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ABSTRACT

Turbo decoded Redundant Residue Number Sys-
tem (RRNS) codes are proposed and their per-
formance is evaluated. An RRNS(n,k) code is
a maximum-minimum distance block code, ex-
hibiting identical distance properties to Reed-
Solomon (RS) codes. Hence their error correc-
tion capability is given by t = (n—k)/2. We adapt
the classic Chase algorithm in order to accept
soft inputs and to provide soft outputs. Us-
ing the proposed soft input soft output (SISO)
Chase algorithm, the turbo decoding of RRNS
codes is contrived.

1. INTRODUCTION

Berrou et. al. demonstrated in their ground break-
ing paper [1] that the performance of turbo codes ap-
proaches the Shannon-bound. This novel form of cod-
ing scheme consists of two recursive systematic convo-
lutional codes concatenated in parallel. At the receiver,
both component decoders decode the received chan-
nel information, iteratively improving the performance
upon exchanging information. In [1] the so-called maxi-
mum a-posteriori (MAP) algorithm was used to decode
convolutional codes. The algorithm performs maximum-
likelihood bit estimation, thus producing reliability in-
formation (soft output) for each received bit. How-
ever, the MAP algorithm exhibits excessive complex-
ity, when applied to block codes, such as binary BCH
codes, due to the excessive number of states in the
trellis. In [2,3], Pyndiah et. al. modified the clas-
sic Chase algorithm [4] so that it provided a soft out-
put for each received bit. The resultant soft-in-soft-out
(SISO) Chase algorithm offers a reduced complexity
with a minute performance degradation.

Since their introduction, redundant residue number
systems (RRNS) have been considered to constitute
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a promising way of supporting fast arithmetic opera-
tions [5]—[7]. The arithmetic advantages accrue from
the property that the RNS has the ability to add, sub-
tract or multiply in parallel, regardless of the size of
the numbers involved, without generating intermediate
carry forward digits or internal delays [5]. Furthermore,
RRNSs have been studied extensively for the fault-
tolerant protection of arithmetic operations in.digital
filters as well as in general purpose computers [5]—[7).
A coding theoretical approach to error control coding
invoking the RRNS has been developed in [6]. The con-
cepts of Hamming weight, minimum distance, weight
distribution, error detection capabilities and error cor-
rection capabilities were introduced. A computation-
ally efficient procedure was described for example in [6],
for correcting multiple errors. Recently, the Chase al-
gorithm was applied in the context of RRNS codes [8]
in order to contrive soft-decision detection and to ex-
ploit the soft channel outputs. Different bit mapping
techniques were also proposed in [8], which resulted in
systematic and non-systematic RRNS encoders.

In this paper, we combine the RRNS decoder pro-
posed in [6] with the SISO Chase algorithm [2-4], in
order to decode the soft channel outputs iteratively, as
in turbo decoders. At the transmitter, the systematic
RRNS encoder proposed in (8] will be used.

2. REDUNDANT RESIDUE NUMBER
SYSTEM

A RRNS is defined in terms of an n-tuple of pairwise
relative prime positive integers, my, ma, ..., Mg, Mr41,
..., My, referred to as moduli. The moduli m1, ma, ...,
my, are considered to be non-redundant moduli. The
remaining (n — k) moduli, mg4+1, mg42, ..., My, form
the set of redundant moduli that support error detec-
tion and correction in the RRNS. The product of the
non-redundant moduli represents the so-called dynamic
range, My, of the RRNS, which is given by:

k
My = H mj . (1)
i=1
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The interval [0, M} — 1] is also often referred to as the
legitimate range, while the interval [My, M, — 1] as the
illegitimate range, where M, H —1mj.

Any positive integer X, where 0 < X < My, can be
represented by an n-tuple residue sequence given by:

(2

where the so-called residue z; is the lowest positive
integer remainder of the division X by m;, which is
designated as the residue of X mod m; or [X|,, . The
positive integer z; is also termed the j-th residue digit
of X.

Given the n-component residue vector, z;, z2, ...,
T,, we can reconstruct the integer X from the residues
using a procedure known as the Chinese Remainder
Theorem (CRT) (5], according to:

X (:1:1,.7:2,...,zk,zk+1,...,mn) ,

mod M, ,

> Mjlz;Ly,,,

=1

)

where M; = %;1 and L; is the so-called multiplicative

inverse of M; mod m;, which is defined as }LijlmJ =
1.

The so-called Mixed Radix Conversion (MRC) [5]
can also be used to replace the CRT, representing the
integer X in the form of X = Y7 | a; ['I;;ll mj, where
0 £ a; < m; and H _,m;j = 1. In the MRC algo-
rithm, the digits a;, a3, ..., a; are referred to as the
mixed radix information digits, and ag+1, ..., a, will
be termed as the mixed radix parity digits.

