PERFORMANCE OF ERRORS-AND-ERASURES DECODED REED-SOLOMON
CODES OVER FREQUENCY-SELECTIVE RAYLEIGH FADING CHANNELS
USING M-ARY ORTHOGONAL SIGNALING

Lie-Liang Yang and Lajos Hanzo

Dept. of ECS, Univ. of Southampton, SO17 1BJ, UK.
Tel: +44-703-593 125, Fax: +44-703-594 508

Email:

ABSTRACT

The performance of Reed-Solomon (RS) codes is in-
vestigated over frequency-selective Rayleigh fading
channels using M-ary orthogonal signaling schemes.
‘Errors-and-erasures’ decoding (E’D) is considered,
where erasures are judged based on Viterbi’s ra-
tio threshold test (RTT) and on the basis of the
output likelihood ratio threshold test (LRT?). The
LRT? technique is compared with Viterbi’s RTT,
and both of these are compared to receivers us-
ing ‘error-correction only’ decoding (ECOD) over
frequency-selective Rayleigh-fading channels. The
numerical results show that upon using E’D, RS
codes of a given code rate can achieve higher cod-
ing gain, than that without erasure information,
and that the LRT? technique outperforms the RTT,
provided that both schemes are operated at the op-
timum decision thresholds.

1. INTRODUCTION

Forward error-correction (FEC) is often used for mitigat-
ing the channel effects in wireless communications. For
so-called ‘errors-and-erasures’ decoding (E*D) schemes [1],
usually erasures are preferable to error correction, since typ-
ically more erasures than errors can be corrected. Hence, it
is advantageous to determine the reliability of the received
symbols and erase the low-reliability symbols prior to the
decoding process. There are a number of methods for gen-
erating reliability-based information and their performance
has been analyzed for example in [2]-[5]

In this contribution we consider the properties of the
so-called ratio threshold test (RTT), which was originally
proposed by Viterbi [3] and those of the likelihood ratio
threshold test (LRT?), which is defined during our further
discourse. Both of them are then invoked in the context of
M-ary orthogonal signaling, in order to generate channel-
quality related information. Viterbi’s RTT (3] was origi-
nally proposed for mitigating partial-band interference or
multitone interference. Kim and Stark [5] have invoked it
also for mitigating the effect of Rayleigh-fading and have
analysed the performance of Reed-Solomon (RS) codes us-
ing E?D. In this paper, we investigate the performance of
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RS codes [6], when M-ary orthogonal signaling is employed
in conjunction with RTT or LRT? based detection over
frequency-selective Rayleigh-fading channels. We study the
probability density functions (PDF) of both the RTT and
the LRT? at the demodulator’s output conditioned on both
the correct detection and erroneous. detection of the M-
ary signals. These PDFs are then used to derive the ex-
pressions of the codeword decoding error probability (CW-
DEP). The CW-DEP of RS codes using E’D employing
RTT or LRT? is then estimated and compared with that
of using ‘error-correction only’ decoding (ECOD) without
side information. Furthermore, we also estimate and com-
pare the optimum code rate for RS codes, upon employing
different decoding schemes and different diversity combin-
ing arrangements.

2. ERASURE INSERTION TEST

Let H; and Ho represent the hypotheses that a received
symbol is demodulated correctly and erroneously, respec-
tively, according to a given optimum detection criterion,
such as the mazimum a-posteriori probability (MAP), mazi-
mum likelihood (ML) or minimum error probability, etc. We
refer to this detection of data as the 1-st stage decision, as
indicated in Fig.1. Let us denote the variable subjected to
an erasure insertion decision by Y. Given that H; (i = 0,1)
was stipulated, Y has a-conditional PDF of f(y|H;). Then,
the erasure insertion strategy can be formulated asa 2-nd
stage decision concerning erasure insertion, in order to dis-
tinguish between the hypotheses of:

Ho :
H;:

Erroneous demodulated symbol: insert an erasure

Correct demodulated symbol: output an RS symbol.

