Optimal Floating-Point Realizations of Finite-Precision Digital Controllers
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ABSTRACT dealing with large plant uncertainty [1]. It is well known
that a control law can be implemented with different realiza-
The paper investigates the closed-loop stability issue aions and different realizations possess different degrees of
finite-precision realizations for digital controllers imple-*“robustness” to FWL errors. This property can be utilized to
mented in floating-point arithmetic. Unlike the existingdesign “optimal” controller realizations [2],[3].
methods which only address the effect of the mantissa bits
in floating-point format to the sensitivity of closed-loop sta- o . ) X .
bility, the sensitivity of closed-loop stability is analyzed with controller realizations using flxed_—_pomt arlthmetl_c [41-[10].
respect to both the mantissa and exponent bits of floating-ow.ever’ FWL closed—loo'p stability measures in all 'these
point format. A computationally tractable finite word length re_vu;us works o_nl)_/ _consr:der the fractlonalh_;l) art .Of f|_xe_,-d-
(FWL) closed-loop stability measure is defined, and the optiPO'”;. ormat.. Mj?'m'ﬁ'n? t ese rr|1easures, whie T'n'm'z'ng
mal controller realization problem is posed as searchingforji%e Its required for the fractional part, may actually increase

floating-point realization that maximizes the proposed me _7]e [g]'ts Ar$q5;r§d fgrbtgt?e:rn;egi;:f:ﬁ;.ﬂgeg;pgné;ﬁ;ﬂ?r
sure. A numerical optimization approach is adopted to solve - - 9 Y pp

for the resulting optimization problem. Simulation result S?]r;i?aeszl;;envmizmiin;izt?nthgoﬁiclit? 't:ﬁggctlgsr:gﬂggd'
show that the proposed design procedure yields comput ying explicitly P

tionally efficient controller realizations with enhanced FWLsigm:{zt:t%unes Oxﬁcféoimg{sﬁg Sdg;Lal[ fﬁntirnm\ll%igﬁ'a
closed-loop stability performance. P ) P '

weighted closed-loop eigenvalue sensitivity index was de-
Index Terms — digital controller, finite word length, floating- fined for floating-point digital controller realizations. This
point, closed-loop stability, optimization. FWL measure, however, only considers the mantissa part of
floating-point arithmetic, under an assumption that the expo-
nent bits are unlimited. The main contribution of this paper
is to derive a new FWL closed-loop stability measure that

The classical digital controller design methodology ofter£XPlicitly considers both the mantissa and exponent parts of
assumes that the controller is implemented exactly. Indeeffoating-point arithmetic.
it may seem that the controller “uncertainty” resulting from
finite-precision computation is so small, compared to the un- Il. FLOATING-POINT REPRESENTATION
certainty within the plant, such that this controller uncer-
tainty can simply be ignored. However, it has increasingly aAny real number € R can be represented uniquely by:
been realized that this is not necessarily the case. Due to
the FWL effect, a casual controller implementation may de-
grade the designed closed-loop performance or even destabi-
lize the designed stable closed-loop system, if the controller

implementation structure is not carefully chosen. The FwIVeres € 10,1} is for the sign ofx, w € [0.5, 1) is the

o . . mantissa ofz, e € Z is the exponent of, and Z denotes
effect has become more critical with the growing popular; S : . I
g g pop he set of integers. Whenis stored in a digital computer of

ity of ller desi hods which f | r§ > set of In Whenit : .
ity of robust controller design methods which focus sole o inite 8 bits in a floating-point format, the bits consist of three

Contact author: S. Chen, Tel/Fax: +44 (0)23 8059 6660/4508, Emalfalts: one bitfos, 5, bits forw ands. bits fore. Obviously,
sqc@ecs.soton.ac.uk B8 =1+ B, + Be. The set of all the possible floating-point

Many previous studies have focused on finding optimal
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numbers that can be presented by the bit lepgthgiven by  The stability of the closed-loop control system depends on
the eigenvalues of the closed-loop transition matrix

Bw
A s —(i e
F={(-1) <0'5+Zbi2 (+1)> x 2°:s€{0,1}, A(X) = Ap +BpDcCp BpCeo
i—1 o BcCp Ac
7 71 ) Za_ S S e 2
b; € {0,1},e€ Z,e<e <e}U{0} 2 [ Ap O By 0 « Cr 0
wheree ande represent the lower and upper limits of the - 0O 0 + 0o I, 0o I,

exponent, respectively, agd- e = 25 — 1.

