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Abstract— An importance sampling (IS) simulation method is pre- whereh; are the CIR taps, the Gaussian white neiée) has

sented for evaluating the lower-bound symbol error rate (SER) of the zero mean and varian(zx?;i ands(k) takes the value from
Bayesian decision feedback equalizer (DFE) withM/-PAM symbols, . o . .
under the assumption of correct decision feedback. By exploiting an the symbol se§ = {Sl =2-M-1,1<:i< M} The

asymptotic property of the Bayesian DFE, a design procedure is devel- DFE uses the observed vectotk) = [y(k)---y(k — m +
oped, which chooses appropriate bias vectors for the simulation density 1)]T and the past detected symbol vedig(k) = [s(k —

to ensure asymptotic efficiency (AE) of the IS simulation. d— 1) o §(k _d— nb)]T to produce an estimatdk- _
d) of s(k — d), whered, m andn, are the decision delay,
|. INTRODUCTION feedforward and feedback orders, respectively. The choice

ofd = ny — 1, m = ny andn, = n;, — 1 will be used,

As the complexity of the Bayesian DFE [1]-[3] increasesas this choice guarantees a linear separability for different
exponentially with the channel impulse response (CIR¥ignal classes [12]. Lets(k) = [s(k)---s(k — d)]” and
lengthn,, and the symbol siz&/, SER evaluation under high sy(k) = [s(k —d — 1) ---s(k — d — n})]”. Expresy (k) as
signal-to-noise-ratio (SNR) conditions becomes impossible

using a conventional Monte Carlo simulation. This paper y(k) = Hys;(k) + Ho s (k) + n(k) )

considers SER evaluation of the Bayesian DFE using an kshere

simulation method. The idea of IS is that certain values of ho hi -+ hp,

the input variables have more impact on the error rate than 0 ha - :

others and, by sampling these “important” values more fre- H, = 0 ' 3)

quently, the estimator variance can be reduced [4]. The issue S hy

is then how to choose a biased distribution to encourage the o .-+ 0 ho

important regions of the input variables. One of the most 0 0

effective IS techniques is the mean translation approach [5]-

[7], where the distribution is moved toward the error region. H, — b, -1 : ()
For binary symbols, lltis [8] developed a randomized bias : 0

technique for the IS simulation of Bayesian equalizers. This hy N

IS simulation method was extended to evaluate the lowe
bound (assuming correct decision feedback) bit error rate
the Bayesian DFE with binary symbols [9],[10]. For the
PAM case, the asymptotic Bayesian decision boundary for y(k) = Hy sp(k) + Ho 85 (k) + n(k) . (5)
separating any two neighbouring signal classes can be
duced [11]. By exploiting a symmetric distribution within
each signal subset, the SER of the Bayesian DFE foithe r(k) = y(k) — Hy 8 (k) . (6)
PAM case can be shown to be a scaled error rate of the equiv- o

alent “binary” Bayesian DFE evaluated on two neighbourind-€t the Ny = M?*! combinations ok (k) be sy ;, 1 <
signal subsets. These two properties enable an extension/ofc Vy- The set of the noiseless channel states, namely,

E}re them x (d + 1) andm x n;, CIR matrices, respectively.
%\ssuming correct past decisions, we have

d'Fﬁus the decision feedback translgig) into a new space:

the IS simulation technique to the/-PAM case. R ={rj = Hy ss;, 1 <j < Ny} can be partitioned into
M subsets conditioned otk — d):
II. THE BAYESIAN DECISION FEEDBACK EQUALIZER RO = {rjeR: s(k—d)=s;},1<i<M. (7)

Consider the real-valued channel generates the receivéfie optimal Bayesian DFE [3] involves computing thé
signal samples of: decision variables for < i < M

y<k>=nh2_ his(k = i) +n(k) (1) pie(k) = 3 exp «W) @)

r; ER(®)



and making the decision according to r(k) —r;|)°
BER)= Y e (—7” Ll >
§(k —d) = s+ with i* = arglgiﬁ{pi(r(k))}. 9) r; ER(M/2)+D) n

A geometric translation property [11] is re-iterated here. Y ew|- (k) — x| (16)
Forl < i < M — 1, RU+D jis a translation ofR(®) ~ s 202
by the amount2h,.,: RUTY) = R® 4+ 2h.., where iR _
hyey = [hny_1--+h1 ho]T. This shifting property implies and the decision rule defined by
that, asymptotically when the SNR tends to infinity, the de-
cision boundary3;, for separatingr("+*) and R(i+2) is a 5k —d) = { _i’ :gg}cbggggg i 8’ (17)
shift of B; by an amounth,.,. Without the loss of gen- ) SO '
erality, consider the two neighbouring subs&§"/2 and  Denote the error probability of this “binary” Bayesian DFE
R(M/2+1) A pair of opposite-class channel state§t) € as p,. Taking into account of the shifting and symmetric
RIM/2)+1) (=) e R(M/2) is said to beGabriel neighbours  properties discussed previously, it is straightforward to verify
if vr; € RM/2 (Y RUM/HD pj 2 () andr; #1071 thatPg = yP,, with y = 2(M — 1) /M.

