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ABSTRACT

By observing the structure of the decoder’s trel-
lis a new, non-iterative turbo-decoder based on a
super-trellis structure is proposed, which exhibits
the same decoding complexity as a conventional
convolutional decoder posessing an identical num-
ber of trellis states. For the investigated half-
rate, memory-length two code the proposed al-
gorithm requires about 0.5 dB lower Gaussian chan-
nel signal-to-ncise ratio (SNR) than the Maximum
A Posteriori (MAP) algorithm using 16 iterations.

1. INTRODUCTION

Turbo coding was originally proposed by Berrou, Glavieux
and Thitimajshima [2] in order to achieve near-Shannonian
performance over Gaussion channels. Hagenauer and Hoe-
her proposed to use the soft-output Viterbi algorithm for
the decoding of Turbo codes in Reference [3] , while Ha-
genauer, Offer and Papke [4] investigated also the feasibil-
ity of employing block codes as constituent codes, although
here we will concentrate on convolutional codes. Various
turbo decoders were investigated by Robertson et al [5] and
Jung [6].

The outline of the paper is as follows. Section 2 presents
the basic decoding philosophy in the context of conventional
convolution decoding, while Section 3 concentrates on the
proposed decoding technique, leading to Section 4 present-
ing our simulation results.

2. DECODING CONVOLUTIONAL CODES

In order to introduce our formalism, Figure 1 shows an
example of a path through the trellis for a codeword ¢,
where the quantities ; ; along the path represent the sym-
bol sequence within the codeword c; that is associated with
the trellis state transition j and the corresponding encoder
input bit w;. For finding the most likely transmitted code-
word, we define the following path metrics (PM):

k
c= Yl — 7l &forward PM
j=1

)

M, i<k
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N
Meici @ = 3 |G — 7l Zbackward PM. (2)
j=l+1

These so-called path-metrics are constituted by the sum
of consecutive branch-metrics. Each branch-metric quan-
tifies the similarity or dissimilarity between the received
sequence 7; and the codeword ¢; ; at instant j. When con-
sidering the trellis stage j, the two associated trellis paths
depicted in Figure la will be referred to as the forward
path and the backward path, respectively. The parameter
N in Equation 2 is the length of the input dataword, in
other words the total number of transitions in the trellis,
while the 7; is the symbol sequence that has actually been
received at stage j.

The terminology ‘forward' and 'backward' path were
chosen, because their metrics can easily be calculated by a
forward/backward recursion as follows:

®3)
(4)

As we can see in Figure la), any codeword c; can now
be broken up into a forward path ending at trellis state
transition k and a backward path from this fransition until
the end of the trellis. Its total metric evaluated by the
decoder consists therefore of two terms:

M, j<k-1 + 18k — 7l

M, 1<j + llEi — 7l

Me; i<k

M, i-1<j

M, = M, ik + M., ke<j - (5)

We make the following observation. If two codewords
¢, and ¢, differ only in terms of their forward paths with
respect to the trellis stage k, while their backward paths are
identical, then the codeword associated with the higher for-
ward path metric can be discarded, because its total metric
M., is greater than that of the other one and it can thus
never be the minimum metric path. Two partial paths are
identical, if they both commence and terminate in the same
encoder state and are associated with the same data input
bits along their way through the code trellis.

Moving on to the decoding process, this means that for
any trellis stage k (i.e. the k** tramsition in the trellis),
we have to look at each of the 2%~ possible states in the
trellis (where K is the constraint length of the encoder)
and keep only the specific forward path with the minimum
metric merging into this state. All other forward paths
merging into the same state can be discarded. Then we can
go on to the next decoding stage k+ 1, extend the surviving
forward paths of each of the 25! states at stage & by one
trellis transition, compute their metrics by a simple forward
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Figure 1: Examples for partial paths and their metrics

Trellis state:

recursion, select for each state the forward path with the
lowest metric etc.

We shall now introduce a new type of paths, which we
refer to as the intermediate paths. This is a trellis segment
associated with an intermediate section of a codeword as
can be seen in Figure 1b and its metric is accordingly given
by:

H
Mo p<icti= ., les =il

j=k+1

(6)

With this notation, a codeword metric can be split up into
three parts:
Me; = Me;,j<k + Me; k<<t + Me, i< - ()

We could therefore set up a dynamic programming ap-
proach as follows. If two codewords c, and c; differ only
in an intermediate path, we may argue that the codeword
with the higher intermediate path metric Mc,,x<j<: can be
discarded, before we go on to the next decoding stage. The
reasonini for this is that their forward metric with respect
to the k** symbol sequence and their backward metric with
respect to the I** symbol sequence are identical, because
their forward and backward paths are identical on these
trellis segments. As discussed above for forward paths,
the codeword with the higher intermediate metric has the
higher total metric and can therefore be discarded. The sur-
viving intermediate path could then be extended in either
direction to explore the trellis in order to find the most
likely path.