A
Denote the set of integees < e < € as 2, z. When =M, + My XM, (8)
no underflow or overflow occurs, that is, the exponent of where the zero matriR has an appropriate dimension. All
is within 2. ¢, the floating-point quantization operat@r:  the different realizationX in Sc have exactly the same set
R — F can be defined as of closed-loop poles if they are implemented in infinite pre-
o(e=Bu—1) [ 9(Bu—ei1) 05 0 cision. Since the_: closed-loop system has been designed to be
Q(x) & { sgn(z) ! || +0.5), = # stable, all the eigenvalueg (A (X)), 1 < i < m + n, are

0, x =0  within the unit disk. Define
(3) N
where the exponemrt= |log, ||| + 1 and the floor function [ X llmax = max x| 9)
|| denotes the largest integer less than or equal tdhe >
. . . . A . A
quantization error is defined as= |z — Q(z)|. It can easily g(X) = min{|zj | : xj % # 0} (10)
be shown that the quantization error is bounded by Jk
(But1) X is implemented with a floating-point processor®f ex-
e <=2 : (4) ponent bits3,, mantissa bits and one sign bit.

Thus, whene is implemented in floating-point format ¢f,, Firstly, in order to avoid underflow and overflow, both the
mantissa bits, assuming no underflow or overflow, it is perexponents of| X || max andg(X) must be withinZ|,, 7 sup-
turbed to ported by the3. exponent bits. We define an exponent mea-

Ow) = o(1+9), |3] < o (Bu+1) (5) sure for the floating-point controller realizatidhas

. . 4| X || max

It can be seen that the perturbation resulting from FWL ~7(X) 2 log, (”7!(&> . (11)
floating-point arithmetic is multiplicative, unlike the additive 9(X)
perturbation resulting from FWL fixed-point arithmetic. The following proposition is obvious.

Proposition 1: X can be represented in the floating-point

format of 5. exponent bits without underflow or overflow, if

Consider the discrete-time closed-loop control systen’?,ﬁ‘* > log, (%) +2.

consisting of a linear time invariant pla®(z) and a in )
digital controller C(z). P(z) is assumed to be strictly ~L€t/F:"" be the smallest exponent bit length that, when
proper with a state-space descriptidhp, Bp, Cp), where used to implemenk, can avoid underflow and overflow. It
Ap € R™™ Bp ¢ R™ and CP’ c Raxm_ et Canbecomputedas
A, B:,Co,D¢) be a state-space realization , i
(i B O D) e 2 state-space realzaton o) B = |~ 10g, (108, [Xllmes] ~ 108, 9(X)] + 1)

L ' : 12
R!*4, The realizations of the controller are not unique. (12)
fact, if (A2, B, C2, DY) is a realization ofC(z), all the

IIl. PROBLEM STATEMENT

Nrhe measure (X) provides an estimate ¢gf™" as

realizations of”(z) form a realization set Smin A

2 Brmin £ |~ log, y(X)] (19)

i ) _ 10 . .

Sc ={(Ac,Bc,Ce, Do) - Ao =T AT, Itis clear that3 " > gmin,

Bc =T 'Bf,Cc = CLT,Dc =D} (6) Secondly, when there is no underflow or overfl&,is
.. A
where the transformation matrik € R™*" is an arbitrary perturbed toX + X o A due to finitef,,, whereX o A =
non-singular matrix. Denote [z,1£05,k] is the Hadamard product & and A = [4;x].

Each element oA is bounded byt2 ~(F»+1) that s,

A
X =[zji] =

D¢ Cc]

Be Ac () A o < 27 G0t D) (14)



With the perturbatiom\, \;(A (X)) is moved to\;(A(X + However, the difficulty is that computing the value;of(X)

X o A)). If an eigenvalue oA (X + X o A) is outside the is an unsolved open problem. In the next section, we will
open unit disk, the closed-loop system, designed to be stabbeek an alternative measure that not only can quantify FWL
becomes unstable with the finite-precision floating-point imeharacteristics oK but also is computationally tractable.
plementedX. It is critical to know when the FWL error will

cause closed-loop instability. This means that we would like |/ A TrACTABLE FWL STABILITY MEASURE

to know the largest open “cube” in the perturbation space,

within which the closed-loop system remains stable. Based when the FWL errorA is small, from a first-order ap-
on this consideration, a mantissa measure for the floatingroximation,vi e {1,---,m+n}

