fact that the
performance gain of the half-rate ( ) code has been
reduced, we surmise that high-rate turbo codes will outper-
form the half-rate ( ) code, if the throughput of the
system is increased to 4 BPS or even further, since half-rate
codes would require a vulnerable high-order modulation con-
stellation for maintaining a throughput of 4 BPS.

From Figs. 24 and 25, we can see that the best performance
is achieved by the half-rate ( ) code for an effective
throughput of 2 and 3 BPS. However, we are also interested
in the system’s performance at higher effective BPS through-
puts. Hence, during our later discourse in Section VI-C6,
the performance of high-rate TC and TBCH codes will be
studied for throughput values in excess of 5 BPS.

3) Convolutional Codes:In Fig. 26, we compare the
performances of the space–time-coded nonrecursive
half-rate CCs ( ), ( ), and ( ).
These schemes were standardized in the GSM [72], [107],
DVB [65], and the 3G UTRA systems [1], [72], [109],
respectively. The associated coding parameters are shown
in Tables 3 and 4. All simulation results were obtained
with the aid of the space–time code using QPSK over
uncorrelated Rayleigh fading channels. We can see from
the figure that at a BER of 10 , the performance of the
nonrecursive CCs improves by approximately 1 dB, if the
complexity is increased by a factor of 2 4. However, the
extra performance gain attainable becomes smaller, as the
affordable complexity further increases. In our forthcoming

Fig. 26. Performance comparison between the nonrecursive
half-rate CCsCC(2;1; 5), CC(2;1; 7), and CC(2;1; 9), where
the coding parameters are shown in Tables 3 and 4. All simulation
results were obtained with the aid of the space–time codeG
using QPSK over uncorrelated Rayleigh fading channels. Effective
throughput is 1 BPS.

channel code comparisons, only the ( ) code will
be used, since it has the best performance among the above
three schemes and it has a comparable complexity to that of
the TC codes studied. Moreover, the ( ) code is also
proposed for the 3G UTRA mobile communication system
[72].

4) -Coded Channel-Codec Comparison—Throughput
of 2 BPS: Having narrowed down the choice of the
space–time-coded CCs and the turbo codes, we are now
ready to compare the performances of the different pro-
posed channel codecs belonging to different codec families.
Our comparison is carried out on the basis of the same
throughput and all channel codecs are concatenated with the
space–time code , when transmitting over uncorrelated
Rayleigh fading channels. Fig. 27 shows the performance of
our channel codecs selected from the CC, TC, TBCH, TCM,
and TTCM families on the basis of the same throughput of 2
BPS, regardless of their coding rates. The associated coding
parameters are shown in Tables 3–5. The throughput is 2
BPS.

From Fig. 27, we can see that the half-rate ( )
code outperforms the other channel codecs. At a BER of
10 , the ( ) code achieves a gain of approximately
0.5 dB over the ( ) scheme at a much lower com-
plexity. At the same BER, the ( ) code also outper-
forms 8PSK-TTCM by approximately 1.5 dB. The poor per-
formance of TTCM might be partially due to using generator
polynomials, which are optimum for AWGN channels [80].
However, to date, only limited research has been carried out
on finding optimum generator polynomials for TTCM over
fading channels [110].

In Fig. 27, we also characterize the performance of the
( ) and 8PSK-TCM schemes. The figure clearly

demonstrates that the invention of turbo codes invoked in
our TC, TBCH, and TTCM -coded schemes, resulted in
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Fig. 27. Performance comparison between different CC, TC,
TBCH, TCM, and TTCM schemes, where the coding parameters
are shown in Tables 3–5. All simulation results were obtained with
the aid of the space–time codeG at a throughput of 2 BPS over
uncorrelated Rayleigh fading channels.

substantial improvements over the conventional-coded
channel codecs, such as the CC and TCM schemes consid-
ered. At a BER of 10 , the ( ) code outperforms
the ( ) and 8PSK-TCM arrangements by approxi-
mately 3.0 and 7.5 dB, respectively.