3. RRNS CODES

The minimum distance d,ni, is a fundamental param-
eter associated with any error control code. In [6], Kr-
ishna et. al. derived the necessary and sufficient con-
ditions concerning the redundant moduli in order for
an RRNS code to exhibit a minimum distance of dpy.
The minimum distance of an RRNS code i8 dmin, if
and only if the product of redundant moduli satisfies
the following relation [6]:
m.’ii} )
(4)

dmin dmin—1
max{ H mjl.} > My Zmax{ H
i=1 i=1
where M,,_; = _k +1 ™ represents the 'redundant
dynamic range’ of1 the code and my, is any of the n
moduli of the RRNS code, for 1 < j; < n. Similarly

to Reed-Solomon (RS) codes, the error correcting ca-
pability of an RRNS code is also given by [6]:

__dmin_l
==

(5)
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where |e] means the largest integer not exceeding e."

From Equation 4, the smallest positive value of
M, for a minimum distance d;,;, is obtained by set-
{[Tmi»~" m;, } This shows that the
left hand side inequality of Equation 4 is satisfied triv-
ially.” It also shows that an optimal RRNS, which is
associated with the minimum necessary redundant dy-
namic range of M,,_x required for achieving a minimum
distance of d;;, has the largest modulus of d,,i, — 1 as
the redundant modulus. Therefore, we can write that:

dmin -1 n—k (6)

ting M, = max

Using the standard coding theoretical terminology, we

will refer to an RRNS that satisfies Equation 6 as a
maximum distance separable RRNS (MDS-RRNS) code.

The RRNS decoder invoked in this paper was pro-
posed in [6]. The multiple error correction procedures
in [6] are extensions of those in [7]. In [7], the algo-
rithms for locating a single residue digit error are based
on the properties of the so-called modulus projection
and Mixed Radix Conversion (MRC), where the pro-
posed RRNS decoder assumed that the protected sig-
nal was discrete. Here, we propose turbo RRNS codes
by combining the SISO Chase algorithm [2-4] with the
hard decision based RRNS decoder of [6].

4. SOFT INPUT SOFT OUTPUT RRNS
DECODER

In this section, we derive the SISO Chase algorithm [2]
in the context of the proposed RRNS decoder. How-
ever, the derivation outlined below is different from [2].
The so-called Log Likelihood Ratio (LLR) of each de-
coded bit uj - given that the received sequence is y -
can be expressed as: -

Pug = +1[y)
Plup = —1y) ’

where k is a bit position in a codeword. Since the
probability of ux = +1 is equal to the summation of
all the probabilities of all codewords gz;, which have
uy, = +1, we can rewrite the numerator of Equation 7

L(ugly) =In (M

~ as follows:

577

P(uk

2

z,€atk

= +lfy) = P(zily) , (8)

where a** is the set of codewords x,; such that up = +1.
By applying Bayes’ rule, we can rewrite Equation 8 as:

P(y|£i)P(§i)
> Ply)

£i€a+k

P(uy = +1ly) = €)

Similarly, we can rewrite the denominator of Equa-

tion 7 as:
>

z;€a—k

P(y|z;)P(z;)

Plup = -1|y) = P ,

(10)
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where a~* is the set of codewords z; such that up = —1.

Substituting Equation 9 and 10 into Equation 7,
and assuming that all codewords are equally probable,
we arrive at:

i) P(z;)

ZE;GQ'H’ P( |§
|z:)P(z:)

Zgieq—" P(

Let us assume that the transmitted bit z; has been
sent over an AWGN channel using BPSK modulation.
Then, the probability density function of the received
symbol yx conditioned on the transmitted bit zx can
be expressed by [9]

L(ugly) =In

y 7 (11?

1\ - 2B |y—az|®
= 204 ‘2 =
P(y|z) (U\/ﬁ) exp , (12)
where n is the number of coded bits, o2 is the noise
variance, Ep is the energy per bit and a is the fading
amplitude (=1 for a non-fading AWGN channel). Since
the probability of a specific codeword, P(z), is equal to
the product of all probabilities of its constituent coded
bits z;, j = 1,2, ...,n, we can then write

P(z) = Chezp™® | - (13)

where L(z) is defined as the LLR of codeword z, while
C™ is a constant which will be cancelled out in Equa-
tion 11.