point realizationX is defined as

l+n g+n .
o (X) = 1nf{||A||max : A(X+XoA)is unstablg. (15) IAi(A(X+Xo0A))|— |\ (A(X))] ~ Z Z 215)‘ i 63-,,@.
: k
From this definition, the following proposition is obvious. j=lk=1 7% (21)
Proposition2: A(X + X o A) is stable if[|A|lmax <  For the derivative matri)% - [gpk‘] define
f10(X). "
Let gmin be the mantissa bit length such that, > N Z o[\ 22)
Bmin A(X + X o A) is stable for the floating-point im- 0A | um N — k|’
plementedX with 3,, mantissa bits and (X + X o A) is -
unstable for the floating-point implement&dwith Bmin —1  Then
mantissa bits. Except through simulatigif;*" is generally INAX + X o A))| = |N(AX))
unknown. The mantissa measyrg X) provides an estimate
ofpu s <A e | 5 A (23)
Amin 2 A=0llsum
wo " = —Llogy po(X)] —1. (16 . : )
This leads to the following mantissa measureXor
It can be seen that™in > gmin,
Define the minimum total bit length required in floating 1 (X) 2 i(AX))| (24)
point implementation as ’6{1’ vm+"} H
A=0llsum
min & pmin min
B =B+ By + 1 17)

Obviously, if|| A || max < p1(X), then|X; (A (X+XoA))| <
Clearly, a floating-point implementeR with a bit length 1 which means that the closed-loop remains stable uAder
B > p™" can guarantee no underflow, no overflow andn other words, for a giveiX, the closed-loop can tolerate
closed-loop stability. Combining the measurgX) and those FWL perturbationA whose norms|A||,.x are less
o (X) results in the following true FWL closed-loop stabil- thany, (X). The largen (X) is, the larger FWL errors the
ity measure for the floating-point realizatidh closed-loop system can tolerate. Similar to (16), from the

A mantissa measuye (X), an estimate of™" is given as
po(X) = po(X)/v(X) .- (18)
An estimate of3™i" is given byp, (X) as gmin 2_ |log, p1(X)] — 1. (25)
Amin 2D
B = —[logy po(X)] + 1. (19)

o _ The assumption of smal\ is usually valid in floating-
It is clear thatgg*™ > ™. The following proposition point implementation. Generally speaking, there is no rigor-
summarizes the usefulness @f(X) as a measure for the ous relationship betwegm, (X) andy; (X), buty; (X) may
FWL characteristics oK. be viewed as a lower bound pf,(X), since there are “stable

Proposition 3: A floating-point implemente& with a bit perturbation cubes” larger thaA : [|Allmax < 1 (X)}

lengthp can guarantee no underflow, no overflow and closed- hile there Is no “stable perturbatiqn cube” larger ﬂ{m :
loop stability, if25=" > 1/po(X). |Al|lmax < po(X)} [8],[9]. Hence, in most cases, it is rea-

sonable to take that; (X) < wuo(X) andﬂmm ,8”“”.
An optimal controller realization can in theory be foundnore importantly, unlike the measuye, (X), the value of

by maximizingp,(X), leading to the following optimal con- 111 (X) can be computed explicitly. It is easy to see that
troller realization problem

A O\l O\l
Vtrue = max po(X). (20) =

ax 5A AZO_ X oX. (26)



Let p; be a right eigenvector oA (X) corresponding to the Therefore, for those multiplicative perturbations bounded by
eigenvalue\; andy; be the related reciprocal left eigenvec-||A||max, @ smallY;(X) will limit the resulting change of

tor. The following lemma is due to [5]. the corresponding eigenvalue within a small range.
Lemmal: Let A(X) = My + M; XM, given in (8) be The first observation is that (X) considers both the man-
diagonalizable. Then tissa and exponent of floating-point arithmetic and is there-
O\ fore able to handle all the aspects of underflow, overflow and
L =MTyrpIMT (27) closed-loop stability, whiléX'(X) only considers the man-
X tissa part and is thus “incomplete”. SecondfyX) deals
where the superscriptdenotes the conjugate operation andwith the sensitivity of\; while p; (X) (11 (X)) considers the
T the transpose operator. the sensitivity of|\;|. It is well-known that the stability of

. . . a discrete-time linear time-invariant system depends only on
The following proposition shows that, giverXg the value o .
) . the module of its eigenvalues. A5(X) includes the unnec-
of 11 (X) can easily be calculated. The proof of this propo- : . . o
NI . essary eigenvalue arguments in consideration, it is generally
sition is straightforward.

o conservative in comparison with (X). Thirdly, p; (X) uses

Proposition 4: Let A(X) be diagonalizable. Then H% 0 X . while Y (X) uses|X | || 2¢||,. in checking
. Il (1= X)) the change of an eigenvalue. It is easy to see that

= min .

pa (X)

sum - - 8 )\
RO X0 AN =N < [ er |22 0 x
Replacingu, (X) with u; (X) in (18) leads to a computa- sum
tionally tractable FWL closed-loop stability measure o)
<A lmaxl Xl || 55 (35)
A > a;
p1(X) = pa (X)/7(X) . (29) 281
sum
jmin 4 —|logy p1(X)| + 1. (30) [1X]|r | %  does on the change of the corresponding

eigenvalue module due to the multiplicative perturbations.