5) -Coded Channel Codec Comparison—Throughput
of 3 BPS: In Fig. 28, we portray the performances of various
channel codecs belonging to the CC, TC, TBCH, TCM, and
TTCM codec families on the basis of a constant throughput
of 3 BPS, regardless of their coding rates. The associated
coding parameters are shown in Tables 3–5. The simulation
results were obtained with the aid of the space–time code
over uncorrelated Rayleigh fading channels.

From Fig. 28, we can infer a few interesting points. As
mentioned earlier, the half-rate ( ) code suffers
from the effects of puncturing as we increase the throughput
of the system. In order to maintain a throughput of 3 BPS,
64QAM has to be employed in the systems using the
half-rate ( ) code. The rather vulnerable 64QAM
modulation scheme appears to overstretch the coding power
of the half-rate ( ) code attempting to saturate the
available channel capacity. At a BER of 10, there is no
obvious performance gain over the ( )/16QAM
and 16QAM-TTCM schemes. Hence, we have reasons to
postulate that if the throughput of the system is increased
beyond 3-BPS high-rate turbo codes should be employed for
improving the performance, rather than invoking a higher
throughput modulation scheme.

6) Comparison of -Coded High-Rate TC and TBCH
Codes: In the previous section, we have shown that at the
BER of 10 , the required is increased by about
2.5 dB for the half-rate turbo code ( ), as the
throughput of the system is increased from 2 to 3 BPS. A
range of schemes having a throughput in excess of 5 BPS is
characterized in Fig. 29. Specifically, the figure shows the
performance of high-rate TC and TBCH codes concatenated
with the space–time code employing 64QAM over

Fig. 28. Performance comparison between different CC, TC,
TBCH, TCM, and TTCM schemes, where the coding parameters
are shown in Tables 3–5. All simulation results were obtained with
the aid of the space–time codeG at an effective throughput of 3
BPS over uncorrelated Rayleigh fading channels.

Fig. 29. Performance comparison between high-rate TC and
TBCH codes concatenated with the space–time codeG employing
64QAM over uncorrelated Rayleigh fading channels. Parameters of
the TC and TBCH codes are shown in Tables 3 and 5.

uncorrelated Rayleigh fading channels. The parameters of
the TC and TBCH codes used are shown in Tables 3 and
5. The performance of half-rate turbo codes along with
such a high throughput is not shown because a modulation
scheme having at least 1024 constellation points would be
needed, which is practically infeasible over nonstationary
wireless channels. Moreover, the turbo codes often would
be overloaded by errors induced by the densely packed
constellation points.

In Fig. 29, we can clearly see that there is not much differ-
ence in performance terms between the high-rate( )
and TBCH codes employed, although the TBCH codes ex-
hibit marginal gains. This gain is achieved at a cost of high
decoding complexity, as evidenced by Table 6. The slight
performance improvement of the ( ) code over
the three-quarter-rate ( ) scheme is probably due to
its slightly lower code rate of , compared to the
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Fig. 30. Performance comparison between high-rate TCs and CCs
concatenated with the space–time codeG employing 64QAM over
uncorrelated Rayleigh fading channels. Parameters of the TC and CC
codes are shown in Tables 3–5.

rate of associated with the ( ) code. It
is important to note that all BCH component codes used in
the TBCH codes have a minimum distance of three. We
speculate that the performance of the TBCH codes might im-
prove, if is increased to five. However, due to the asso-
ciated complexity, we will refrain from employing
BCH component codes in the TBCH schemes studied.

7) Comparison of High-Rate TC and Convolutional
Codes: In Fig. 30, we compare the performance of the
high-rate punctured ( ) and ( ) codes con-
catenated with the space–time code employing 64QAM
over uncorrelated Rayleigh fading channels. The puncturing
patterns employed for the ( ) scheme were proposed
in the DVB standard [65]. The parameters of the( )
and ( ) codes are shown in Tables 3–5. From the
figure, we can see that both high-rate ( ) codes
outperform their equivalent rate ( ) counterparts by
about 2 dB at a BER of 10 , while maintaining a similar
estimated decoding complexity, as evidenced by Table 6.
This fact indicates that at a given tolerable complexity,
better BER performance can be attained by an iterative turbo
decoder. These findings motivated the investigations of our
next section, where the performance of the various schemes
is studied in the context of the achievable coding gain versus
the estimated decoding complexity.