A 2 (+) _ 2
[lrj = xol[” > |l il (10) [1l. IS SIMULATION FOR THE M-PAM CASE

wherery = (r(t) 4 r(=))/2. The following lemma [11]

_ _ o PAM symbols, it is only needed to evaluate the error prob-
Lemma 1: Asymptotically, the optimal decision boundary ability, P,, of the equivalent binary Bayesian DFE defined

B2 separating?(M/2) and R((M/2)+1) is piecewise linear on R(M/2) and R(M/2+1), The IS simulation technique

and made up of. hyperplanes. Each of these hyperplane$9],[10] can readily be used to evalua® as follows:

is defined by a pair of Gabriel neighbours, the hyperplane is

orthogonal to the line connecting the pair of Gabriel neigh- . 11 N M p(r;(k)|r;)
idooi i Po=—— Ip(rj(k) rmas (18)
bours and passes through the midpoint of the line. N, N ; ; i p*(r;(k)r;)

Consequently, a necessary conditionfgr € By /s is
wherelg(r(k)) = 1if r(k) causes an error, adg; (r(k)) =
rH) 4 () ) (7t 0 otherwisep(r;(k)|r;) is the true conditional density given
5 [ 5 } (11)  r; € RM/2+D ‘andN, = M% = N;/M is the number of
states inR((M/2)+1); the sample; (k) is generated using the
wherex. denotes an arbitrary vector in the subspace orthogimulation densitp*(r;(k)|r;) chosen to be
onal tox, r(*) andr(~) are a pair of Gabriel neighbours; and

rp =

L;

the sufficient conditions farg € B are . Dij llr; (k) — vi ]|

M7 p (rj(k)|rj)zzmexp —W .
les x> < flep — x|, Ve € ROV, gy 2604, e T
(12) In the simulation densit i [

_ A y (19), ; is the number of the bias
lrs — e < |lep — x|, Vr; € RM/), xj 1l ()1%) vectorse; ; = —r; + vy,; for I‘JJ‘ € RM/DHD 55 >0
_ for1 <1< L; Y p; = 1. An esti f th

s — P2 = e — 1|2 (14) orl <1< Ljand),” pj n estimate of the

_ _ _ IS gain for P,, which is defined as the ratio of the numbers
A simple algorithm can be used to select the set ofaikirs  of trials required for the same estimate variance using the

of Gabriel neighbour$r,(+) , r,H},Lzl [8].[11]. Monte Carlo and IS methods, is given as [6],[8]:

Due to the symmetric distribution o, the states of? (¥ P.(1— D)
are distributedymmetrically around the mass center Bf"). r=-2 A; (20)
In particular, if a pointr; € R has a distance to the n— e

decision boundar;_ , then there is another point € R(?) with
with the same distance to the other decision boundiry
Now consider the lower-bound SER for the Bayesian DFE ALREAL < p(r;(k)|r;)

i p*(rj(knrj)) - &)

Py = Prob{3(k — d) # s(k —d)} (15) SR =1 k=1
First create a “binary” Bayesian DFE definedB//? and ~ The IS simulateds is simply Pg = 7P, and the estimated
R(M/2)+1) with the decision function given by IS gain for P. will be used as the estimated IS gain .
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A design procedure is given for constructing the simulasufficient, provided that every opposite-class statg if{/2)
tion densityp*(r;(k)|r;) that meets the conditions for AE can sufficiently be separated by at least one hyperplane in the

[6]. Let {rl(ﬂ’ rl(*)}lel be the set of Gabriel neighbours se-Subset. If this can be done, the error regiosatisfies
lected fromR(M/2) and R(M/2+1) Each pairgr| ™, r{ )

defines a hyperplan#,(r) = wir + b, = 0 that is part of £ Cry = U # (26)
the asymptotic decision boundaByi; /», with geGit
2 (59 ) with the half-spaces(;”) = {r : H,(x) < 0. Obviously
w; = ! ! : (22) all the hyperplanes defln.ed @, are reachable.fromj
||rl(+) _ I‘l(_)||2 and at least one dfv, ;} is the minimum rate point (as de-
fined in [6]). If G{*) exists for eactr (" € R(M/2+1) the
b= — (rl(“ - r,( ))T(rl(“ +ri) _ (23 simulation density constructed with the bias vectrg ; },

- (+) S i
||rl(+) _ rl( )Hz g € G, forall j will guarantee AE.