. . This again implies that; (X) is less conservative thaf(X)
Itis useful to compare the proposed measure with the pre- =~ .~ . N

. . . h estimating the robustness of closed-loop stability with re-
vious results, especially the most recent one given by [11

For a complex-valued matri¥ — [y, ], define the Frobe- pect to controller perturbations. The fourth observation is
AILS Norm SR thatp; (X) prowdes_ an estimate gfmen, Bi’“" in (30), while
1/2 T (X) cannot provide information on bit length to the de-

Yl 2 . 31 signer. One reason is that the measpréX) consists of
Y lle = Zymy%’“ ) (31) two components, with:; (X) addressing the stability mar-

pk gin and eigenvalue sensitivity linked to the mantissa bits,
Under an assumption that the exponent bits are unlimited, tiehd y(X) considering the exponent bits, while(X) only
computationally tractable weighted closed-loop eigenvalufpcuses on the eigenvalue sensitivity partially linked to the

sensitivity index addressed in [11] is given by mantissa part. The other reason is that, over all the closed-
min loop eigenvaluesy; (X) considers the “worst” one while
A T (X) considers a “weighted average”
T(X) =) aiTi(X) (32) '
i=1

wherea; are non-negative weighting scalars ahd X) are V. OPTIMIZATION PROCEDURE

single-eigenvalue sensitivities defined by As different realizationsX have different values of the

2 FWL closed-loop stability measuyg (X), it is of practical
(33)  importance to find an “optimal” realizatiaK ,,, that maxi-
mizesp; (X). The controller implemented with this optimal
The thinking behind the above definition is as follows. FronrealizationX,; needs a minimum bit length and has a max-
a first-order approximation, it can easily be shown that imum tolerance to the FWL error. This optimal controller
2\ realization problem is formally defined as
{2

0X

o\
0X

A .
Ti(X) = [IX[%

F

INi(A(X+X0A))=Ai(AX)] < 1A |max X ¢

34 v 2 max p1(X). (36)



Assume that a controller has been designed using some stamethod given in [11]. The discrete-time plant was given by

dard controller design method. This controller, denoted as

o
BC

Ce

A
X, =
0 A%

)

is used as the initial realization in the above optimization
problem. Letpo; be a right eigenvector angl; the related
reciprocal left eigenvector oA (X,) corresponding to the

eigenvalue\;. The definition ofS¢ in (6) means that

L O

>

X X(T):{

wheredet(T) # 0. It can then be shown that

I, O
0 T!

which implies that
| Im 0 ' o (1,
pz—|:0 T—1:|p02, Yz—-o
Hence

I, 0]
0 T

M RelAy!p! M = [

(37)

0 Tl}XO[qu 3?] (38)
]K(X(J){Ig H (39)
rI(\)T:|YOi- (40)

M/ Re[A!yg:po; M3

I, 0 lafy o], (1, o1]_
X[o TT}_{O TT]'I)’[O TT]_F(T)

(41)

3.7156e +0 —5.4143¢ + 0
1 0
Ap = 0 1
0 0
3.6525¢ +0 —9.6420¢ — 1
0 0
0 0 ’
1 0
Br = [1 0 0 0]",
Cp [1.1160e — 6  4.3000e — 8

1.0880e — 6 1.4000e — 8] .

The initial realization of the digital controller was given by

2.6743¢ +0 —5.7446e + 0
A0 — | 28769e—1  —2.7446e -2
¢ —3.3773¢—1 9.8699¢ — 1
—-8.302le —2 —3.1988¢ — 3
2.510le+0 —9.1782¢ — 1
—6.9444¢ —1 —8.9358¢ — 3
—-3.2925¢ —1 —4.2367e —3 | ’
9.1906e — 1 —1.0415¢ — 3
BY = [1.0959¢ +6 6.3827¢+5
3.0262e +5 7.4392e +4]"
C) = [1.8180e—1 -2.8313e—1
5.0006e —2 6.1722¢ —2], D% =0.

with ®; = M7 Re[\!y;;pe;/M1 . Define the following cost Based on the proposed FWL closed-loop stability measure,
the optimization problem (43) was formed and solved for us-
ing the MATLAB routinefminsearch.mto obtain an optimal

function:

IT(T) o X(T)lsum
[Nl (1 = [A:l)

>

T
H(T) ie{l,r-n--l,rnlern}(
4IIX(T)IImax>1

o8 = (1))

Then the optimal controller realization problem (36) can be

posed as the following optimization problem:

UV = max
TeRrnXn

det T#0

f(T).