This shows that the Viterbi decoding process could also
start in the middle of the trellis. But since 'identical apart
from an intermediate path' now means, that the forward
paths have to merge into the same state at stage k and the
backward paths have to start in the same state at stage [,
we have to take into account every possible combination of
states the intermediate path commences and terminates in.
The number of states to take into account by this kind of
algorithm is therefore squared in comparison to extending
either forward or backward paths only, as in conventional
Viterbi decoding.
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3. DECODING TURBO CODES

Having explained the dynamic prograraming method for de-
coding convolutional codes, we are able to proceed to the
more complex task of decoding turbo codes. We are going to
highlight, why conventional turbo Decoders use an iterative
method and how we can define an optimum non-iterative
decoder.

An important difference between conventional convolu-
tional codes and turbo codes is that the decoding process of
the latter is not sequential. The effect of changing a sym-
bol in one part of the codeword will not only affect possible
paths in this part, but also the paths in distant parts of the
codeword. In order to visualize this, the simplified encoder-
/decoder structure is displayed in Figure 2, where we use
the following notation:

e u = (u, Jg=1..n represents the original non-interleaved
data bit sequence, which is used as input for the first
encoder

u® = (u,(f))k=1,_N is the interleaved bit sequence,
which is used as input for the second encoder

x = enc(u) is the output sequence of the first encoder
and '

x® = enc(u®) is the ouput of the second decoder,
where enc() denotes the encoding function

v is the part of the received sequence belonging to u,
i.e. to the input sequence of the first decoder

y(zi is the part of the received sequence belonging to

u
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Figure 2: The turbo encoder/decoder structure

Figure 3 shows an example for the positions of the first
seven bits of the input data sequence in u and u'®, for
the sake of illustration assuming a very simple interleaver
algorithm, which becomes explicit from the Figure.
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Figure 3: The original and the interleaved bit sequence

Each codeword c; is made up of its two parts x; and
x{? | and therefore we can refer to x and x(® as the partial
codewords.

Figure 4 shows the stylised trellises corresponding to
the interleaver of Figure 3 that are used to produce x and



x®. Explicitly, we have to consider not one trellis but two,
and we have hence to introduce the following partial path
metrics:

k
M gcr 1= 3 I3 — 5l ®)
i=1
N
Maic; = 3 18— 5l (9)
J=Il+1
n 2
Mo ,cn 2= D ||Em =2 (10)
* - me=1
° 2
=(2 —{2
Mo enso = 3 FR-32| v
m=n-1
N 2
— =(2) =(2)
ngz) oLm - Z ”xx,-,m — Ym ” ’ (12)
m=o+1

where Z; ; is the symbol sequence belonging to the 7** trellis
stage in the partial codeword x;, and §; is the segment
of the received sequence belonging to the j°* trellis stage.
Equations 8 and 9 define the forward/backward metric for
the partial codeword x;, while Equations 10 to 12 define
the same metrics for xgz). Their definition is analogous
to Equations 1, 2 and 6 and they are visiualized by the
corresponding partial paths in Figure 1.

Since we are using the Euclidian distance for the metric
M., of the complete turbo codeword c¢;, it is easy to show
that the turbo-decoded metric is given by the sum of the
constituent metrics:

M., =M + Mg, (13)

where M, and Mx(.z) each can be broken up into three

parts according to Ezluations 8 to 12 and Equation 7.

If we now attempt to use a dynamic programming ap-
proach for decoding y of Figure 2 and ignore y®, we start
discarding forward paths in the upper trellis of Figure 4
while retaining the survivors. As shown in Section 2 in the
context of decoding conventional convolutional codes, this
way we are able to find the partial codeword x; with the
minimum metric Mx;.

It would be very convenient, if we were able to consider
the decoding of the lower trellis having found the optimum
sequence in the upper trellis. However, this is not possible,
since having decided for x: as the most probable partial
codeword in the upper trellis, also the complete codeword ¢;
and the other partial codeword x,m are determined as there
is a unique relationship between these three quantities, and
hence there is only one possible path left in the lower trellis.

The optimal path in the upper trellis does not have to be
associated with the most likely path exhibiting the lowest
metric M (2) in the lower trellis. By minimizing Mx,, we

do not neéessarily minimize Mc;, as other codewords c;
might have slightly greater metrics My;, but much smaller
metrics M_(z), resulting in a smaller overall metric Mc;.

Due to the Jra,ndom nature of the channel outputs y and
v® | it would be easy to find such an example.

Following the above arguments, we conclude that de-
coding a parallel concatenated convolutional code cannot be
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achieved by serially decoding its constituent trellises with a
standard dynamic programming approach.

