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Abstract— The adaptive antenna array and adaptive modulation aided network
performance of a Frequency Division Duplex (FDD) Code Division Multiple Access
(CDMA) based system is investigated using system parameters similar to those of
the Universal Mobile Telecommunication System (UMTS). A number of performance
metrics, such as the call dropping probability, the average throughput as well as the
required average transmit power are quantified. It is demonstrated that the employ-
ment of adaptive modulation techniques in conjunction with adaptive antenna arrays
resulted in significant network capacity gains in the scenarios investigated.

I. INTRODUCTION

Although the various third-generation (3G) system parame-
ters [1] undergo perpetual evolution, it is beneficial to study the net-
work performance of a typical advanced UTRA-like FDD CDMA
system. Albeit the initial 3G systems are expected to refrain from
employing the most powerful performance enhancement tech-
niques available at the current state-of-the-art, in this contribu-
tion we embark on quantifying their potential joint performance
benefits. Specifically, in contrast to the previous literature [2]- [4],
the novelty of this paper is that it jointly optimises the perfor-
mance benefits of adaptive antennas [1], adaptive modulation [5]
and multi-user detection [6], bridging the physical and network
layer.

The outline of this contribution is as follows. Section II introduces
the system parameters, leading to a discussion of the performance met-
rics in Section III. The performance benefits of using adaptive modu-
lation [5] in a pedestrian scenario are quantified in Section IV and we
conclude our discussions in Section V.

II. SYSTEM PARAMETERS

The soft handover, the power control and spreading code allocation
principles of the system studied were outlined in [1], hence here we
refrain from detailing these issues. New call channel allocation requests
were placed in a resource allocation queue for up to 5s. If during this
period a call was not serviced, it was classed as blocked. The mobiles
moved freely, in random directions, at a speed of 3 miles/hour (mph)
within the simulation area, which consisted of 49 cells of an infinite
wrapped-around cellular system [1]. The employment of this wrapped-
around mesh allowed us to avoid the ’desert-island-like’ edge effects
associated with a reduced co-channel interference near the boundaries
of a finite area. The cell-radius was 150 m. The inter-call periods were
Poisson distributed, while the call duration was negative exponentially
distributed, both obeying the mean values shown in Table I. For our
initial investigations we have assumed that the basestations and mobiles
form a synchronous network, both in the up- and the down-link.

Furthermore, the basestations are assumed to be equipped with the
Minimum Mean Squared Error Block Decision Feedback Equaliser
(MMSE-BDFE) based Multi-User Detector (MUD) [6]. The post-
despreading SINRs required by this MUD for obtaining the target
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BERs were determined with the aid of physical-layer simulations us-
ing an adaptive modulation assisted CDMA scheme [5], in conjunc-
tion with 1/2 rate turbo coding [9] and MUD, when communicating
over a COST 207 seven-path Bad Urban channel [5, 12]. Using this
turbo-coded MUD-assisted transceiver and a spreading factor of 16,
the post-despreading SINR required for maintaining the target BER of
1 × 10−3 was 8.0 dB. The BER corresponding to low-quality access
was stipulated to be 5 × 10−3. This BER was exceeded for SINRs be-
low 7.0dB. Furthermore, a low-quality outage was declared, when the
BER of 1×10−2 was exceeded, namely for SINRs below 6.6 dB. These
values can be seen along with the other system parameters in Table I.

III. PERFORMANCE METRICS

There are several performance metrics that can be used for quantify-
ing the performance or quality of service provided by a mobile cellular
network. The following performance metrics have been widely used in
the literature and were also advocated by Chuang [11]:
• New call blocking probability, PB .
• Call dropping or forced termination probability, PFT . A call is
dropped when the lower of the uplink and downlink SINRs dips con-
secutively below the outage SINR, where the BER exceeds 1% a given
number of times.
• Probability of a low quality access, Plow, quantifies the chances of
either the uplink or downlink signal quality being sufficiently poor, re-
sulting in a low quality access, where the BER exceeds 0.5%.
• Probability of outage, Pout, is defined as the probability that the
SINR is below the value at which the call is deemed to be in outage.
• Grade-Of-Service (GOS) was defined by Cheng and Chuang [11] as :