Note thatH, is acanonical hyperplane WithHl(r§+)) =1 1V. SIMULATION EXAMPLES

andH(r{”) = —1. A staterg._) € RM/?) s sufficiently .
& T () < _ Example 1 A 2-tap channeh = [0.3 1.0]* with 8-PAM
se'pa.rable b(yﬂthe hyp;rp;anleH., i wirj o+ oS =l symbols was simulated, given = 2, d = 1 andn, = 1.
Similarly, r;” € R(M/2+1) s sufficiently separable by The setk had64 states. Nine pairs of Gabriel neighbours
H if w,Tr§.+) +b; > 1. The hyperplanéd; is reachable ~ were selected frok*) andR(*), leading to the separability
from r;ﬂ e R(M/2)+1) f the projection Ofr;.+) ontofy, and reachability table from which an AE simulation density
) ) M/2) o was constructed. The simulation density construction s illus-
s onByy/». For eachr; © € R/, its separability in-  trated in Fig. 1. The bias vectors were selected with uniform
dex for H; is al(;) = 11if rg.’) is sufficiently separable by probability in the simulationy(; ; = 1/L;). For each SNR,
: 5 :
Hy: otherwiseal(;) — 0. The separability indenl(?) for 10 iterations were used for each stateri). 'srhus, the to-
(+) ((M/2)+’1) o ) . tal samples used for a given SNR we&e 10°. Fig. 2 (a)
r; €R is similarly defined. The reachability of ghoys the lower-bound SERs obtained using the IS and con-
H; from r§-+) e R(M/2)+1) can be tested by computing  ventional sampling (CS) simulations, respectively. It can be
seen that the conventional Monte Carlo results for low SNR
cj=—05 (wlTrgﬂr) + bz) (rl(Jr) _ rl(’)) _ (24) conditions based directly on the Bayesian DFE of (8) and
(9) agreed with those of the IS simulation. The estimated
(4) . . IS gains, depicted in Fig. 2 (b), indicate that exponential IS
fvij=r;"" +ei; € By (i€ fo(viy) = 0), Hiisreach-  gqing were obtained with increasing SNRs.

J
) (o) i i il

able fromr; ™’ (c, ; is then a bias vector), and the reachabil Example 2 A 3-tap channeh = [0.3 1.0 — 0.3]7 with 8-

PAM symbols was tested, given = 3,d = 2 andn;, = 2.

ity index isv; ; = 1, otherwisey; ; = 0. The whole process
produces the following separability and reachability table: The setR had512 states. Nineteen pairs of Gabriel neigh-
G e bours were found fronkR* and R(®), leading to the sep-
N,

r(_
N,

(=)
) :15—1) ) Qﬁr) S S a}rability a}nd reachability table from which an AE simula-
' e ' e tion density was constructed. Again the bias vectors were
o < . - selected with uniform probability in the simulation. For each
frol erna ‘LN | frar) ey LN SNR, 10* samples were used for each statéRif?), result-

ing in a total of6.4 x 10° samples for a given SNR. Fig. 3
For eachrﬁ-“ € RIM/2)+1) 'select those hyperplanes that(a) depicts the lower-bound SERs obtained using the IS and
can sufficiently separateg.“ and are reachable from§.+) CS simulations, respectively. Again, the conventional Monte
with the aid of the above table. This yields the integer set: Carlo results forlow SNR conditions agreed with those of the

G§.+) ={q: ag-;.) =1landy,; =1}. (25)

The convex regiong.Jr) coveringrg.” is the intersection of o

all the half-spaces(;” = {r: H,(r) > 0} with¢ € G\ R

In fact, it is not necessary to use every hyperplanes definggl, 1 jiustration of the simulation density construction for the channel
in GE.JF) to form Rg.“. A subset of these hyperplanes will be  h = [0.3 1.0]” with 8-PAM symbols.

4)
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Fig. 2. The lower-bound SERs (a) and the estimated IS gain (b) of tliég. 3. The lower-bound SERs (a) and the estimated IS gain (b) of the

Bayesian DFE foh = [0.3 1.0]” with 8-PAM symbols.

IS simulation. It can be seen from Fig. 3 (b) that exponential

IS gains were obtained with increasing SNRs.

V. CONCLUSIONS

An IS simulation has been extended to evaluate the lowe,

bound SER of the Bayesian DFE wifi1-PAM symbols. It

has been noted that the Bayesian decision boundary sepa-
rating any two neighbouring signal classes is asymptoticallv]
piecewise linear. Furthermore, the SER of the Bayesian DFE
for the M -PAM case is a scaled error rate of the equivaleng!
binary Bayesian DFE evaluated on any two neighbouring sig-
nal subsets. A design procedure has been presented for cqy-
structing the simulation density that meets the asymptotic ef-

ficiency conditions.
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