
Performance Evaluation of Bayesian Decision Feedback Equalizer
with � -PAM Symbols Using Importance Sampling Simulation

S. Chen
Department of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, U.K.

Abstract— An importance sampling (IS) simulation method is pre-
sented for evaluating the lower-bound symbol error rate (SER) of the
Bayesian decision feedback equalizer (DFE) with� -PAM symbols,
under the assumption of correct decision feedback. By exploiting an
asymptotic property of the Bayesian DFE, a design procedure is devel-
oped, which chooses appropriate bias vectors for the simulation density
to ensure asymptotic efficiency (AE) of the IS simulation.

I. I NTRODUCTION

As the complexity of the Bayesian DFE [1]-[3] increases
exponentially with the channel impulse response (CIR)
length�� and the symbol size� , SER evaluation under high
signal-to-noise-ratio (SNR) conditions becomes impossible
using a conventional Monte Carlo simulation. This paper
considers SER evaluation of the Bayesian DFE using an IS
simulation method. The idea of IS is that certain values of
the input variables have more impact on the error rate than
others and, by sampling these “important” values more fre-
quently, the estimator variance can be reduced [4]. The issue
is then how to choose a biased distribution to encourage the
important regions of the input variables. One of the most
effective IS techniques is the mean translation approach [5]–
[7], where the distribution is moved toward the error region.

For binary symbols, Iltis [8] developed a randomized bias
technique for the IS simulation of Bayesian equalizers. This
IS simulation method was extended to evaluate the lower-
bound (assuming correct decision feedback) bit error rate of
the Bayesian DFE with binary symbols [9],[10]. For the� -
PAM case, the asymptotic Bayesian decision boundary for
separating any two neighbouring signal classes can be de-
duced [11]. By exploiting a symmetric distribution within
each signal subset, the SER of the Bayesian DFE for the� -
PAM case can be shown to be a scaled error rate of the equiv-
alent “binary” Bayesian DFE evaluated on two neighbouring
signal subsets. These two properties enable an extension of
the IS simulation technique to the� -PAM case.

II. T HE BAYESIAN DECISION FEEDBACK EQUALIZER

Consider the real-valued channel generates the received
signal samples of:
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where�� are the CIR taps, the Gaussian white noise���� has
zero mean and variance���, and���� takes the value from
the symbol set� � ��� � �� �� � �� � � � � ��. The
DFE uses the observed vector���� � ����� � � � ��� �	 �
���� and the past detected symbol vector������ � ����� �

 � �� � � � ���� � 
 � ����

� to produce an estimate���� �

� of ��� � 
�, where
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feedforward and feedback orders, respectively. The choice
of 
 � �� � �, 	 � �� and�� � �� � � will be used,
as this choice guarantees a linear separability for different
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are the	� �
� �� and	� �� CIR matrices, respectively.
Assuming correct past decisions, we have

���� � �� �� ��� ��� ������ � ���� � (5)

Thus the decision feedback translate���� into a new space:
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Let the�� � ���� combinations of�� ��� be ���� , � �

 � �� . The set of the noiseless channel states, namely,
� � ��� � �� ���� � � � 
 � ��� can be partitioned into
� subsets conditioned on��� � 
�:
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The optimal Bayesian DFE [3] involves computing the�
decision variables for� � � ��
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and making the decision according to
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A geometric translation property [11] is re-iterated here.
For � � � � � � �, ������ is a translation of����

by the amount����	: ������ � ���� � ����	, where
���	 � ������ � � ��� ���

� . This shifting property implies
that, asymptotically when the SNR tends to infinity, the de-
cision boundary	��� for separating������ and������ is a
shift of 	� by an amount����	. Without the loss of gen-
erality, consider the two neighbouring subsets� �
��� and
���
������. A pair of opposite-class channel states����� �
���
������� ���� � ��
��� is said to beGabriel neighbours
if 
�� � ��
���
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where�� � ����� � �������. The following lemma [11]
describes the asymptotic decision boundary	
��.

Lemma 1: Asymptotically, the optimal decision boundary
	
�� separating��
��� and���
������ is piecewise linear
and made up of� hyperplanes. Each of these hyperplanes
is defined by a pair of Gabriel neighbours, the hyperplane is
orthogonal to the line connecting the pair of Gabriel neigh-
bours and passes through the midpoint of the line.

Consequently, a necessary condition for�� � 	
�� is

�� �
���� � ����

�
�



���� � ����

�

��
(11)

where�� denotes an arbitrary vector in the subspace orthog-
onal to�, ���� and���� are a pair of Gabriel neighbours; and
the sufficient conditions for�� � 	
�� are
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A simple algorithm can be used to select the set of all� pairs
of Gabriel neighbours�����
 � �

���

 ��
�� [8],[11].

