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ABSTRACT

A model is proposed for replacing the video codec in
networking studies, which is tested for sources with
a mean bitrate in the range of 10Kb/s to 10Mb/s.
The standard frame sizes investigated are the In-
ternational Telecommunications Union’s (ITU) 352
x 352-.pixel Common Intermediate Format (CIF),
176 x 144-pixel Quarter CIF (QCIF}, 704 x 576-
pixel 4CIF and 128 x 96-pixel Sub-QCIF (SQCIF).
The proposed 20-state ‘oscillation-scaled’ Markov
model was found to represent the relevant video
codec characteristics adequately.

1. INTRODUCTION

In order to study the behaviour of various multiple access
schemes in case of video traffic, 2 simple, but sufficiently
accurate video source model is needed. Reference [1] pro-
vides a review of different models commonly used to simu-
late voice, data and video sources. In the majority of cases
Markov models or their derivatives have been favoured for
their simplicity. Other common models are the autoregres-
sive models. A comparison beetween these and some other
models can be found for example in Reference [2]. Hey-
many and Lakshman in Reference [3] employed discrete au-
toregressive (DAR) and Markov models, while Reference {4}
has studied the problems associated with the bitrate fluc-
tuation of a video source.

In Section 2 the Markov modelling of video sequences
is discussed and the mode! limitations are highlighted. Sec-
tion 3 proposes a range of practical imporvements to the
basic Markov model, while the performance of the algo-
rithm is characterised in Section 4.

2. MARKOV MODELLING OF VIDEO
SOURCES

In the spirit of our previous discussions we opted for adopt-
ing a Markov modulated process, which can adequately
model both the first and the second moment of the bitrate
fluctuation of various sources. Furthermore, we found that
it was possible to superimpose a number of Markov chains
in order to account for particular features of the sequence,
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Figure 1: Quantizatior of the video source-rate fluctuation
using a 20 state Markov model.

such as for example spikes in the bitrate histogram and
other bitrate irreqularities, as it will be discussed below.

In a Markov Modulated Poisson Process (MMPP) [1]
the instantaneous ’arrival rate’ of transmitted packets or so-
called traffic cells, ie the bitrate generated is 'modulated’ by
the state of a continuos-time discrete state Markov chain,
which will be made explicit during our further discourse.
This process is characterised by the arrival rate A; per each
state and the mean sojourn time in each state 1/r;. The
sojourn time has 2 negative exponential distribution. The
arrival rate A; simply corresponds to the mean bitrate in
state ¢, while the state transition probabilities are denoted
by .P,J

In video source modelling the first problem is the choice
of the number of states in the Markov-chain. In order fo
match the bitrate histogram of the original source by that of
the model sufficiently accurately, 2 high number of states is
required. However, upon increasing the number of states we
found many more bitrate histogram spikes in the simulated
sequence than there were in the original. This indicates that
a high number of Markov states requires very long training
sequences for generating an asccuvate stake tramsition ma-
trix in order to arrive at a statistically meaningful number
of state transitions amongst all possible states. This issue
will be revisited during our further discussions, but suffice
to say here that when experimenting with limited-duration
practical video sequences, it was impractical to choose a
very high number of states, since then the statistical credi-
bility of the investigations became questionable due to the
associated low nurober of state transitions amongst certain
low-probability states. We addressed this problem by cor-
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Figure 2: Modelling the H.263-encoded 4CIF Susie se-
quence at a target bitrate of TMbps. For many frames the
model resides in the same state resulting in a comstant bit
rate.

structing mosaic-sequences, constituted for example by four
different-length sequences combined to form a gquadruple-
sized sequence, which will be invoked in Section 4 for algo-
rithmic performance testing, In order to find a good com-
promise between these two conflicting requirements after a
range of experiments we opted for using a 20-state Markov
model for the ITU’s H.263 codec.

According to the above considerations we investigated
a variety of different resolution sequences to be modelled
and after identifying the maximum and minimum bitrate,
ie the bitrate range of the sequences, we divided this range
in 20 uniform bitrate ranges. At the center of each bitrate
interval we allocated a state of the Markov chain, as seen in
Figure 1. The transition probability from state ¢ to state j
has been found by simulation upon observing the sequence
after assigning the actual measured bitrate to one of the 20
states.

QOur tentative bit-generation model has the following
construction. In each bit-generation cycle a random genera-
tor is used to determine the next state of the Markov model,
which can be any of the 20 states. These transitions are gov-
erned by the transition matrix, generated by evaluating the
relative frequencies, approximating the probabilities of all
possible Markov-state transitions using simulations. Then
in each state the actual number of bits gemerated obeys
the Poisson distribution and the corresponding probability
density function (PDF) typically overlaps with those of the
adjacent states. Having stipulated the basic video model,
let us now scrutinize its behaviour iz the next Section.