Let the observation space be denoted by R and assume
that Ro and R are the sets of values in R that map into the
decisions Ho and Hi, respectively, where RgUR1 = R. Let
P., P;, and P. represent the correct RS symbol probability,
symbol error probability and symbol erasure probability,
respectively, after the 2-nd stage decision of Fig.1 but before
RS decoding. Then these probabilities can be expressed as:

P. = P(H)) f(y|H1)dy,
R1

P, = P(Hy) f(y|Ho)dy,
Ri

1)

2
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P. = P(Ho) f(y|Ho)dy + P(H:) | f(y|Hi)dy, (3)
Ro Ro
which obey the relationship of
Pe=l_Pc_Pt» (4)

According to Eq.(3) the RS-symbol erasure probability
is constituted by two terms. The first term is based on the
hypothesis of Hy, ie when a RS symbol was detected er-
roneously and hence erasure is required, while the second
term accrues from the unintentional erasure of a RS sym-
bol, which was detected correctly, due to its mapping into
Ro. Consequently, in order to minimize the RS symbol
decoding error probability using E’D, the optimum era-
sure insertion strategy to minimize the CW-DEP is that
of maximizing the erasure probability under the hypothesis
Hp - which corresponds to the first term of Eq.(3) - and,
simultaneously, minimizing the erasure probability under
the hypothesis H;, which corresponds to the second term
of Eq.(3). The minimization of Bayes’ risk can be invoked,
in order to obtain the decision subspaces of Ro and R;.
Bayes’ risk is defined as [7]:

1 1

E(C) =Y. 3" CyP(H:|H)P(H)),

i=0 j=0

(5)

where Cj; is the so-called cost associated with erroneously
deciding upon H;, when Hj is true, P(H;|H;) is the con-
ditional probability that indicates the probability of erro-
neously deciding upon H;, when H; is true and, finally,
P(Hj) is the a-priori probability of H;.

Let us assume that there is no performance cost, if the
decision H;, (i = 0,1) is correct, ie C11 = Coo = 0, and let
Ci0 = 1 and Co1 = 0. Then the detector that minimizes
Bayes’ risk [7] opts for Hj, if

_ fylH))

f(y|Ho) = 6P(H) "

P(Hop) _

Lk

(6)

Otherwise, the detector decides Hy, if Eq.(6) is not obeyed,
and hence we insert an erasure.

The decoding performance of RS codes can be quanti-
fied in terms of the CW-DEP, Pg. If we assume that the
positions of RS symbol errors and symbol erasures within a
codeword are independent, for example due to sufficiently
long interleaving, then the CW-DEP, Pg of the RS(n,k)
codes can be expressed in the form of [4]:

(’.‘) (" N ’) P{P{(1— P = P)"™7, (1)
i J

where jo(i) = max {0,n — k + 1 — 2¢}, and P, P. represent
the symbol error probability and symbol erasure probability
before RS decoding, respectively, which are given by Eq.(2)
and Eq.(3). Eq.(7) lends itself to the computation of the
CW-DERP, if the code is not excessively long. However, if the
RS codewords are long, the well-known Gaussian approxi-
mation can be invoked, and consequently, the CW-DEP of
RS(n, k) codes can be approximated as [5]:

Pg = Q(m) — Q(n),

n n—i

=y §

i=0 j=jo (%)

®
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where Q(z) is the Gaussian Q-function, which is defined as
Q@) = o= [Zexp (_g) dt, and

Vn(l — Rc — P. — 2P,)
V1-P.—(1-P.—2P)?’
Vi(l — P, — 2P,)
V1-P.—(1-P.-2P)?

™ (9)

2 (10)
where R. = k/n is the code rate.

Above we have developed the erasure insertion theory
for the E?°D of RS codes. It was argued in [8] that the
non-binary RS code symbols are amenable to transmission
using M-ary orthogonal signaling schemes. For example,
an M-ary orthogonal signaling scheme using M = 64, ie
6-bit symbols, has been proposed for the reverse link of IS-
95 [9]. Hence, our following analysis will focus on studying
the performance of RS codes using E?D in the context of
M-ary orthogonal signaling schemes.

3. ERASURE INSERTION USING VITERBI’S
RATIO THRESHOLD TEST

Consider the wireless communication system of Fig.1 us-
ing M-ary orthogonal signaling over an independently and
slowly fading dispersive Rayleigh channel, having L resolv-
able multipath components. Each signaling waveform in
the symbol interval [0,T) is equiproable and contains the
same energy €. The received signal is corrupted by ad-
ditive white Gaussian noise (AWGN) having double-sided
power spectral density of No/2. The noise associated with
each diversity component is assumed to be independent and
identically distributed (iid). The optimum receiver for each
diversity branch is a matched-filter followed by a square-law
envelope detector [7] as shown in Fig.1.