D. Coding Gain Versus Complexity

In Section V-C, we have estimated the various channel
decoders’ complexity based on a few simplifying assump-
tions. All the complexities estimated in our forthcoming dis-
course were calculated based on (36)–(44). Again, our per-
formance comparison of the channel codes was made on
the basis of the coding gain defined as the differ-
ence, expressed in decibels, at BER10 between the var-
ious channel-coded and uncoded systems having the same
throughput, while using the space–time code.

(a)

(b)

Fig. 31. Coding gain versus (a) the number iterations and
(b) estimated complexity for theTC(2; 1; 3), TC(2;1; 4), and
TC(2;1; 5) codes, where the coding parameters are shown in Tables
3, 5, and 6. All simulation results were obtained upon employing
the space–time codeG using one receiver and 64QAM over
uncorrelated Rayleigh fading channels at an effective throughput of
3 BPS.

1) Complexity Comparison of Turbo Convolutional
Codes: Fig. 31(a) shows the coding gain versus the number
of iterations and Fig. 31(b) the coding gain versus estimated
complexity for the ( ), ( ) and ( )
codes, where the coding parameters used are shown in
Tables 3, 5, and 6. All simulation results were obtained upon
employing the space–time code using one receiver and
64QAM over uncorrelated Rayleigh fading channels at an
effective throughput of 3 BPS. We can see from Fig. 31(a)
that there is a substantial performance improvement of
approximately 3–4 dB between the first and second turbo
decoding iteration. However, further coding gain improve-
ments become smaller, as the number of iterations increases.
It can be seen from the figure that the performance of turbo
codes does not significantly improve after eight iterations,
as indicated by the rather flat coding gain curve. Fig. 31(a)
also shows that as we increase the constraint lengthof the
turbo codes from three to five, the associated performance
improves.

In Fig. 31(b), the coding gains of the various turbo codes
using different number of iterations are compared on the
basis of their estimated complexity. This is necessary, since
we have seen in Section V-C that the estimated complexity
of turbo codes depends exponentially on the constraint
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Fig. 32. Coding gain versus estimated complexity for the
CC(2; 1;K), TC(2;1; 4), TBCH(32;26), and TTCM-8PSK,
where the parameters are shown in Tables 3–6. All simulation
results were obtained upon employing space–time codeG using
one receiver over uncorrelated Rayleigh fading channels at an
effective throughput of 2 BPS.

length , but only linearly on the number of iterations.
From Fig. 31(b), we can see that the estimated complexity
of the ( ) code ranges from approximately 200 to
2000 when using one to ten iterations. On the other hand,
the estimated complexity of the ( ) scheme ranges
only from approximately 50 to 500, requiring one to ten
iterations. This clearly shows that the estimated complexity
of the turbo codes is dominated by the constraint length

. Fig. 31(b) also shows that the coding gain curve of the
( ) code saturates faster, which is demonstrated by

the steep increase in coding gain as the estimated complexity
increases. For achieving the same coding gain of 19 dB,
we can see that the ( ) scheme requires the lowest
estimated complexity. It requires two to three times higher
computational power for the ( ) code to achieve the
above-mentioned coding gain of 19 dB.

2) Complexity Comparison of Channel Codes:In the
previous section, we compared the coding gain versus
estimated complexity of the -coded turbo schemes

( ), ( ), and ( ). Here, we compare
the ( ) arrangement that faired best amongst them
to the ( ) code and to the ( )/8PSK
as well as to the TTCM-8PSK arrangements, representing
the other codec families studied. Specifically, Fig. 32
shows the coding gain versus estimated complexity for the

( ), ( ), ( ), and TTCM-8PSK
schemes, where the associated parameters are shown in
Tables 3–6. All simulation results were obtained upon
employing the space–time code using one receiver
over uncorrelated Rayleigh fading channels at an effective
throughput of 2 BPS. For the turbo schemes( ),

( ), and TTCM-8PSK, the increased esti-
mated complexity is achieved by increasing the number
of iterations from one to ten. However, CCs are decoded
noniteratively. Therefore, in Fig. 32, we vary the constraint
length of the CCs from three to ten, which results in