Using Equation 12 and 13, we can rewrite Equa-
tion 11 as:

Lizi)

2z cath €TP ezp®i—2
_E —az.|? L(z{) °
—& TP 32 ly—az;| erpSi 2z

(14)

B ly-oz,|?
L(ukly) =In

z; €

Let zt* € a** and 2% € o % be the codewords,
which are at minimum Euclidean distance from the re-
ceived sequence y. Then, upon using the approxima-

tion [10], ln (ZJ epr")
denotes the maximum value of A; and assuming that
there were no transmission errors and hence the de-
coded bit sequence u is identical to the transmitted
codedword, i.e. u = z, then we have L(z) L(u).
Hence we can approximate Equation 14 as:

o~
~

max(4;), where max(4;)
7 J

~
~

L(ukly)

Eg 2 1
—5sly—ez™ + 52 " L(w)

Fﬁm— ag_kﬁ - %g“kL(u) . (15)

+
202

Since |y — az** |? is the Euclidean distance between

the received sequences y and the codewords z**, we
can write:

n
ly — ag**|” = Z (y; — a:c;tk)2 . (16)
Jj=1
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Upon substituting Equation 16 into Equation 15, we
arrive at:

E
L(ugly) =~ r,bz {y] - 2ayjz]7k + (a:c‘k)Z}
=1
. .
_# 2 {yJ — 2ay;z* + (az;-k)z}
j
n
L(u; -
+Z (21) (.’L‘j_k _ 1}] Ic) (17)
=t

2
Since z** € {-1,+1}, (z;*) (xjk)z, and upon
introducing Lc = Z—f%“a, we can simplify Equation 17
to:

L(ukly) ~ Leyk + L(ui) + Y €; [Ley; + L(w;)]

=1

itk
(18)
where
0 ifztt=2g7*
= J 3
€j { 1 if :I};_k # :L‘]—k (19)
Let us define the extrinsic information [2] as:
n ,
Le(ue) = ) ej[Ley; + L(y;)] (20)
Z
which allows us to approximate the soft output as:
L(ugly) = Leyk + L(ug) + Le(ug) , (21)

constituted by the summation of the soft channel out-
put L.y, the a-priori (intrinsic) information L{uy) and
the extrinsic information L. (ug).

5. ALGORITHM IMPLEMENTATION

In the previous section we have shown in Equation 15
that in order to approximate the soft output L(ukly),
two codewords £* and % which are nearest to Ly+
L(w) have to be found. Using the Chase Algorithm {4,
8], we can find a surviving codeword z, which generates
zr on the basis of finding the codeword z having the
minimum Euclidean distance from L.y + L(u). The
algorithm can be readily extended to finding another
competing (or discarded) codeword % which decodes
to £ # zr and has the minimum Euclidean distance
as compared to the other codewords, which decode to
2y # zg. Given the surviving and discarded codewords,
we approximate the soft output as:

ly' — &> — |y - z|?
)

Lizely) ~ zk’[ ] (22)
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where y' = L.y + L(w). This expression is related phys-
ically to the difference between the Euclidean distances
of the surviving codeword and discarded codeword from
the received codeword. In order to find the most likely
surviving codeword z, we have to consider a higher
number of least reliable bit positions / in the Chase Al-
gorithm [4] and invoke a higher number of test patterns
(T'P) or codeword perturbations, since the probability
of finding the most likely codeword g increases with .
However, the complexity of the decoder increases expo-
nentially with [ and hence we must find a tradeoff be-
tween complexity and performance. This also implies
that in some cases we shall not to be able to find a per-
turbed codeword £, which decodes to Z # zi, given
the ! test positions used to perturb the codewords. If
such a discarded codeword Z is not found, we have to
find another method of approximating the soft output.
Pyndiah [2, 3] suggested that the soft output can be
approximated as:

L(uily) = yy + B x Lezy (23)
where yj, = Lcyr + L(ug) and B is a reliability factor,
which increases with the iteration index and that can
be optimized by simulation. This rough approxima-
tion of the soft output is justified by the fact that if
no discarded codewords £ were found by the Chase Al-
gorithm which decode to £ # zi, then the discarded
codewords £ which decode to & # zj are probably far
from y' in terms of the Euclidean distance. Since the
discarded codewords £ are far from y’, then the prob-
ability that decision uy, is correct is relatively high and
the reliability of ug, L(ug), is also high.

Actually, there is a similarity between this algo-
rithm and the Soft Output Viterbi Algorithm (SOVA).
In the SOVA, the surviving path s is decided on the
basis of the received sequence y and the a-priori in-
formation L(u). The surviving path y determines the
surviving codeword g in this case. Then, the soft out-
put of the SOVA is proportional to the minimum path
metric difference between the surviving path s, which
decodes to i, and a discarded path §, which decodes
to & # zx. Similarly, Equation 22 identifies the code-
words having the minimum Euclidean distance differ-
ence and evaluates the weight difference between the
surviving codeword z and the discarded codeword Z.