Berrou et al [2] proposed a solution to this problem by
refraining from employing dynamic programming. Expli-
citly, instead of discarding potentially possible paths while
identifying the most likely path, state-of-the-art techniques
attempt to calculate the likelihood of each bit of the ori-
ginal dataword wu of being 0 or 1 according to the first code
trellis and the received sequence y, and then pass this in-
formation on to the second decoder. The latter one uses
this additional soft-decision information to recalculate the
likelihood of the data sequence bits, but now according to
the received sequence y®), and passes the new soft-decoded
information back to the first decoder. Several of these itera-
tions can be performed, before the soft-decoded information
is used to produce a hard-decision decoder output. This

Imemcoder Pt wy
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Figure 4: An example for the two encoder trellises

approach attempts to find the optimum dataword with the
highest probability iteratively. The convergence speed var-
ies and the computational power required to approach the
optimum is fairly high. The performance of these decoders
is close to the Shannonian limit.

This treatise presents a new and different approach. In-
stead of serially decoding each of the two trellises in turn,
we parallely decode both of them at the same time. As an
introduction to this novel technique, let us consider the fol-
lowing example, assuming that we use a simple two-column
block interleaver. Figure 3 shows the action of this inter-
leaver with regards to u and u® for the first seven bits.
These seven bits are now encoded with the trellises as de-
picted in Figure 4. Let us now consider the operation of the
decoder. In the first decoding stage, we consider the trellis
paths of both trellises that are associated with the dataword
bit u;. In the upper trellis, there are only two possible path
branches, because the upper trellis commences in the all-
zero state. The left-hand-side section of the lower trellis
starts also in the all-zero state, and hence there are only
two possible paths in this section as well.

We proceed to bit uz. In the upper trellis of Figure 4,
there are four possible paths now. In the lower trellis, bit
uz is the input bit to the second encoder belonging to the
{ny 4+ 1)st trellis stage, since uffl) +1 = up. However, we do
not know as yet, which state the second encoder is in after
the first n; transitions, hence the state at the start of the
right section in the lower trellis is unkown. We must thus
consider two paths emerging from all four possible states,
resulting in eight possible paths associated with ugl) 1

Next we consider bit v3. The number of possible paths
in the upper trellis of Figure 4 increases to eight. In the
lower trellis, bit ug) = ug, i.e. us follows u;. There are thus
four possible paths in the bottom left section of Figure 4
now.




When we sequentially join the bits us4, us and ug, the
number of paths in the appropriate sections is doubled each
time, corresponding to the logical 0 and 1 values of the bits.
In the next decoding stage, i.e. after inputting bit uz, we
want to start discarding possible path combinations, which
can be excluded from being a part of the optimal codeword.
The reason for starting the decoding process only here will
become obvious during the following explanation.

The bit combination (ui,..,u7) can be considered as
being the first seven bits of a dataword that generates a
codeword c;. There are of course many datawords start-
ing with this bit combination and accordingly also many
corresponding codewords.

Before we proceed, let us introduce a metric for the
parts of the codeword (i.e. for the trellis stages) that
are directly associated with the bits u;..u7. This three-
component metric M;,;<7 is the sum of the corresponding
forward metric My;,j<7 in the upper trellis in Figure 4,
which is also depicted in Figure 5 as quantified by Equa-
tion 8, the forward metric ngz),m <4 for the left section

in the lower trellis (see Equation 10 and the intermediate

metric ngz),nl <m<n +3) for the right section in the lower

trellis (see Equation 11):
M, j<ri= My, j<r+M @ +M @

m<4 ,n1<m<ng+3° (14)

We can now formulate the following algorithm:
Algorithm

If several of the trellis paths associated with the input bit
combinations (ua,..,47) in the three considered sections of
the two trellises exhibit the following properties:

1) their associated paths in the upper trellis terminate
in the same state S7 after the seventh transition AND

2) their associated paths in the left section of the lower

trellis terminate in the same state Sﬁz) after the
fourth transition AND

3) their associated paths in the right section of the lower
trellis commence in the same state S,(,“;) after the n{*
transition AND

4) their associated paths in the right section of the lower

trellis terminate in the same state S,(;‘;)H after the

(n, +3)" transition,

then only the specific path with the lowest metric Mc; j<7
must be kept as a survivor and all others can be discarded
in the decoding process. Note that there are four potential
path combinations associated with each of the 27 = 128 pos-
sible bit combinations, since we do not know the decoder’s
state in the lower trellis after the n® transition.

The reasoning follows exactly the rationale of Section 2.
Explicitely, for any complete turbo codeword c;, its com-
plete metric can be split up as follows:

Mc,- = Mx; +Mx(.2)
k3
=My, j<7 +Mxir<; My oy
+Mx$2) A<m<ng
+Mxl(.2) m1<m<n1+3
+Mx§2),n1+3<m ?