Fig. 33. Coding gain versus estimated complexity for the
CC(2;1;K), TC(2;1; 4), TBCH(31;26), and TTCM-16QAM
schemes, where the coding parameters are shown in Tables 3–6. All
simulation results were obtained upon employing space–time code
G using one receiver over uncorrelated Rayleigh fading channels
at an effective throughput of 3 BPS.

increased estimated complexity. The generator polynomials
of the ( ) codec, where , are given
in [100] and they define the corresponding maximum–min-
imum free distance of the codes. From Fig. 32, we can see
that there is a steep increase in the coding gain achieved
by the ( ) code, as the estimated complexity is
increased. Moreover, the ( ) scheme asymptotically
achieves a maximum coding gain of approximately 20 dB.
At a low estimated complexity of approximately 200, the

( ) code attains a coding gain of approximately 18
dB, which exceeds that of the other channel codes studied.
The ( ) arrangement is the least attractive one,
since a major complexity is incurred when aiming for a high
coding gain.

In contrast to the 2 BPS schemes of Fig. 32, Fig. 33 shows
the corresponding coding gain versus estimated complexity
curves for the ( ), ( ), ( ), and
TTCM-16QAM 3 BPS arrangements, where the coding pa-
rameters are shown in Tables 3–6. Again, all simulation re-
sults were obtained upon employing the space–time code
using one receiver over uncorrelated Rayleigh fading chan-
nels at an effective throughput of 3 BPS. As before, the in-
creased estimated complexity of the turbo schemes is in-
curred by increasing the number of iterations from one to ten.
For the CCs, the constraint length is varied from three to
ten. Similarly to Fig. 32, the ( ) scheme achieves a
considerable coding gain at a relatively low estimated com-
plexity. For example, in order to achieve a coding gain of
18 dB, the TTCM and ( ) arrangements would
require approximately three and four times higher computa-
tional power compared to the ( ) code.

From Figs. 32 and 33, we can clearly see that turbo codes
are the most attractive one of all the channel codes studied
in conjunction with the space–time code , offering an im-
pressive coding gain at a moderate estimated decoding com-
plexity. In Fig. 34, we show the value required for
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Fig. 34. E =N value required for maintaining BER= 10
versus the effective throughput BPS for the STB codeG
concatenated with theTC(2; 1; 4) code, where the coding
parameters are shown in Tables 3, 5, and 6. All simulation results
were obtained upon employing space–time codeG using one
receiver over uncorrelated Rayleigh fading channels.

maintaining BER 10 versus the effective throughput
BPS for the STB code concatenated with the ( )
code where the coding parameters are shown in Tables 3, 5,
and 6. All simulation results were obtained upon employing
space–time code using one receiver over uncorrelated
Rayleigh fading channels. Half-rate ( ) code was
employed for BPS up to three. Then, ( ) code with
various rates was employed with 64QAM in order to achieve
increasing effective throughput BPS. It can be seen from the
figure that the value required for maintaining BER

10 increases linearly as the effective throughput BPS
increases.

E. Comparative Study of Concatenated Turbo-Coded and
STB-Coded as Well as STT-Coded OFDM for Transmission
Over Wide-Band Channels

In Section VI-C, we found that for transmission over un-
correlated Rayleigh channels the half-rate TC was the highest
gain channel coder when concatenated with the space–time
code . In this section, we further our comparative investi-
gations by comparing the performance of the TC-coded STB
code with STT codes in the context of OFDM [101],
when transmitting over wide-band channels. Conventionally,
RS codes are also employed in conjunction with STT codes
for improving the performance of the system [98], which will
be also invoked in our study. The employment of OFDM
facilitated space–time-coded transmissions over wide-band
channels, since OFDM maps the high-rate serial bitstream to
a high number of low-rate subchannels transmitted in par-
allel. Hence, each subchannel becomes nondispersive.

1) System Overview:Fig. 35 shows the schematic of
the system. At the transmitter, the information source
generates random information data bits. The information
bits are then encoded by ( ) codes, RS codes, or
left uncoded. Only the ( )-coded bits are channel
interleaved and the output bits are then passed to the STT or

Fig. 35. System overview of channel-coded STB and trellis codes.