It was also proposed by Pyndiah [2] that a weight-
ing factor a should be introduced in Equation 21, as
follows:

L(uly)

The weighting factor « takes into account that the stan-
dard deviation of the received sequence y from its ex-
pected value and that of the a-priori information L(y)
are different [1,2]. The standard deviation of the ex-
trinsic information L. (ux) is comparatively high in the
first few decoding iterations and decreases during fu-
ture iterations. This scaling factor « is also used to

= Loyk + aL(ug) + Le(ug) - (24)
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Figure 1: Performance comparison between different
decoding algorithms using the turbo BCH(63,57) code
over AWGN channels. There were six decoding itera-
tions and a 57 x 57 block interleaver was used. For the
SISO Chase algorithm, a(j) and B(j) were specified in
Table 1 and | = 4.

reduce the effect of the extrinsic information in the de-
coder in the first decoding steps, when the BER is rel-
atively high. The value of a is small in the initial stage
of decoding and it increases as the BER tends to zero.

The parameters « in Equation 24 and 3 in Equa-
tion 23 can be determined experimentally; in order to
achieve an optimum performance. Both « and 8 were
given in [2], which are reproduced in Table 1, where the
decoding index j in Table 1 is the index of the decoding
iterations, which increase by one after each component
decoder.

Decoding index j
1 1 2 3 4 5 6 7 | .8
a(7) 100102{03[05(07[09(1.0]1.0
5(7) 102]04[06]08[1.0]10]1.0]1.0

Table 1: The weighting factors a and rellablhty factors
B for different decoding number j.

6. SIMULATION RESULTS

In this section, we compare the performance of the
SISO Chase algorithm with other well known algo-
rithms - such as the Log-MAP, Max Log-MAP and
SOVA - in the context of binary BCH turbo codes.
BCH codes were favoured, since a Viterbi decoder can
be invoked for their decoding and hence the Log-MAP,
Max Log-MAP and SOVA can be applied as bench-
markers. Figure 1 shows our performance comparison
of the different decoding algorithms using the turbo
BCH(63,57) code over AWGN channels. There were
six decoding iterations and a 57 x 57 block interleaver
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Figure 2: BER performance of the rate B = 0.87
RRNS(28,26) turbo code using 8-bit residues and a
26 x 26 symbol block interleaver as well as the a(j) and
B(j) values shown in Table 1 upon employing BPSK
over AWGN channels.

was used. For the SISO Chase algorithm, «(j) and
B(j) were specified in Table 1 and we used | = 4 per-
turbed bit positions, resulting in a total of 2¢ = 16
TPs. Since the Log-MAP decoding algorithm consti-
tutes the optimum technique, its BER performance
is the best in Figure 1. The Max Log-MAP decod-
ing algorithm gives a slight degradation of 0.1 dB at
BER= 10~® compared to the Log-MAP decoding algo-
rithm. With the optimum values of a(j) and 3(j) given
by Pyndiah [2] (shown in Table 1), the SISO Chase al-
gorithm gives a slight degradation of 0.2 and 0.1 dB
at BER= 10~5 compared to the Log-MAP and Max
Log-MAP decoding algorithms, respectively. As com-
pared to the SOVA, the SISO Chase algorithm seems
to perform better, having a 0.8 dB E,/Ny advantage
at a BER of 1075.

As another application of the proposed SISO Chase
decoder, Figure 2 shows the performance of the rate
R = 0.87 RRNS(28,26) turbo code using 8-bit residues
and a 26 x 26 symbol block interleaver as well as the
a(j) and B(j) values shown in Table 1 upon employing
BPSK over AWGN channels. The code rate became
R = 0.87, since the parity symbols generated by both
the upper and lower turbo encoder were transmitted
without puncturing. As the number of iterations per-
formed by turbo decoder increased, the performance
improved, although the improvements after 4 iterations
became insignificant.

7. CONCLUSION

In conclusion, we have invoked and modified the SISO
Chase algorithm for the iterative decoding of RRNS
turbo codes, which constitute a class of powerful maxi-
mum-minimum distance codes. Due to their non-binary
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nature RRNS codes are attractive burst-error correct-
ing codes, especially in the context of M-ary systems,
such as for example the second-generation Pan-Ameri-
can mobile radio system known as IS-95, which employs
6-bit symbols conveyed by one of a set of 64 Walsh-
Hadamard codes. The proposed turbo decoding algo-
rithm offered a turbo iteration gain in excess of 1 dB
in the context of the RRNS code investigated and its
most attractive application domain is the decoding of
high-rate RRNS codes, where a relatively low number
of turbo iterations and a moderate number of pertur-
bation test patterns provides a good performance. Our
future work will incorporate the proposed RRNS turbo
codec in interactive wireless speech and video systems.
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