(15)
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where the various metric components become explicit in
Figure 5. The second, fourth, and sixth terms have not
been encountered so far; they represent as yet unexplored
sections of the trellises namely the right-hand-side section
of the upper trellis, the missing intermediate path and the
missing right-hand-side section of the lower trellis in Fig-
ure 5 respectively, which have all been left blank. Upon
rearranging Equation 15, we arrive at the following Equa-
tion:

M., =My, ;<7 +Mx§2),m54 + Mx‘gz) mi<m<ni+3
+ (Mx‘;’7<j +Mx§2),4<m5n1 + ngz)nu +3<m)
=M., ;<7
+ (MC.’,7<J')’

(16)
where Mc;,7<; is the sum of the metrics of the still un-
explored sections of the two trellises and hence cannot be
evaluated as yet. Explicitely, Mc,,7<; is constituted by the
backward path metrics of both the upper and lower trellises
as well as the metric of the missing central section in Fig-
ure 5. Suppose we have two codewords ¢, and c;, of which
the associated paths

a) are different in the three considered sections of the
two trellises, which constitute Mg, j<7, but exhibit
the four criteria 1)..4) listed above, and

b) are identical in all the three unexplored sections of
the two trellises, which form part of Me;,7<;

The assumption a) implies that Me, ;<7 # Me,,i<7,
whereas b) requires that Mc, 7<; = Mc,,7<; . We have
thus min {Mc,; M, } = min {Mcmjsﬂ M., .j<7}, such that
the optimal codeword can never be the one with the higher
metric, and this can therefore be discarded. We can re-
peat this procedure of selecting one of two possible code-
words for any pair of codewords exhibiting the properties
a) and b). Since the course of the paths does not de-
pend on the bits u;..u7 outside the three considered sec-
tions constituting M;,;j<7, we discard from the set of all
the codewords sharing properties 1)..4) all those, for which
the metric M, ;<7 is not minimal.

When applying the above Algorithm in order to identify
the most likely path after the first seven bits, we have to
evaluate the metrics of 512 possible paths within the con-
sidered sections, since there are 2" = 128 different bit com-
binations and four possible starting states in the right-hand-
side section of the lower trellis. We then have to identify
256 different survivors that differ in at least one of the prop-
erties 1)..4), since there are four legitimate states for each
property, resulting in 4* = 256 possible survivors. In other
words, we can discard the less likely one of two paths sharing
the same four properties, reducing the number of possible
paths from 512 to 256.

In the following decoding stages, by concatenating a
new bit we double the number of possible paths to 512, but
since the same four properties still apply, the number of
survivors remains 256. Clearly, the above Algorithm con-
stitutes a dynamic programming approach that restricts the
number of paths to take into account to 256 at every de-
coding step.

The trellis states in the four open ends of the two trel-
lises can be-amalgamated into a super-state S;. Our four
properties 1)..4) are therefore uniquely associated with a
single super-trellis state S7 = s*, and our algortithm has
to find the survivor for any possible super-state s* at every
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Figure 5: Calculation of the three-component path-metrics for the non-iterative turbo decoder

decoding stage k. It can easily be proven that this dy-
namic programming approach always finds the optimum
turbo codeword (in the sense of maximum likelihood).

4. ALGORITHMIC PERFORMANCE

‘We have evaluated the performance of the proposed al-
gorithm in comparison to the best and most complex it-
erative Turbo decoding algorithm, namely the Maximum
Aposteriory (MAP) technique [5]. We carried out simula-
tions using a half-rate, memory-length two RSC code and
a 3 columnsx333 rows block-interleaver over a Gaussian
channel, the results of which are shown in Figure 6. The
gap between the iterative MAP Turbo decoder using 16
iterations and the non-iterative 'Flat’-decoder is generally
about 0.5dB. In our example using a 4-state convolutional
code and a block interleaver of width 2, we have shown that
Si can take on 256 different values, i.e. our super-trellis pos-
sesses 256 super-states, and 2-256 super-paths have to be
treated in each decoding step. Our approach ca be adapted
for any interleaver and any convolutional component code,
but it is clear, that this complexity becomes prohibitive for
more complex Turbo Codes, unless attractive sub-optimum
simplifications can be found, which is the subject of our
current research.

5. CONCLUSION

An optimum non-iterative decoding algorithm for turbo
codes was presented and its optimality was shown. As seen
in Figure 6, its performance is superior to that of the MAP
algorithm, while its complexity is identical to that of a con-
volutional decoder having the same number of states. Our
future work is aimed at reducing the algorithmic complexity
of the proposed technique.
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