3. REDUCED-LENGTH POISSON CYCLES

We note that from a practical point of view operating di-
rectly with the number of bits per video frame is inconve-
nient, since observing the Poisson distribution of

P(n) = QT pCNT) 1)

we found that the factorial function of the denominator
results in an excessive computational demand. Henee the
solution is to divide the video frame duration into s number
of bit-generation cycles with the advantage that in this way
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Figure 3: Flow chart of the bit generation algorithm for a
video frame

we are able to find the number of bits generated on a more
convenient scale, using a granularity more compatible with
the typical burst-length of conventioral wireless networks.

Hence we decided to divide the video frame in a num-
ber of shorter segments in order to reduce the number of
bits generated per Poisson cycle to around 300 or less, sim-
ply because in case of a higher average number of bits per
generation cycle the probability that we must calculate 2
factorial higher than 1000! is not negligible. Therefore we
opted for invoking a division factor of D = 5000, which
is used to divide the target bit number per video frame in
D = 5000 smaller bit gereration cycles. This choice consti-
tutes a good compromise for source rates from 10Kbps to
10Mbps. For sources at higher bit rates we have to increase
the value of D.

A consequence is that now the number of bits generated
per video frame is the accumulation of the number of bits
generated per Poissonian cycle. This means that the distri-
bution is now the convelution of 5000 Poisson distributions.
We observed that in this case the number of bits per frame
was not sufficiently spread around the average in order to
provide a statistically sound model of the bitrate Huctua-
tion for the H.263 codec. This is demonstrated in Figure 2,
in comparison to the actual number of bits generated by
the H.263 codec for the 4CIF Susie’ sequence coded with a
target bitrate of 7Mbps. Observe that apart from a single
excursion to0 a state corresponding to about 220 000 bits per
frame, which occurs at frame index 105, the process resides
in a state emitting a Poissonian-rate arcund 207 000 bits
per frame. However, these rate fluctuations appear quite
limited.

In order to avoid thic near-constant bitrate problem we
introdnce an "oscillation factor’ O, the role of which and the
terminology becomes explicit below. The effective number
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Figure 5: Oscillation range AR versus mean number of bits
per frame R,: different ranges can be selected using differ-
ent O values in order to ensure a better fit of the bitrate
histograms of the model to that of the codec modelled.

of bit generation cycles is now computed as D/O but at
the end of each modelling cycle we multiply the number of
bits generated by the value of Q. This measure allows us to
maintain a better bitrate granularity as it will be demon-
strated below. The operation of the model is illustrated in
the flow-chart of Figure 3.

Focusing our attention on this flow-chart, let us ini-
tially assume an oscillation factor of O = 1. Then there
are D = 5000 Pozx ian generation cycles and as long as
the eycle index C is lower than D, further generation cy-
cles are required for the current video frame. At the be-
ginning a random number is generated and assigned to P,
where 0 < P < 1. Then the Poissor PDF is evaluated
for the iteration index of & = 0 and the returned Poisso-
nian value is assigned to the distribution function Ds. I
we have Ds < P, then the iteration index k is incremented
and Ds is updated by adding the Poissonian variable gen-
erated using the incremented valve of k£ ie £ = 1. When
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Figure 6: The value of K for different oscillation factors
O, where the curve was found by minimum mean-squared
fitting

Ds reaches the random value P, the process is stopped and
the current value of the iteration index k is multiplied by
the oscillation factor O, giving the number of bits generated
during the first generation cycle. - .

In order to study the effect of different oscillation factors
O the following experiment was carried out. Initially, O =
1 was stipulated, resulting in D=B5000 Poissonian cycles
per videoframe, yielding 5000 Poisson distributed numbers,
generated using Equation 1, where T' = FrameDuration/D
and A; is the mean bitrate of the Markov chain in state i.
These simulations were conducted for 3000 video frames.
The lowest and the highest number of bits generated were
recorded and we refer to their difference as the fluctuation
range. This range was then recorded for various average
bitrates or mean sumber of bits per frame. The results are
plotted in Figure 5 for a range of O values between 1 and
160.

Explicitly, the curve plotted for O = 1 is in fact the
aoriginal curve, where we used D=5000 Poisson cycles per
video frame. It is easy to observe that for an average source
rate around 5 Mbps, corresponding to 167 000 bits per video
frame at 30fps, a Buctuation of 3000 bits around the mean
value is almost negligible.

Qbserve furthermore in Figure 5 that due to the intro-
duction of the escillation factor O for a 5Mbps, 30 frames/s,
167 000 bits per frame scenario, the fluctuation range now
becomes significantly higher, approximately 30 000 bits around
the mean value. This is because for D = 5000 and O =1
the mumber of bits per frame was the cumulative value of
5000 Poissonian variables, ylelding a near constant value.
By contrast, for O = 100 the higher oscillation range is a
consequence of accumulating only 50 such variables.