Efficient numerical optimization methods exist for solving

for this optimization problem to provide an optimal transfor-+—" ) .
P b P P ity index (32). We will use the index “s”, rather then “opt”,

(42)

(43)

mation matriXT ;. With Ty, the optimal realizatioX o

can readily be computed.

VI. A NUMERICAL EXAMPLE

The example taken from [2] was used to illustrate the pro-
posed design procedure for obtaining optimal FWL floating-
point controller realizations and to compare it with the

transformation matrix

7.7275¢ +3 —1.0904e + 2
T | 6.9729¢+3  2.1370e + 3
°pt T 1 6.2844e+3  3.9092¢ + 3
5.5879¢ +3  5.2862¢ + 3
—2.1292¢ + 2 9.8042¢ + 1
4.4988¢+1 2.1812¢ + 2
2.9303e +2  2.9240e + 2
5.5027e¢ + 2 3.4367¢ + 2

An “optimal” controller realization problem was given in

[11] based on the weighted closed-loop eigenvalue sensitiv-

to denote the solution of this “optimal” realization problem.
For this example, the transformation matrix obtained using
the MATLAB routinefminsearch.mgiven in [11] is

8.1477e + 3 0

T, =

7.0104e +3 2.2671e+3
6.1991e +3 3.9989% + 3
5.676le +3 5.2680e + 3



0 0
0 0
1.1558e + 2 0

3.5814e+2 1.529%9e + 1

TABLE |

VARIOUS MEASURES CORRESPONDING ESTIMATED MINIMUM BIT
LENGTHS AND TRUE MINIMUM BIT LENGTHS FOR THREE CONTROLLER

REALIZATIONS Xg, X5 AND Xopt.

It is obvious that the true minimum exponent bit length
Bmin for a realizationX can directly be obtained by examin-
ing the elements aX. The true minimum mantissa bit length

Bmin however can only be obtained through simulation. That

is, starting from a very largg,,, reduces,, by one bit and
check the closed-loop stability. The process is repeated until
there appears closed-loop instability &, = Sy.. Then

gmin = 3., + 1. Table | summarizes the various mea-

sures, the corresponding estimated minimum bit lengths and

the true minimum bit lengths for the three controller realiza-

tions Xy, X5 andX,,, respectively. It can be seen that the
floating-point implementation oK, needs at least 26 bits
(20 mantissa bits and 5 exponent bits) while the implemen-
tation of X, needs at least 13 bits (8 mantissa bits and 4
exponent bits). The reduction in the bit length required is lél]
(12-bit reduction for the mantissa part and 1-bit reduction fof2]
the exponent part). CompariXy, with Xy, it can be seen
thatX,,; needs one bit less in the exponent part and one by
less in the mantissa part to maintain the closed-loop stability.

[4]
VIl. CONCLUSIONS
(5]
The closed-loop stability issue of finite-precision real-

izations has been investigated for digital controller impleis]
mented in floating-point arithmetic. A new computation-
ally tractable FWL closed-loop stability measure has beeg
derived for floating-point controller realizations. Unlike the
existing methods, which only consider the mantissa part of
floating-point scheme, the proposed measure takes into gg;
count both the exponent and mantissa parts of floating-point
format. It has been shown that this new measure yields a
more accurate estimate for the FWL robustness of closeg
loop stability. Based on this FWL closed-loop stability mea-
sure, the optimal controller realization problem has been for-
mulated, which can easily be solved for using standard nyi)
merical optimization algorithms. A numerical example has
demonstrated that the proposed design procedure yields comy
putationally efficient controller realizations suitable for FWL
float-point implementation in real-time applications.
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Realization Xo X Xopt
1 2.6644e-9 4.7588e-6 9.5931e-6
gmin 30 19 18
1 8.5182e-8 8.7907e-5 1.5229e-4
fmin 23 13 12
¥ 3.1971e+1 1.8473e+1 1.5875e+l
pmin 5 5 4
pgman 26 15 13
B 20 9 8
Bmin 5 5 4
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