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ABSTRACT

The paper investigates the closed-loop stability issue of
finite-precision realizations for digital controllers imple-
mented in floating-point arithmetic. Unlike the existing
methods which only address the effect of the mantissa bits
in floating-point format to the sensitivity of closed-loop sta-
bility, the sensitivity of closed-loop stability is analyzed with
respect to both the mantissa and exponent bits of floating-
point format. A computationally tractable finite word length
(FWL) closed-loop stability measure is defined, and the opti-
mal controller realization problem is posed as searching for a
floating-point realization that maximizes the proposed mea-
sure. A numerical optimization approach is adopted to solve
for the resulting optimization problem. Simulation results
show that the proposed design procedure yields computa-
tionally efficient controller realizations with enhanced FWL
closed-loop stability performance.

Index Terms – digital controller, finite word length, floating-
point, closed-loop stability, optimization.

I. I NTRODUCTION

The classical digital controller design methodology often
assumes that the controller is implemented exactly. Indeed,
it may seem that the controller “uncertainty” resulting from
finite-precision computation is so small, compared to the un-
certainty within the plant, such that this controller uncer-
tainty can simply be ignored. However, it has increasingly
been realized that this is not necessarily the case. Due to
the FWL effect, a casual controller implementation may de-
grade the designed closed-loop performance or even destabi-
lize the designed stable closed-loop system, if the controller
implementation structure is not carefully chosen. The FWL
effect has become more critical with the growing popular-
ity of robust controller design methods which focus sole on
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dealing with large plant uncertainty [1]. It is well known
that a control law can be implemented with different realiza-
tions and different realizations possess different degrees of
“robustness” to FWL errors. This property can be utilized to
design “optimal” controller realizations [2],[3].

Many previous studies have focused on finding optimal
controller realizations using fixed-point arithmetic [4]–[10].
However, FWL closed-loop stability measures in all these
previous works only consider the fractional part of fixed-
point format. Maximizing these measures, while minimizing
the bits required for the fractional part, may actually increase
the bits required for the integer part of fixed-point format
[7],[8]. Arguably, a better approach would be to consider
some measure which is linked to the total bit length required.
There has been little work studying explicitly the closed-loop
stability issue of FWL floating-point digital controller im-
plementations. An exception is the work [11], in which a
weighted closed-loop eigenvalue sensitivity index was de-
fined for floating-point digital controller realizations. This
FWL measure, however, only considers the mantissa part of
floating-point arithmetic, under an assumption that the expo-
nent bits are unlimited. The main contribution of this paper
is to derive a new FWL closed-loop stability measure that
explicitly considers both the mantissa and exponent parts of
floating-point arithmetic.

II. FLOATING-POINT REPRESENTATION

Any real number� � � can be represented uniquely by:

� � ����� � � � �� (1)

where� � ��� �� is for the sign of�, � � ����� �� is the
mantissa of�, � � � is the exponent of�, and� denotes
the set of integers. When� is stored in a digital computer of
finite� bits in a floating-point format, the bits consist of three
parts: one bit for�, �� bits for� and�� bits for�. Obviously,
� � � � �� � ��. The set of all the possible floating-point



numbers that can be presented by the bit length� is given by
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where� and � represent the lower and upper limits of the
exponent, respectively, and�� � � ��� � �.

Denote the set of integers� � � � � as���� ��. When
no underflow or overflow occurs, that is, the exponent of�
is within���� ��, the floating-point quantization operator
 	
� � � can be defined as
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where the exponent� � �
��� 
�
��� and the floor function
��� denotes the largest integer less than or equal to�. The

quantization error is defined as�
�
� 
��
���
. It can easily

be shown that the quantization error is bounded by

� 	 
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Thus, when� is implemented in floating-point format of��

mantissa bits, assuming no underflow or overflow, it is per-
turbed to


��� � ��� � Æ�� 
Æ
 	 �������� � (5)

It can be seen that the perturbation resulting from FWL
floating-point arithmetic is multiplicative, unlike the additive
perturbation resulting from FWL fixed-point arithmetic.