GOS = P{unsuccessful or low-quality call accesses}
= P{call is blocked} + P{call is admitted} ×

P{low signal quality and call is admitted}
= PB + (1 − PB)Plow. (1)

In order to determine the number of users that may be supported with
adequate call quality by the network, we have defined a conservative
and a lenient scenario which are formed from a combination of the
performance metrics, as follows [13]:
• Conservative scenario :
PB ≤ 3%, PFT ≤ 1%, Plow ≤ 1% and GOS ≤ 4%.
• Lenient scenario :
PB ≤ 5%, PFT ≤ 1%, Plow ≤ 2% and GOS ≤ 6%.

Since in [1,10] we identified an attractive handover algorithm, in this
contribution we focus our attention on the joint benefits of adap-
tive modulation [5] and Adaptive Antenna Arrays [1] (AAAs) on
a UTRA-like network’s performance in a pedestrian scenario. Specifi-
cally, our investigations were conducted using the relative Ec/Io based
soft handover algorithm of [1] in conjunction with the new call accep-
tance threshold of Tacc=-10 dB and call dropping threshold of Tdrop=-
18 dB, using a spreading factor of 16. Given that the chip rate of
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Parameter Value Parameter Value

Noisefloor -100 dBm Pilot power -5 dBm
Frame length 10 ms Cell radius 150 m
Multiple access FDD/CDMA Number of basestations 49
Adaptive modulation scheme [5] QAM Spreading factor 16
Minimum BS transmit power -44 dBm Minimum MS transmit power -44 dBm
Maximum BS transmit power 21 dBm Maximum MS transmit power 21 dBm
Power control stepsize 1 dB Power control hysteresis 1 dB
Low quality access (BER ≥ 0.5 %) SINR 7.0 dB Outage (BER ≥ 1%) SINR 6.6 dB
Pathloss exponent -3.5 Size of Active Basestation Set (ABS) 2
Average inter-call-time 300 sec Max. new-call queue-time 5 sec
Average call length 60 sec MS speed 3 mph
Maximum consecutive outages 5 Signal bandwidth 5 MHz
Target SINR (at BER=0.1%) 8.0 dB

TABLE I

SIMULATION PARAMETERS.

UTRA is 3.84 Mchips/sec, this spreading factor corresponds to a chan-
nel data rate of 3.84×106/16 = 240 kbps. Applying 1/2 rate error cor-
rection coding would result in an effective data throughput of 120 kbps,
whereas utilising a 2/3 rate error correction code would provide a use-
ful throughput of 160 kbps. Again, a cell radius of 150 m was assumed
and a pedestrian walking velocity of 3 miles/hour was used, while the
remaining system characteristics - including the power control scheme,
the OVSF code allocation algorithm [1, 8] and the multi-user detec-
tor [6] - were identical to those used in [10], which are also summarised
in Table I.

IV. PERFORMANCE OF ADAPTIVE ARRAYS AND ADAPTIVE

MODULATION IN A HIGH DATA RATE PEDESTRIAN

ENVIRONMENT

A. The Antenna Arrays

In our previous investigations employing AAAs at the base sta-
tion [13] we observed quite significant performance gains as a direct
result of the interference rejection capabilities of the AAAs invoked.
Since the CDMA based network considered here has a frequency reuse
of 1, the levels of co-channel interference are significantly higher than
in [13], and hence the adaptive antennas may be able to null the in-
terference more effectively. On the other hand, the high number of
interference sources may limit the achievable interference rejection.

In order to render the simulations realistic, we used two multipath
rays, in addition to the line-of-sight ray, each having a third of the
direct-path’s power. The angle-of-arrival of each multipath ray was
determined using the so-called Geometrically Based Single-Bounce El-
liptical Model (GBSBEM) of [14,15] with parameters chosen such that
the multipath rays had one-third of the received power of the direct ray.
The Probability Density Function (PDF) of the angle-of-arrival distri-
bution used in the simulations generated using the GBSBEM is shown
in Figure 1. It was assumed that the multipath rays arrived with no time
delay relative to the LOS path. However, in a practical system a space-
time equalizer [16, 17] would be required to prevent the nulling of the
delayed paths.