Table 8
Parameters of the STT Codes [13]

STB encoder [98] of Fig. 35. We will investigate the STT
codes proposed in [13]. The modulation schemes employed
were 4-level phase shift keying (4PSK) as well as 8PSK.
On the other hand, from the family of STB codes, only
Alamouti’s code is employed in this system, since again
we have shown in Sections VI-A and VI-C that the best
performance is achieved by concatenating the STB code
with ( ) codes. In order to achieve high throughputs,
16QAM can be employed [101]. Gray mapping of the bits to
symbols was applied and this resulted in different integrity
protection classes in higher order modulation schemes [101].
The output of the space–time encoder was then OFDM [101]
modulated with the aid of the inverse fast fourier transform
blocks of Fig. 35 and transmitted by the corresponding
antenna. The number of transmit antennas was fixed to two,
while the number of receive antennas constituted a design
parameter. Dispersive wide-band channels were used and
the associated channels’ profiles will be discussed at a later
stage.

At the receiver, the signal of each receive antenna is
OFDM demodulated. The demodulated signals of the
receiver antennas are then fed to the STT or STB decoder.
The space–time decoders apply the Log-MAP [75], [102]
decoding algorithms for providing soft outputs for the
channel decoders. If no channel codecs are employed in
the system, the space–time decoders apply the VA [13],
which gives a slightly lower performance compared to the
MAP decoder, but at a lower complexity. The decoded bits
are finally passed to the sink, as seen in Fig. 35, for the
calculation of the BER or frame error ratio (FER).

2) Space–Time and Channel Codec Parameters:In
Fig. 35, we have given an overview of the proposed system.
In this section, we present the parameters of the STT codes
and the channel codecs employed in the proposed system.
We will employ the set of various STT codes proposed in
[13]. The associated STT coding parameters are summarized
in Table 8.
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Table 9
Additional System Parameters Associated With theTC(2; 1; 3) Code

Again, in this system, we will concentrate on using the
simple half-rate ( ) code. Its associated parameters
are shown in Table 3. As seen in Table 9, in conjunction with
the half-rate ( ) code, a higher order bit/symbol
modulation scheme namely 16QAM was chosen, so that
the effective 2 BPS throughput of the system remained
the same as that of the system employing the 2-BPS STT
codes without additional channel coding. It is widely rec-
ognized that the performance of TC codes improves upon
increasing the turbo interleaver size and near-Shannonian
performance can be achieved using large interleaver sizes
exceeding 10 000 bits. However, this performance gain is
achieved at the cost of high latency, which is impractical in
a delay-sensitive real-time system. On the other hand, STT
codes offer impressive coding gains [13] at low latency. The
decoding of the STT codes is carried out on a transmission
burst-by-burst basis. In order to make a fair comparison
between the systems investigated, the turbo interleaver
size was chosen such that all the coded bits of a specific
interleaved block were hosted by one transmission burst.
This enables burst-by-burst turbo decoding at the receiver.

In Table 9, we summarized the interleaver sizes used in
the proposed system. Again, the random-separation-based
channel interleaver of Section VI-B was used. The mapping
of the data bits and parity bits into different protection classes
of the higher order modulation scheme [101] was carried out
such that the best possible performance was attained. Fol-
lowing the rationale of [98], RS codes [101] were employed
in conjunction with the STT codes. Hard-decision RS de-
coding was utilized and the coding parameters of the RS
codes employed are summarized in Table 10.

3) STB Codes Versus STT Codes:In this section, we
provide simulation results for space–time-coded OFDM
[101] schemes using 128 subcarriers. Each OFDM symbol
has a symbol duration of 160s and a cyclic prefix of
40 s duration. In these simulations, the Jakes model was
adopted for modeling the fading channels. We assume an
equal-power two-path CIR, where the CIR taps are separated
by a delay spread of 5s. The maximum Doppler frequency
was 200 Hz. All multipath components undergo independent
Rayleigh fading and the receiver has a perfect knowledge of
the CIR.