III. PROBLEM STATEMENT

Consider the discrete-time closed-loop control system,
consisting of a linear time invariant plant
 ��� and a
digital controller ����. 
 ��� is assumed to be strictly
proper with a state-space description��� ��� ��� �, where
�� � ����, �� � ���� and�� � �	��. Let
��
 ��
 ��
 ��
� be a state-space realization of����,
with �
 � ����, �
 � ���	 , �
 � ���� and�
 �
���	 . The realizations of the controller are not unique. In
fact, if ���
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where the transformation matrix� � ���� is an arbitrary
non-singular matrix. Denote
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The stability of the closed-loop control system depends on
the eigenvalues of the closed-loop transition matrix
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where the zero matrix� has an appropriate dimension. All
the different realizations� in �
 have exactly the same set
of closed-loop poles if they are implemented in infinite pre-
cision. Since the closed-loop system has been designed to be
stable, all the eigenvalues
�������, � � � � � � �, are
within the unit disk. Define
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� is implemented with a floating-point processor of�� ex-
ponent bits,�� mantissa bits and one sign bit.

Firstly, in order to avoid underflow and overflow, both the
exponents of���	
� and���� must be within���� �� sup-
ported by the�� exponent bits. We define an exponent mea-
sure for the floating-point controller realization� as
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The following proposition is obvious.

Proposition 1: � can be represented in the floating-point
format of�� exponent bits without underflow or overflow, if

��� � 
���



������
����

�
� �.

Let ����
� be the smallest exponent bit length that, when

used to implement�, can avoid underflow and overflow. It
can be computed as
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(12)
The measure���� provides an estimate of����

� as
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It is clear that�����
� � ����

� .

Secondly, when there is no underflow or overflow,� is

perturbed to� �� Æ	 due to finite��, where� Æ	
�
�

����
Æ��
� is the Hadamard product of� and	 � �Æ��
�.
Each element of	 is bounded by���������, that is,

�	�	
� 	 �������� � (14)



With the perturbation	, 
������� is moved to
������
� Æ	��. If an eigenvalue of��� �� Æ	� is outside the
open unit disk, the closed-loop system, designed to be stable,
becomes unstable with the finite-precision floating-point im-
plemented�. It is critical to know when the FWL error will
cause closed-loop instability. This means that we would like
to know the largest open “cube” in the perturbation space,
within which the closed-loop system remains stable. Based
on this consideration, a mantissa measure for the floating-
point realization� is defined as

�����
�
� �����	�	
� 	 �����Æ	� is unstable� � (15)

From this definition, the following proposition is obvious.

Proposition 2: ��� � � Æ 	� is stable if�	�	
� 	
�����.

Let ����
� be the mantissa bit length such that��� �

����
� , ��� � � Æ 	� is stable for the floating-point im-

plemented� with �� mantissa bits and��� �� Æ	� is
unstable for the floating-point implemented� with ����

� ��
mantissa bits. Except through simulation,����

� is generally
unknown. The mantissa measure����� provides an estimate
of ����

� as
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It can be seen that�����
�� � ����

� .

Define the minimum total bit length required in floating
point implementation as
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Clearly, a floating-point implemented� with a bit length
� � ���� can guarantee no underflow, no overflow and
closed-loop stability. Combining the measures���� and
����� results in the following true FWL closed-loop stabil-
ity measure for the floating-point realization�
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An estimate of���� is given by����� as
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It is clear that�����
� � ����. The following proposition

summarizes the usefulness of����� as a measure for the
FWL characteristics of�.

Proposition 3: A floating-point implemented� with a bit
length� can guarantee no underflow, no overflow and closed-
loop stability, if���� � �������.

An optimal controller realization can in theory be found
by maximizing�����, leading to the following optimal con-
troller realization problem
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However, the difficulty is that computing the value of�����
is an unsolved open problem. In the next section, we will
seek an alternative measure that not only can quantify FWL
characteristics of� but also is computationally tractable.