Network performance results were obtained using two and four el-
ement adaptive antenna arrays, both in the absence of shadow fading,
and in the presence of 0.5 Hz and 1.0 Hz frequency shadow fading
exhibiting a standard deviation of 3 dB. The adaptive beamform-
ing algorithm used was the Sample Matrix Inversion (SMI) algo-
rithm [1]. Below the specific adaptive beamforming implementa-
tion used for calculating the AAA weights in the CDMA based net-
work studied here is briefly highlighted as follows [13].

Specifically, one of the eight possible 8-bit BPSK reference signals
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Fig. 1. Probability density function of angle-of-arrival of the multipath rays, centred about
the angle-of-arrival of the line-of-sight path.

was used for identifying the desired user, and the remaining interfer-
ing users were assigned the other seven 8-bit reference signals. The
received signal’s autocorrelation matrix was then calculated, and from
the knowledge of the desired user’s reference signal, the receiver’s op-
timal antenna array weights were determined with the aid of the SMI
algorithm [1]. Since this implementation of the algorithm only calcu-
lated the basestation receiver’s antenna array weights, i.e. the antenna
arrays weights used by the base station in the uplink, these weights may
not be suitable for use in the downlink, when independent up/downlink
shadow fading is experienced. Hence, investigations were conducted
in two specific scenarios, namely where the uplink and downlink AAA
weights were identical, as well as when they were separately deter-
mined for the uplink and downlink. The corresponding uplink beam-
forming scenario is portrayed for the sake of illustration in Figure 2,
while an appropriately modified, but similar scenario is valid for the
downlink, which is not shown here for reasons of space economy.

The two separate uplink and downlink AAA weight calcula-
tion scenarios allowed us to determine the potential extra perfor-
mance gain that may be achieved by separately calculating the
AAA weights to be used in the downlink. The AAA weights were
re-calculated for every power control step, i.e. 15 times per UTRA
data frame, due to the potential significant changes in terms of the
desired signal and interference powers that may occur during one
UTRA frame as a result of the maximum possible 15 dB change in
power transmitted by each user. The performance of both of these
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Fig. 2. The multipath environments of the uplink showing the multipath components of the
desired signals, the line-of-sight interference and the associated base station antenna
array beam patterns.

scenarios was summarised in Table II [1]. In the next section we will
show the benefits of employing adaptive modulation [5].

B. Employing Adaptive Modulation

In this section we apply Adaptive Quadrature Amplitude Modulation
(AQAM) techniques [5]. There are two main objectives, when em-
ploying AQAM, namely counteracting the effects of time-variant
channel quality fluctuations as well as the effects of the time-variant
interference load imposed by the time-variant number of variable-
rate users supported. 1 The various experimental conditions inves-
tigated were identical to those used for generating the results of Ta-
ble II, except for the application of AQAM [5]. Since in Table II an
increased network capacity was achieved due to using independent up-
and down-link beamforming, this procedure was invoked in these sim-
ulations. AQAM involves the selection of the appropriate modulation
mode in order to maximise the achievable data throughput over a chan-
nel, whilst minimising the Bit Error Ratio (BER). More explicitly, the
philosophy behind AQAM is the most appropriate selection of a mod-
ulation mode according to the instantaneous radio channel quality ex-
perienced [5, 19]. Therefore, if the SINR of the channel is high, then
a high-order modulation mode may be employed, thus exploiting the
temporal fluctuation of the radio channel’s quality. Similarly, if the
channel is of low quality, exhibiting a low SINR, a high-order mod-
ulation mode would result in an unacceptably high BER or FER, and
hence a more robust, but lower throughput modulation mode would

1Unless otherwise stated, for the sake of simplicity we will refer to time-variant channel quality fluctua-
tions, regardless, whether these were imposed by fading effects or by co-channel interference fluctuations.
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Fig. 3. The AQAM mode switching algorithm used in the downlink of the CDMA based
cellular network.

be employed. Therefore, AQAM combats the effects of time-variant
channel quality, while also attempting to maximise the achieved data
throughput, and maintaining a given BER or FER. In the investigations
conducted, the modulation modes of the up and downlink were deter-
mined independently, thus taking advantage of the lower levels of co-
channel interference on the uplink, or of the potentially higher transmit
power of the base stations.