Due to the symmetric distribution of�, the states of� ���

are distributedsymmetrically around the mass center of� ���.
In particular, if a point�� � ���� has a distance� to the
decision boundary	���, then there is another point�
 � ����

with the same distance to the other decision boundary	 �.
Now consider the lower-bound SER for the Bayesian DFE
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First create a “binary” Bayesian DFE defined on��
��� and
���
������ with the decision function given by
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and the decision rule defined by
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(17)

Denote the error probability of this “binary” Bayesian DFE
as��. Taking into account of the shifting and symmetric
properties discussed previously, it is straightforward to verify
that�� � ���, with � � ��� � ���� .

III. IS SIMULATION FOR THE� -PAM CASE

To evaluate the SER,�� , of the Bayesian DFE with� -
PAM symbols, it is only needed to evaluate the error prob-
ability, ��, of the equivalent binary Bayesian DFE defined
on ��
��� and���
������. The IS simulation technique
[9],[10] can readily be used to evaluate�� as follows:
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where�������� � � if ���� causes an error, and�������� �
	 otherwise;�������
��� is the true conditional density given
�� � �

��
������, and�� ��
� � ���� is the number of

states in���
������; the sample����� is generated using the
simulation density��������
��� chosen to be
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In the simulation density (19),�� is the number of the bias
vectors	
�� � ��� � �
�� for �� � ���
������, �
�� � 	

for � � � � �� , and
���


�� �
�� � �. An estimate of the
IS gain for ���, which is defined as the ratio of the numbers
of trials required for the same estimate variance using the
Monte Carlo and IS methods, is given as [6],[8]:
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The IS simulated�� is simply ��� � � ���, and the estimated
IS gain for ��� will be used as the estimated IS gain for��� .



A design procedure is given for constructing the simula-
tion density��������
��� that meets the conditions for AE

[6]. Let �����
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Note that�
 is a canonical hyperplane with�
��
���

 � � �

and�
��
���

 � � ��. A state����� � ��
��� is sufficiently

separable by the hyperplane�
 if 
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 �

���
� � �
 � ��.

Similarly, ����� � ���
������ is sufficiently separable by

�
 if 
�

 �

���
� � �
 � �. The hyperplane�
 is reachable
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���, its separability in-
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�� � � if ����� is sufficiently separable by

�
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If �
�� � �
���
� �	
�� � 	
�� (i.e. ����
��� � 	),�
 is reach-

able from����� (	
�� is then a bias vector), and the reachabil-
ity index is�
�� � �; otherwise�
�� � 	. The whole process
produces the following separability and reachability table:
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For each����� � ���
������, select those hyperplanes that

can sufficiently separate����� and are reachable from�����

with the aid of the above table. This yields the integer set:
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The convex region����
� covering����� is the intersection of

all the half-spaces����
� � �� 
 ����� � 	� with ! �  ���

� .
In fact, it is not necessary to use every hyperplanes defined
in  ���

� to form�
���
� . A subset of these hyperplanes will be

sufficient, provided that every opposite-class state in� �
���

can sufficiently be separated by at least one hyperplane in the
subset. If this can be done, the error region� satisfies
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with the half-spaces����
� � �� 
 ����� � 	�. Obviously,

all the hyperplanes defined in ���
� are reachable from�����

and at least one of������ is the minimum rate point (as de-

fined in [6]). If ���
� exists for each����� � ���
������, the

simulation density constructed with the bias vectors�	����,

! �  
���
� , for all 
 will guarantee AE.

IV. SIMULATION EXAMPLES

Example 1. A 2-tap channel� � �	�� ��	�� with 8-PAM
symbols was simulated, given	 � �, 
 � � and�� � �.
The set� had�� states. Nine pairs of Gabriel neighbours
were selected from��
� and����, leading to the separability
and reachability table from which an AE simulation density
was constructed. The simulation density construction is illus-
trated in Fig. 1. The bias vectors were selected with uniform
probability in the simulation (�
�� � ����). For each SNR,
�	� iterations were used for each state in����. Thus, the to-
tal samples used for a given SNR were� � �	�. Fig. 2 (a)
shows the lower-bound SERs obtained using the IS and con-
ventional sampling (CS) simulations, respectively. It can be
seen that the conventional Monte Carlo results for low SNR
conditions based directly on the Bayesian DFE of (8) and
(9) agreed with those of the IS simulation. The estimated
IS gains, depicted in Fig. 2 (b), indicate that exponential IS
gains were obtained with increasing SNRs.