In Fig. 36, we show our FER performance comparison
between the various 2 BPS effective throughput schemes,
namely, the 4PSK STT codes employing no channel coding
and the STB code concatenated with the ( )
code and the 16-state 8PSK STT code concatenated with
the ( ) code constructed over ) using one
receiver and the 128-subcarrier OFDM modem. Again,

Table 10
Coding Parameters of the RS Codes Employed

Fig. 36. FER performance comparison between various 4PSK STT
codes and the STB codeG concatenated with theTC(2;1; 3) code
and the 16-state 8PSK STT code concatenated with theRS(63;42)
code overGF(2 ) using one receiver and the 128-subcarrier
OFDM modem over a channel having a CIR characterized by two
equal-power rays separated by a delay spread of 5�s. Maximum
Doppler frequency was 200 Hz. Effective throughput was 2 BPS
and the coding parameters are shown in Tables 8, 3, 9, and 10.

since the ( ) code is a half-rate code and hence
16QAM was employed for absorbing its parity bits, in
order to support the same 2-BPS effective throughput as
the 4PSK STT codes using no channel codes. Similarly,
the ( ) code has a coding rate of about two-thirds
and, hence, the 16-state 8PSK STT code was employed for
maintaining a similar effective throughput of 2 BPS. We
can clearly see that at FER 10 , the performance of
the ( )/ concatenated scheme is at least 7 dB
better than that of the 4PSK STT codes. The concatenation
of the 16-state 8PSK STT code and the( ) code
improves the performance and outperforms the 4PSK STT
codes. However, its performance is still inferior to that of
the ( )/ scheme.

Here, we will address the implementational complexity is-
sues of the proposed system. We will, however, focus mainly
on the relative complexity of the proposed systems rather
than attempting to quantify their exact complexity. In order
to simplify our comparative study, several assumptions were
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Fig. 37. Coding gain versus estimated complexity for the various
4PSK STT codes and the STB codeG concatenated with the
TC(2; 1; 3) code using one as well as two receivers and the
128-subcarrier OFDM modem over a channel having a CIR
characterized by two equal-power rays separated by a delay spread
of 5 �s. Maximum Doppler frequency was 200 Hz. Effective
throughput was 2 BPS and the coding parameters are shown in
Tables 3, 8, , and 9.

stipulated. In our simplified approach, the estimated com-
plexity of the system is deemed to depend only on that of
the STT decoder and turbo decoder. In other words, the com-
plexity associated with the modulator, demodulator, STB en-
coder and decoder, as well as that of the STT encoder and
turbo encoder are assumed to be insignificant compared to
the complexity of STT decoder and turbo decoder.

The estimated complexity of the turbo decoder was given
in (37). On the other hand, from the state diagrams shown in
[13], we can see that the number of trellis transitions leaving
each trellis state is equivalent to 2 , where again, de-
notes the number of transmitted bits per modulation symbol.
Since the number of information bits is equal to BPS, we can
approximate the complexity of the STT decoder as

STT (51)

By employing (37) and (51), we compare the performance
of the proposed schemes by considering their approximate
complexity. Our performance comparison of the various
schemes in Fig. 37 was carried out on the basis of the coding
gain defined as the difference, expressed in decibels
(dB), at FER 10 between the proposed schemes and the
uncoded single-transmitter single-receiver system having
the same effective throughput of 2 BPS. Specifically, in
Fig. 37, we show our coding gain versus estimated com-
plexity comparison for the various 4PSK STT codes and for
the STB code concatenated with the ( ) code
using one as well as two receivers. Again, the 128-subcarrier
OFDM modem was transmitting over the channel having a
CIR of two equal-power rays separated by a delay spread
of 5 s and a maximum Doppler frequency of 200 Hz.
The estimated complexity of the STT codes was increased
by increasing the number of trellis states. By contrast, the

estimated complexity of the ( ) code was increased
by increasing the number of turbo iterations. Therefore, the
coding gain of the concatenated / ( ) scheme
using one, two, four, and eight iterations is shown in Fig. 37.
It can be seen that the concatenated scheme outperforms the
STT codes using no channel coding, even though the number
of turbo iterations was only one. Moreover, the improvement
in coding gain was obtained at an estimated complexity
comparable to that of the 32-state 4PSK STT code using
no channel coding. From Fig. 37, we can also see that
the performance gain of the concatenated/ ( )
channel-coded scheme over the STT codes becomes lower
when the number of receivers is increased to two.