The particular implementation of the AQAM mode switching proce-
dure used in these investigations is illustrated in Figure 3 [1]. This fig-
ure describes the algorithm in the context of the downlink, but the same
implementation was used also in the uplink. For a detailed discussion
of the inner working of the algorithm the interested reader is referred
to [1]. Table III shows the BPSK, 4-QAM and 16-QAM reconfiguration
SINR thresholds used in the simulations. The BPSK SINR thresholds
were 4 dB lower, than those necessary when using 4-QAM, while the
16-QAM SINR thresholds were 5.5 dB higher [12]. In other words,
in moving from the BPSK modulation mode to the 4-QAM modula-
tion mode, the target SINR, low quality outage SINR and outage SINR
all increased by 4 dB. When switching to the 16-QAM mode from the
4-QAM mode, the SINR thresholds were increased by 5.5 dB. How-
ever, it was necessary to set the BPSK to 4-QAM and the 4-QAM to
16-QAM mode switching thresholds to a value 7 dB higher than the
SINR required for maintaining the target BER/FER, in order to prevent
excessive outages due to sudden dramatic channel-induced variations
in the SINR levels.

Performance results were obtained both with and without beamform-
ing in a log-normal shadow fading environment, at maximum fading
frequencies of 0.5 Hz and 1.0 Hz, and a standard deviation of 3 dB.
Again, a pedestrian velocity of 3 mph, a cell radius of 150 m and a
spreading factor of 16 were used, as in our previous investigations.

Figure 4 shows the significant reduction in the probability of a
dropped call, achieved by employing AAAs in conjunction with
AQAM in a log-normal shadow faded environment. The mean trans-
mission power versus teletraffic performance is depicted in Figure 5,
suggesting that the required mean uplink transmission power was al-
ways significantly below the mean downlink transmission power, which
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Conservative scenario, PFT =1%, Plow=1%
Shadowing Beamforming: independent Users Traffic (Erlangs Power (dBm)

up/down-link /km2/MHz) MS BS

No No - 256 1.42 3.1 2.7
No 2 elements - 325 1.87 3.75 0.55
No 4 elements - 480 2.75 4.55 1.85

0.5 Hz, 3 dB No - ≈150 0.87 -1.2 -1.7
0.5 Hz, 3 dB 2 elements No 203 1.16 0.1 -1.1
0.5 Hz, 3 dB 4 elements No 349 2.0 2.0 0.65
0.5 Hz, 3 dB 2 elements Yes 233 1.35 0.2 -0.8
0.5 Hz, 3 dB 4 elements Yes ≈375 2.2 2.15 0.85

1.0 Hz, 3 dB No - 144 0.82 -1.1 -1.6
1.0 Hz, 3 dB 2 elements No 201 1.12 -0.3 -1.1
1.0 Hz, 3 dB 4 elements No 333 1.88 1.6 0.5
1.0 Hz, 3 dB 2 elements Yes 225 1.31 0.1 -0.9
1.0 Hz, 3 dB 4 elements Yes 365 2.05 1.65 0.6

TABLE II

Maximum mean carried traffic and maximum number of mobile users that can be supported by the network, whilst meeting the conservative quality constraints. The carried traffic is

expressed in terms of normalised Erlangs (Erlang/km2/MHz) for the network described in Table I both with and without beamforming (as well as with and without independent

up/down-link beamforming), and also with and without shadow fading having a standard deviation of 3 dB for SF=16.
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Fig. 4. Call dropping probability versus mean carried traffic of a CDMA based cellular
network using relative received Ec/Io based soft handover thresholds both with and
without beamforming in conjunction with AQAM as well as with shadowing hav-
ing a standard deviation of 3 dB for SF=16.