Let Uy, i=1,2,...,M,1=1,2,..., L be the output of
the square-law envelope detector of Fig.1 for the ith symbol
on the Ith diversity channel. Assume that the first element
of the symbol alphabet is sent. Then, the decision variables
(U1, Us,...,Unm) after equal gain combining (EGC) can be
expressed as [8] (pp.788):

L

Ui = ) [2feue™ + Ni?, (11)
=1
L

Ui o= S INGP =23, M, (12)
=1

where Nj; is a complex zero-mean Gaussian random vari-

able with variance 46Ny, and a;e™”%! represents the com-

plex channel coefficient, which is also a complex zero-mean -
Gaussian random variable with variance E[a?], where E[/]

represents the expected value of the argument. Conse-

quently, the PDF of the decision variables U; and U;, i =

2,3,..., M are chi-square distributed with 2L degree of free-

dom [8](pp.784). After normalization by 4£ No the PDFs of

Ui and U;, i = 2,3,..., M can be expressed upon modify-

ing Proakis’ approach [8](pp.784) as:

fol) = ot @ =y

e ().

L-1

x
1+7,

>0, (13)
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1 L-1
fU. (z) (L — 1)!2: exP( Z), z 20, (14)
fori=2,3,...,M, where J, = éE[a 1 = §£h[,°‘—21 is the aver-
o

age signal-to-nonse (SNR) ratio per diversity channel. The
probability of error after MLD, ie the a-priori probability of
the erroneous decision hypothesis Ho, as we discussed it in
Section 2, is given by [8](pp.789, Egs.(14-4-44)), which is
expressed as:

[T 1 L-1
P =1 - [

L-1 ,M-!
-exp (-H{’%> [1—exp(—y)z %,] dy. (15)

k=0

The a-priori probability of the correct decision hypothesis
H, is given by:

P(H1) =1—- P(Ho). (16)
Viterbi’s RTT is defined as {3}:

1 =! ma.x{Ux,Uz,...,UM}

A= Y2 =2 max {U:,Us,...,Unm}’

an

where Y1 =! max {-} and Y» =* max {-} represent the max-
imum and the ‘second maximum’ of the decision variables

of {Uy,Us,...,Unm}, respectively. The PDFs of the RTT
under the hypotheses of H; and Hp can be derived as:
INCENE e
MY PHDPP(Y: < Yi[H))
M-1 L-1

(7" (=D
-/0 z2E " lexp (—z - +y ) - \Il(zy)]M !

=
= e ( ) dz, y 21, (18)
1
F(ylHo) = [P(Ho)2P(Y: < Y1|Ho)
(-’

. / 2?5 exp(—zy) [1 — U(zy))M ?
0
Ty -
. [1 e (m—)] V(@[ - V()M
1
(s (o) v

+(M — 2)exp(-1) [1 - (1_:%)] }dz, y2>1,(19)

where the short-hand ¥(t) was defined as:

¥(t) = exp(—t) (20)

t_
< K’

Ed ~
nm
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and P(Y2 < Y1|H;), ¢ = 0,1 is the probability of Y2 < 11
conditioned on the hypothesis H;.

Let At be a pre-set threshold invoked, in order to erase
the low-reliability RS code symbols. Then for the RTT,
P., P; can be derived with the aid of Egs. (1) and (2) as
follows:

Po=PH) [ fr@lH)dy, (21)
Ar

P. = P(Hy)- / (vl Ho)dy, 22)
At

and the erasure probability P. can be derived from Eq.(4).
Finally, the CW-DEP Pg can be found by substituting P,
and P, into Eq.(7) or Eq.(8).

4. ERASURE INSERTION USING THE
DEMODULATION OUTPUT LIKELITHOOD
RATIO THRESHOLD TEST

While studying the characteristics of Viterbi’s RTT over
frequency-selective Rayleigh fading channels, we observed
that the distributions of the maxima of the decision vari-
ables, ie the demodulator’s output using MLD under the
hypotheses of H; and Hp also exhibit distinguishable char-
acteristics and hence can be used in making Rs symbol era-
sure insertion decisions.