VII. CONCLUSION

State-of-the-art transmission schemes based on multiple
transmitters and receivers were reviewed in Section I, while
the history of channel coding was summarized in Sec-
tion II. These discussions were followed by a rudimentary
introduction to the MRC [23] technique, using a simple
example in Section III-A. STB codes were introduced in
Section IV, employing the unity-rate space–time code.
In Sections IV-A1 and IV-A2, two examples of employing
the space–time code were provided using one and two
receivers, respectively. The transmission matrix of a range
of different-rate space–time codes, namely, that of the codes

, , , and of Table 2 were also given.
In Section V, we proposed a system that consists of

the concatenation of the above-mentioned STB codes and
a range of different channel codes. The channel coding
schemes investigated were CCs, TC codes, TBCH codes,
TCM, and TTCM. The estimated complexity and memory
requirement of the channel decoders were compared in
Section V-C.

Finally, we presented our simulation results in Section VI,
which were divided into four categories. In Section VI-A,
we first compared the performance results of the space–time
codes , , , , and without using channel
codecs. It was found that as we increased the effective
throughput of the system, the performance of the half-rate
space–time codes and degraded in comparison to
that of the unity rate space–time code. This was because
higher modulation schemes had to be employed in conjunc-
tion with the half-rate space–time codes and in order
to maintain the same effective throughput; these are more
prone to errors and, hence, the performance of the system
degrades. On the other hand, on the basis of maintaining
the same diversity gain and same effective throughput, we
found that the performance of the space–time codesand

was better than that of the space–time codesand
, respectively. Since the space–time codehas a code

rate of unity, we were able to concatenate it with half-rate
TC codes, while maintaining the same effective throughput,
as the half-rate space–time code without channel coding.
Hence, for the same effective throughput, the unity-rate

space–time-coded and half-rate channel-coded scheme
provided substantial performance improvement over the
three-quarter rate space–time code and half-rate
space–time code , which were unable to benefit from
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channel coding. We concluded that the reduction in coding
rate was best invested in turbo channel codes, rather than
STB codes. Therefore, all channel codes studied were
concatenated with the unity-rate space–time codeonly.

In the second category of our investigations in Sec-
tion VI-B, we studied the effect of the binary channel codes’
data and parity bits mapped into different protection classes
of multilevel modulation schemes. It was found that TC
codes having different constraint lengthsrequire different
mapping methods. By contrast, in the TBCH codes studied
mapping of the parity bits to the higher integrity protection
class of a multilevel modulation scheme yielded a better
performance. The so-called random-separation-based inter-
leaver was proposed in order to improve the performance of
the system.

The third set of results compared the performances of all
proposed channel codes in conjunction with the space–time
code . In order to avoid confusion, we only selected one
channel code from each group of channel codes in Table 3.
Specifically, only half-rate TC codes were studied, as they
gave better coding gain performance compared to other TC
codes having lower and higher rates. It was found that the
performance of the half-rate TC codes was better than that
of the CC, TBCH, TCM, and TTCM codes. Then, we com-
pared the performance of high-rate TC codes with high-rate
TBCH codes in conjunction with 64QAM. It was found that
the TBCH codes provided a slight performance improve-
ment over high-rate TC codes, but at the cost of high com-
plexity. The discussions of the section were concluded by
comparing the concatenated space–time-coded channel
codes upon taking their estimated complexity into consider-
ation. The half-rate TC codes give the best coding gain at a
moderate estimated complexity.

Finally, we probed further by comparing the performances
of the TC-coded STB code with STT codes. Again, we
found that the TC-coded STB code outperformed the
STT codes considered at a comparable complexity. Finally,
we conclude that the concatenation of the STB codewith
TC codes provided the highest coding gain in the scenarios
considered at a comparable complexity.

In conclusion, with the invention of turbo codes, the pre-
dictions of Shannon have been asymptotically approached.
With the advent of space–time codes, the past 50 years of
coding research has reached a state of maturity, where attrac-
tive coding schemes can be designed specifically for wireless
channels. Hence, the challenge for coding researchers is now
to achieve a performance close to the capacity of the wireless
channel. No doubt that at the current pace of research, this
will happen in a fraction of 50 years.
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