IV. A T RACTABLE FWL STABILITY MEASURE

When the FWL error	 is small, from a first-order ap-
proximation,�� � ��� � � � ��� ��



�������Æ	��
�

�������
 �
����
���

	���

��

�

�


�Æ��


����
���

Æ��
 �

(21)

For the derivative matrix������� �
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This leads to the following mantissa measure for�
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Obviously, if�	�	
� 	 �����, then

�������Æ	��
 	
� which means that the closed-loop remains stable under	.
In other words, for a given�, the closed-loop can tolerate
those FWL perturbations	 whose norms�	�	
� are less
than�����. The larger����� is, the larger FWL errors the
closed-loop system can tolerate. Similar to (16), from the
mantissa measure�����, an estimate of����

� is given as
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The assumption of small	 is usually valid in floating-
point implementation. Generally speaking, there is no rigor-
ous relationship between����� and�����, but����� may
be viewed as a lower bound of�����, since there are “stable
perturbation cubes” larger than�	 	 �	�	
� 	 ������
while there is no “stable perturbation cube” larger than�	 	
�	�	
� 	 ������ [8],[9]. Hence, in most cases, it is rea-
sonable to take that����� � ����� and �����

�� � �����
�� .

More importantly, unlike the measure�����, the value of
����� can be computed explicitly. It is easy to see that
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Let 
� be a right eigenvector of���� corresponding to the
eigenvalue
� and�� be the related reciprocal left eigenvec-
tor. The following lemma is due to [5].

Lemma 1: Let���� � �� ������ given in (8) be
diagonalizable. Then
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where the superscript� denotes the conjugate operation and
� the transpose operator.

The following proposition shows that, given a�, the value
of ����� can easily be calculated. The proof of this propo-
sition is straightforward.

Proposition 4: Let���� be diagonalizable. Then
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Replacing����� with ����� in (18) leads to a computa-
tionally tractable FWL closed-loop stability measure
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From the above measure, an estimate of���� is given as
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It is useful to compare the proposed measure with the pre-
vious results, especially the most recent one given by [11].
For a complex-valued matrix� � ����
�, define the Frobe-
nius norm
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Under an assumption that the exponent bits are unlimited, the
computationally tractable weighted closed-loop eigenvalue
sensitivity index addressed in [11] is given by
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where�� are non-negative weighting scalars and� ���� are
single-eigenvalue sensitivities defined by
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The thinking behind the above definition is as follows. From
a first-order approximation, it can easily be shown that
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Therefore, for those multiplicative perturbations bounded by
�	�	
�, a small����� will limit the resulting change of
the corresponding eigenvalue within a small range.

The first observation is that����� considers both the man-
tissa and exponent of floating-point arithmetic and is there-
fore able to handle all the aspects of underflow, overflow and
closed-loop stability, while���� only considers the man-
tissa part and is thus “incomplete”. Secondly,���� deals
with the sensitivity of
� while ����� (�����) considers the
the sensitivity of

�
. It is well-known that the stability of
a discrete-time linear time-invariant system depends only on
the module of its eigenvalues. As���� includes the unnec-
essary eigenvalue arguments in consideration, it is generally
conservative in comparison with�����. Thirdly,����� uses���������� Æ�
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while���� uses����
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��

��
�

in checking

the change of an eigenvalue. It is easy to see that
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Obviously,
���������� Æ�
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gives a more accurate limit than
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does on the change of the corresponding
eigenvalue module due to the multiplicative perturbations.
This again implies that����� is less conservative than����
in estimating the robustness of closed-loop stability with re-
spect to controller perturbations. The fourth observation is
that����� provides an estimate of����, �����

� in (30), while
���� cannot provide information on bit length to the de-
signer. One reason is that the measure����� consists of
two components, with����� addressing the stability mar-
gin and eigenvalue sensitivity linked to the mantissa bits,
and���� considering the exponent bits, while���� only
focuses on the eigenvalue sensitivity partially linked to the
mantissa part. The other reason is that, over all the closed-
loop eigenvalues,����� considers the “worst” one while
���� considers a “weighted average”.