At this stage a further step was required in order to
complese the model design. Spedifically, given an overall
average bit rate of R,, a minimum and maximum bitrate of
Romin a0d Rmec, Tespectively, as well as a set of N Markov-
model states, the resulting target bitrate R; (or A; of state
iwith0 < i € N is given by:
Bi= R +i2mee 2 Bmin _ g tiAR (@)
‘While residing in any of the Markov-states, the model will
ensure that the range of the instantaneous bitrate-fluctuations
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Figure 7: Bitrate histograms for the 4CIF Susie sequence at
a 5Mbps target bitrate generated by the H.263 codec and
by the proposed model with O =1 and O = 8. Observe the
better histogram fit due to a higher value of the O.

is limited t0 AR = [Rmin;Rmez), and the specific bi-
trate values of each state associated with a certain mean
bitrate obey the Poissonian distribution. Given the oscilla-
tion range AR, we can invoke Figure 5 in order to determine
the required oscillation factor O.

In order to assist in this, we found an empirical relation
between the quantities involved. From Figure 5 we inferred

that the relationship between the average velue of bits per

frame R. and the oscillation range AR is given by:
AR=K+R,. 3

Minimurm mean-squared fitting of the experimental R, and
AR values for various K values revealed the following de-
pendence of K on the oscillation factor O:

K=a-VO 'E))

where we have ¢ = 6.48. The goodness-of-fit of this match-
ing process is characterised in informal terms by Figure 6.
The above mentioned experimental relationship has been
used in our simulations and the corresponding bitrate his-
tograms are depicted in Figure 7 for two different O fac-
tors, namely for O = 1 and 8, as well as for our exper-
imental data generated by the H.263 codec for the 4CIF
’Susie’ sequence, while maintaining an average bitrate of
5Mbps. Observe in the Sub-Figure in the middle that in
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Figure 8: Bitrate histogram, correlation and typical bit rate
for the Carphone sequence. Comparison between the H.263
codec at QCIF size , 64kbps target bitrate and the Markov
model

accordance with our previous experience, for O = 1 there is
only a very limited bitrate fluctuation or spread within the
Markov-states around the target bitrates of the individual
states. However, for O = 8 a more appropriataly spread
Poissonian bitrate distribution is observed in each state.
Qbserve for O = 8 at the bottom of the Figure that the
PDFs are slightly more spread towards the top end of the
bitrate range than in the lower-rate Markov states. This is
becaunse for the Poisson distribution the value of the vari-
ance is equal to the mean value, which is clearly higher for
the the states closer to the top end of the bitrate scale.

4. SIMULATION RESULTS

From our simulation results we found that for a source bi-
trate around 1Mb/s or less an oscillation factor between
O = 1 and 3 was appropriate. For source rates around
10 Mb/s a value around O = 50 was required, depending
on the target source rate. Furthermore, we found that the
model was quite flexible and allowed us to emulate a range
of different video scenes adequately.

Figures 8-10 show a number of model characteristics for
various video sequences. Specifically, at the bottom of each
of these Figures the typical bitrate fluctuation of the orig-
inal H.263 codec and that of the model can be seen, as an
easily interpreted illustrative example. In the centre of each
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Figure 9: Bitrate histogram, correlation and typical bitrate
for the Susie sequence. Comparison between the H.263
codec at 4CIF size, 1Mbps target bitrate and the Markov
model

of these illustrations the normalised correlation between the
bitrates of consecutive frames was plotted, while at the top
the bitrate histogram of both the original experimental data
and that of the model is displayed.

A representative range of low, medium and high bitrate
scenarios were studied using various video sequences en-
coded at various bitrates. Although the bitrate bistograms
would not be acceptable at high confidence-level using rigor-
ous goodness-of-fit distribution testing techniques, for prac-
tical network modelling purposes they were deemed ade-
quate. The bitrate correlation functions also exibited an
adequate match. The observed deviations from experimen-
tal features were deemed to be a2 consequence of the limited-
duration training data for the model, which adopted the
transition matrix entries of the experimental data. When
using these state-transition probabilities, extremely long
training sequences and model verification experiments would
be required for achieving a better statistical match. Fig-
ure 10 shows a very high correlation due to the particular
features of the *Miss America’ sequence, which exhibits a
rather imited motion activity and hence the oumber of bits
generated per frame is almost constant without large excur-
sions around the mean value.
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Figure 10: Bitrate histogram, correlation and typical bi-
trate for the Miss America sequence. Comparison between
the H.2563 codec at CIF size, 3Mbps target bitrate and the
Markov model

5. CONCLUSIONS

Oscillation-scaled Markov models have been porposed for
modelling various video sources for networking studies. A
20-state model was found to reproduce most model fea~
tures for various video resolutions and frame rates quite
accurately.
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