can be attributed to the pilot power interference encountered by the mo-
biles in the downlink. This explanation can be confirmed by examin-
ing Figure 6, which demonstrates that the mean modem throughput in
the downlink, without AAAs, was lower than that in the uplink even
in conjunction with an increased downlink transmission power. How-
ever, the increase in the mean downlink transmission power resulted in
a more substantial increase in the mean downlink modem throughput,
especially with the advent of the four element antenna arrays, which ex-
hibited an approximately 0.5 BPS throughput gain over the two element
arrays for similarly high traffic loads which can be seen in Figure 6.

A summary of the maximum user capacities of the networks consid-
ered in this section in conjunction with log-normal shadowing having
a standard deviation of 3 dB, both with and without employing beam-
forming using two and four element arrays is given in Table IV. The
teletraffic carried, the mean mobile and base station transmission pow-
ers required, and the mean up- and down-link modem data throughputs
achieved are also shown in Table IV. For more performance results on
the topic the interested reader might like to consult reference [1].
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Fig. 5. Mean transmission power versus mean carried traffic of a CDMA based cellu-
lar network using relative received Ec/Io based soft handover thresholds both with
and without beamforming in conjunction with AQAM as well as with shadowing
having a standard deviation of 3 dB for SF=16.
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Fig. 6. Mean modem throughput versus mean carried traffic of a CDMA based cellular
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Conservative scenario
Traffic (Erlangs Power (dBm) Throughput (BPS)

Shadowing Beamforming Users /km2/MHz) MS BS Uplink Downlink

0.5 Hz, 3 dB No 223 1.27 3.25 4.95 2.86 2.95
0.5 Hz, 3 dB 2 elements 366 2.11 3.55 4.7 2.56 2.66
0.5 Hz, 3 dB 4 elements 476 2.68 3.4 5.0 2.35 2.72

1.0 Hz, 3 dB No 218 1.24 3.3 4.95 2.87 2.96
1.0 Hz, 3 dB 2 elements 341 1.98 3.5 4.9 2.62 2.73
1.0 Hz, 3 dB 4 elements 460 2.59 3.5 4.95 2.4 2.8

TABLE IV

MAXIMUM MEAN CARRIED TRAFFIC AND MAXIMUM NUMBER OF MOBILE USERS THAT CAN BE SUPPORTED BY THE NETWORK, WHILST MEETING THE CONSERVATIVE QUALITY

CONSTRAINTS. THE CARRIED TRAFFIC IS EXPRESSED IN TERMS OF NORMALISED ERLANGS (ERLANG/KM2 /MHZ), FOR THE NETWORK DESCRIBED IN TABLE I BOTH with and

without beamforming (using independent up/down-link beamforming), in conjunction with shadow fading having a standard deviation of 3 dB, whilst employing adaptive

modulation techniques FOR SF=16.

SINR Threshold BPSK 4-QAM 16-QAM

Outage SINR 2.6 dB 6.6 dB 12.1 dB
Low Quality Outage SINR 3.0 dB 7.0 dB 12.5 dB
Target SINR 4.0 dB 8.0 dB 13.5 dB

TABLE III

THE TARGET SINR, LOW QUALITY OUTAGE SINR AND OUTAGE SINR THRESHOLDS

USED FOR THE BPSK, 4-QAM AND 16-QAM MODULATION MODES OF THE

ADAPTIVE MODEM.

V. SUMMARY AND CONCLUSIONS

The impact of AAAs upon the IMT2000 / UTRA network capacity
was considered in both non-shadowed and log-normal shadow faded
propagation environments, which was further improved with the aid
of AQAM techniques. In conclusion, the employment of AQAM
increased both the average throughput and the robustness of the
network, since a sudden channel quality reduction did not re-
sult in dropping the call supported, it rather activated a lower-
throughput, but more robust modulation mode.
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