V. OPTIMIZATION PROCEDURE

As different realizations� have different values of the
FWL closed-loop stability measure�����, it is of practical
importance to find an “optimal” realization���� that maxi-
mizes�����. The controller implemented with this optimal
realization���� needs a minimum bit length and has a max-
imum tolerance to the FWL error. This optimal controller
realization problem is formally defined as
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Assume that a controller has been designed using some stan-
dard controller design method. This controller, denoted as
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is used as the initial realization in the above optimization
problem. Let
�� be a right eigenvector and��� the related
reciprocal left eigenvector of����� corresponding to the
eigenvalue
�. The definition of�
 in (6) means that
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where������ �� �. It can then be shown that
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with 
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Then the optimal controller realization problem (36) can be
posed as the following optimization problem:
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���� � (43)

Efficient numerical optimization methods exist for solving
for this optimization problem to provide an optimal transfor-
mation matrix����. With����, the optimal realization����

can readily be computed.

VI. A NUMERICAL EXAMPLE

The example taken from [2] was used to illustrate the pro-
posed design procedure for obtaining optimal FWL floating-
point controller realizations and to compare it with the

method given in [11]. The discrete-time plant was given by
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Based on the proposed FWL closed-loop stability measure,
the optimization problem (43) was formed and solved for us-
ing the MATLAB routinefminsearch.m to obtain an optimal
transformation matrix
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An “optimal” controller realization problem was given in
[11] based on the weighted closed-loop eigenvalue sensitiv-
ity index (32). We will use the index “s”, rather then “opt”,
to denote the solution of this “optimal” realization problem.
For this example, the transformation matrix obtained using
the MATLAB routinefminsearch.m given in [11] is
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It is obvious that the true minimum exponent bit length
����
� for a realization� can directly be obtained by examin-

ing the elements of�. The true minimum mantissa bit length
����
� however can only be obtained through simulation. That

is, starting from a very large��, reduce�� by one bit and
check the closed-loop stability. The process is repeated until
there appears closed-loop instability at�� � ���. Then
����
� � ��� � �. Table I summarizes the various mea-

sures, the corresponding estimated minimum bit lengths and
the true minimum bit lengths for the three controller realiza-
tions��, �� and����, respectively. It can be seen that the
floating-point implementation of�� needs at least 26 bits
(20 mantissa bits and 5 exponent bits) while the implemen-
tation of���� needs at least 13 bits (8 mantissa bits and 4
exponent bits). The reduction in the bit length required is 13
(12-bit reduction for the mantissa part and 1-bit reduction for
the exponent part). Comparing���� with��, it can be seen
that���� needs one bit less in the exponent part and one bit
less in the mantissa part to maintain the closed-loop stability.

VII. C ONCLUSIONS

The closed-loop stability issue of finite-precision real-
izations has been investigated for digital controller imple-
mented in floating-point arithmetic. A new computation-
ally tractable FWL closed-loop stability measure has been
derived for floating-point controller realizations. Unlike the
existing methods, which only consider the mantissa part of
floating-point scheme, the proposed measure takes into ac-
count both the exponent and mantissa parts of floating-point
format. It has been shown that this new measure yields a
more accurate estimate for the FWL robustness of closed-
loop stability. Based on this FWL closed-loop stability mea-
sure, the optimal controller realization problem has been for-
mulated, which can easily be solved for using standard nu-
merical optimization algorithms. A numerical example has
demonstrated that the proposed design procedure yields com-
putationally efficient controller realizations suitable for FWL
float-point implementation in real-time applications.
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TABLE I

VARIOUS MEASURES, CORRESPONDING ESTIMATED MINIMUM BIT

LENGTHS AND TRUE MINIMUM BIT LENGTHS FOR THREE CONTROLLER

REALIZATIONS�� ,�� AND ���� .

Realization �� �� ����

�� 2.6644e-9 4.7588e-6 9.5931e-6
�����
� 30 19 18
�� 8.5182e-8 8.7907e-5 1.5229e-4
�����
�� 23 13 12
� 3.1971e+1 1.8473e+1 1.5875e+1

�����
� 5 5 4

���� 26 15 13
����
� 20 9 8

����
� 5 5 4
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