Let the demodulator’s output in Fig.1 be denoted by Y,
where Y = max {U1,Us,...,Um}. Then the distributions
of Y under the hypotheses H; of correct detection and Ho
of erroneous detection can be expressed as:

1 1 _

PO = By Tt o
exp (—lf%) L-o™*', y>0, (23

Fr(WlHo) = 5o Ay B exp(—y)

P(Hy) T-D1Y
R 1)) e [1—\1: (H’_’%)] y y20, (24)

where P(H;) and P(Hp) represent the correct and erro-
neous detection probabilities, or the a-priori probabilities of
the 2nd stage detection of Hy and Hp, which were given by
Eq.(16) and Eq.(15), respectively, while ¥(y) is given by
Eq.(20). '

Consequently, for a given decision threshold Y7, the cor-
rect RS symbol probability, P., and symbol error probabil-
ity, P, after erasure insertion can be expressed as:

P; = P(H1)- fr(ylHh)dy, (25)
Yr

= P(Ho)- fr (y|Ho)dy, (26)
Yr

and the RS-symbol erasure probability P. can be found
from Eq.(4). Finally, the CW-DEP, Pg, after E°D can be
determined by substituting P, Pe into Eq.(7) or Eq.(8).
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5. NUMERICAL RESULTS AND DISCUSSION

Fig.2 and Fig.3 show the CW-DEP of Eq.(8) over Rayleigh
fading channels for the RS(32,20) code over the Galois field
GF(32)=GF(2°) corresponding to 5-bit symbols using E>D.
In the context of Fig.2, erasures were inserted according to
Viterbi’s RTT scheme, while in Fig.3, erasures were intro-
duced according to the LRT? scheme. In these figures, the
CW-DEP were computed for different values of SNR per
bit and for different thresholds, in order to find the opti-
mum thresholds for both erasure schemes. From the re-
sults we observe that for a constant SNR per bit, 7, and
there exists an optimum threshold for both erasure insertion
schemes, for which the E?D achieves the minimum CW-
DEP. Hence, an inappropriate threshold may lead to much
higher CW-DEP than the minimum seen in the figures. Ob-
serve furthermore that for the erasure insertion scheme us-
ing Viterbi’s RTT the optimum threshold assumes values
around 1.5 to 2.0, even though the SNR per bit changes over
a wide dynamic range from about 6 to 15dB. By contrast,
for the erasure insertion scheme using the LRT?, the opti-
mum threshold value is more unpredictable, ranging from
6 to 11, when the SNR per bit changes from 6 to 15dB.

In Fig.4 we estimated the minimum SNR per bit re-
quired for achieving the CW-DEP of 1 x 10~%, when using
Eq.(7), for a given RS code rate R. = k/n. The required
SNR per bit was computed versus the RS code rate, R.,
for the diversity orders of L = 1,2,3 and for the 64 sym-
bol long RS code family of RS(64,k) over the Galois field
GF(64)=GF(2°) using ECOD and E’D employing both the
RTT erasure insertion scheme and the LRT? scheme, re-
spectively. The results imply that for all of the decoding
schemes, the optimum RS code rate, ie the code rate that
can achieve the required CW-DEP with the lowest SNR
per bit, increases, when increasing the order of the diver-
sity combining capability. For example, for 64-length RS
codes using ECOD, the optimum code rate for L = 1 is
about 0.4, for L = 2 is about 0.6, while for L = 3 it is
somewhat higher than that for L = 2. The results also
show that, for any given code rate, the minimum required
SNR per bit for the ECOD in order to achieve the target
codeword decoding error probability is higher than that for
E?D. Furthermore, the results of Fig.2-Fig.5 indicate that,
for a given SNR per bit, in the case of optimum threshold
setting for both RT'T and LRT?, the LRT? outperforms the
RTT.

In Fig.5 the codeword decoding error probability perfor-
mance of the RS(32,20) code was evaluated against the SNR.
per bit. From the results we observe that under frequency-
selective Rayleigh fading, for a constant SNR per bit, for
a constant number of diversity components, and also un-
der the assumption that the receiver invoked the optimum
threshold, the LRT? erasure insertion scheme outperforms
the RTT scheme.
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Figure 1: Transmitter and receiver schematic of an M-
ary orthogonal signaling scheme using square-law detection,
equal gain combining, 1st and 2nd stage decisions as well
as RS channel coding.
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Figure 2: RTT: codeword decoding error probability (CW-
DEP) versus the SNR per bit, 45 and the threshold, Ar
for the erasure insertion scheme of RTT computed from
Eq.(21), Eq.(22) and Eq.(8) using parameters of L =
2, M = 32 and the RS(32,20), GF(32) code over Rayleigh
fading channels.
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2 M=32, RS(32,20) — Ecop

I e R
n SN Tz
210

[N

153

gw" .
s
g0 1
'.6 3
o

S10™ 1
©

Ero 1
H ) ;
B 10~ A T

<] 4 14 18 18 20
[&]

6 8 10 12
SNR per bit expressed in dB (v,)
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