Example 2. A 3-tap channel� � �	�� ��	 � 	���� with 8-
PAM symbols was tested, given	 � �, 
 � � and�� � �.
The set� had��� states. Nineteen pairs of Gabriel neigh-
bours were found from��
� and����, leading to the sep-
arability and reachability table from which an AE simula-
tion density was constructed. Again the bias vectors were
selected with uniform probability in the simulation. For each
SNR,�	
 samples were used for each state in����, result-
ing in a total of��� � �	� samples for a given SNR. Fig. 3
(a) depicts the lower-bound SERs obtained using the IS and
CS simulations, respectively. Again, the conventional Monte
Carlo results for low SNR conditions agreed with those of the

R
(4)

R
(5)

Fig. 1. Illustration of the simulation density construction for the channel
� � ���� ����� with 8-PAM symbols.
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Fig. 2. The lower-bound SERs (a) and the estimated IS gain (b) of the
Bayesian DFE for� � ���� ����� with 8-PAM symbols.

IS simulation. It can be seen from Fig. 3 (b) that exponential
IS gains were obtained with increasing SNRs.

V. CONCLUSIONS

An IS simulation has been extended to evaluate the lower-
bound SER of the Bayesian DFE with� -PAM symbols. It
has been noted that the Bayesian decision boundary sepa-
rating any two neighbouring signal classes is asymptotically
piecewise linear. Furthermore, the SER of the Bayesian DFE
for the� -PAM case is a scaled error rate of the equivalent
binary Bayesian DFE evaluated on any two neighbouringsig-
nal subsets. A design procedure has been presented for con-
structing the simulation density that meets the asymptotic ef-
ficiency conditions.

REFERENCES

[1] D. Williamson, R.A. Kennedy and G.W. Pulford, “Block decision
feedback equalization,”IEEE Trans. Communications, Vol.40, No.2,
pp.255-264, 1992.

[2] S. Chen, B. Mulgrew and S. McLaughlin, “Adaptive Bayesian
equaliser with decision feedback,”IEEE Trans. Signal Processing,
Vol.41, No.9, pp.2918–2927, 1993.

[3] S. Chen, S. McLaughlin, B. Mulgrew and P.M. Grant, “Bayesian deci-

-20

-15

-10

-5

0

15 20 25 30 35 40

lo
g1

0(
S

ym
bo

l E
rr

or
 R

at
e)

Signal to Noise Ratio (dB)

CS
IS

(a)

0

2

4

6

8

10

12

14

16

18

15 20 25 30 35 40

lo
g1

0(
E

ffi
ci

en
cy

 G
ai

n)

Signal to Noise Ratio (dB)

(b)

Fig. 3. The lower-bound SERs (a) and the estimated IS gain (b) of the
Bayesian DFE for� � ���� ��� � ����� with 8-PAM symbols.

sion feedback equaliser for overcoming co-channel interference,”IEE
Proc. Communications, Vol.143, No.4, pp.219–225, 1996.

[4] P.J. Smith, M. Shafi and H. Gao, “Quick simulation: a review of im-
portance sampling techniques in communications systems,”IEEE J.
Selected Areas in Communications, Vol.15, No.4, pp.597–613, 1997.

[5] D. Lu and K. Yao,“Improved importance sampling techniques for effi-
cient simulation of digital communication systems,”IEEE J. Selected
Areas in Communications, Vol.6, No.1, pp.67–75, 1988.

[6] J.S. Sadowsky and J.A. Bucklew, “On large deviations theory and
asymptotically efficient Monte Carlo estimation,”IEEE Trans. Infor-
mation Theory, Vol.36, No.3, pp.579–588, 1990.

[7] H.J. Schlebusch, “On the asymptotic efficiency of importance sam-
pling techniques,”IEEE Trans. Information Theory, Vol.39, pp.710–
715, 1993.

[8] R.A. Iltis, “A randomized bias technique for the importance sam-
pling simulation of Bayesian equalizers,”IEEE Trans. Communica-
tions, Vol.43, No.2/3/4, pp.1107–1115, 1995.

[9] S. Chen,“Importance sampling simulation for evaluating the lower-
bound BER of the Bayesian DFE,”IEEE Trans. Communications, ac-
cepted, 2001.

[10] S. Chen and L. Hanzo, “An importance sampling simulation method
for Bayesian decision feedback equalizers,” inProc. 5th Int. Conf.
Mathematics in Signal Processing (University of Warwick, UK),
Dec.18-20, 2000, 4 pages.

[11] S. Chen, L. Hanzo and B. Mulgrew, “Decision feedback equaliza-
tion using multiple-hyperplane partitioning for detecting ISI-corrupted
� -ary PAM signals,”IEEE Trans. Communications, to appear, May
2001.

[12] S. Chen, B. Mulgrew, E.S. Chng and G. Gibson, “Space translation
properties and the minimum-BER linear-combiner DFE,”IEE Proc.
Communications, Vol.145, No.5, pp.316–322, 1998.


