Mobile Intermediaries Supporting Information
Sharing between Mobile Users

Norliza Zaini and Luc Moreau
{ nmz00r, L.Moreau }@ecs.soton.ac.uk

Department of Electronics and Computer Science, University of Southampton
Southampton SO17 1BJ UK

Abstract. Mobile device’s networking capabilities offer opportunities
for a new range of applications. We consider here a service that allows
mobile users taking part in virtual meeting rooms to share information
and documents. The sharing is promoted by a recommender system that
assists users browsing documents, by making recommendations in the
form of URLs pointing to other documents, that users in the virtual
room have explicitly decided to share. A multi-user recommender system
is a complex application requiring communication, memory and comput-
ing resources, and does not lend itself to a port to mobile devices with
limited resources and intermittent connectivity. For this reason, we de-
cided to offload the computationally intensive part of the application
to the infrastructure, and to introduce the idea of an intermediary lo-
cated in the network infrastructure, which interacts with applications
on behalf of the mobile device, thereby hiding away the intermittent
connectivity details. Our vision is that of a mobile intermediary, called
Shadow, that will always be in close vicinity with the mobile device. We
show that multiple Shadows may co-exist, and we propose a protocol
capable of coordinating them. We present an abstraction layer, hiding
away communication and coordination details, which offers a substrate
for building the distributed recommender system across mobile devices
and fixed infrastructure. Implementation details of our application are
also presented.

1 Introduction

The context of this paper is the “ubiquitous computing environment” [12], where
embedded devices and artifacts abound in buildings and homes, and have the
ability to sense and interact with devices carried by people in their vicinity.
Mobile devices’ networking capabilities offer opportunities for a new range of
services, such as access to stock updates or latest news, or exchange of informa-
tion with other mobile users discovered dynamically.

However, as devices communicate over wireless networks, they are prone to
temporary disconnections and the low bandwidth communication channel they
use may lead to high network latency. Moreover, although having the advantage
of being small and easy to use, handheld devices such as PDAs suffer from low
resource capability such as low memory capacity, limited processing power and
small display area. Consequently, these limited capabilities would prevent the

large-scale deployment of advanced services to mobile users, as such services
tend to be communication and computation intensive.

Instead of requiring complex applications to be installed on mobile devices
and constant connectivity between mobile devices and fixed network to serve
users’ requests, we believe that applications can be offloaded to the fixed infras-
tructure, and act semi-autonomously on behalf of the user. In this context, if
infrastructure applications can perform tasks without direct control and moni-
toring from the user, then the proposed approach does not rely on permanent
connectivity with mobile devices, it can save mobile device’s resources, and it
can take advantage of the available resources on the wired network.

While offloading applications to the fixed infrastructure solves the problem of
limited devices’ resources, it does not address the issue of how communications
can take place between the mobile device and the infrastructure application. To
this end, we introduce an intermediary process in the fixed infrastructure, whose
responsibility is to spawn applications in reaction to user’s requests and to store
and forward messages between mobile devices and applications.

Since a stationary intermediary may lead to long distance communications,
we decided to adopt a more flexible approach, in which the intermediary is
mobile. Our vision is to have a mobile intermediary, which is a mobile agent [5],
acting as a Shadow of the mobile user, migrating to the user’s vicinity when
prevailing conditions permit it. The flexibility offered by the mobility can help
reduce the bandwidth required for the application and improve its performance
[3]. Besides, this has a number of other advantages: (i) Shadow and mobile
device can communicate using specialised protocols, possibly dynamically chosen
according to the current location or to a negotiation between parties; (i) newly
created applications would run in the user’s vicinity, making use of the local
infrastructure; (i) even if the local network is not connected to the Internet,
local services could be accessed; (iv) Shadows and applications can communicate
reliably using transparent routing of messages to mobile agents [8,9].

When a user moves to a new location, their mobile device interacting with
the infrastructure will request the user’s Shadow to migrate to a new location.
However, this may fail when the user’s local network is not connected with the
user’s previous location. In order to support services in the current vicinity, we
opted for a solution where new Shadows can be created dynamically. As result,
a user may be associated with multiple Shadows that need to be coordinated
and we shall describe in this paper a coordination protocol for such Shadows.

The purpose of this paper is to introduce an application for mobile users,
which supports information sharing in virtual meeting rooms. The design and
implementation of this application involves complex interactions between infras-
tructure and mobile device. Our specific contributions are:

1. An architecture supporting multiple mobile Shadows;

2. A coordination protocol between mobile devices and Shadows;

3. An abstraction layer, encapsulating migration and coordination, offering a
substrate to program applications between mobile devices and infrastructure;

4. An application supporting information sharing between mobile users.

In the next section, we overview our application scenario. Then, in Section
3, we introduce the architecture followed by Section 4, where we present the
algorithms to be implemented by all its components. In Section 5, we further
comment on the application’s implementation and finally, in the last section we
present the summary and discuss related work.

2 Application Scenario

Today’s Internet offers various forms of virtual meeting rooms allowing online
users to meet and interact with each other; examples include Internet Relay
Chat (IRC) supporting text channels and the Access Grid (www.accessgrid.org)
supporting audio and video multicast conferencing.

When business meetings are conducted with such facilities, it is useful for
users to access an out-of-line mechanism for sharing information or documents.
Our approach is to rely on an agent-based recommender system [11] to recom-
mend relevant documents to users as they browse information. The recommended
documents will be selected from a pool of documents that users participating to
the virtual room have actively decided to share; documents are recommended
according to their similarity to other documents. Practically, a user navigates
information, while recommendations are displayed in a browser sidebar; recom-
mendations also include information regarding the user who decided to make
the document available to the meeting room. The sidebar also allows users to
export documents for possible recommendation in the meeting room.

In the context of this paper, our goal is to allow mobile users to take part into
virtual meetings. As mobile users roam to other networks, they remain in the
virtual meeting rooms that had subscribed to, and they are given the opportunity
to discover and use different virtual meeting rooms running on different networks.
Here, we do not address the problem of delivering content of the meeting room
(such as IRC, audio or video channels), instead, we investigate the infrastructure
to allow the sharing of information through the recommender system.

In short, our application’s functions include: (i) to support information
sharing between mobile users, (¥) to provide recommendations based on the
shared information to mobile users, (i) to allow a mobile user to remain a
participant in a meeting room while the user roams to different networks.

We have already developed an agent-based recommender system [11] capable
of recommending documents that users have actively decided to share. There-
fore, this leaves us with the challenge of developing an application that is able to
support mobile users accessing virtual meeting rooms hosted by the fixed infras-
tucture. In the following sections, we present an architecture supporting mobile
intermediaries — implemented as mobile agents — which hide communication
details between mobile devices and applications on the fixed infrastructure.

3 Architecture Overview

Our proposed architecture is composed of three major components, namely a
mobile device, a Shadow and a Shadow Manager, which we describe with the

assumptions we make concerning their communication capabilities. We are also
investigating the security aspect of the architecture, but we do not present it at
this stage. A mobile device has the ability to connect to a network in its vicinity.
It may use specific methods to communicate with network hosts, e.g. infra-red
or Bluetooth. We assume that the device is allocated an address, which may
change as the device connects to another network, and which can be used by
networked entities to communicate with it. A Shadow Manager acts as a local
daemon in a local network, first contact point of a mobile device with the local
network. A Shadow Manager is responsible for starting or migrating Shadows
on behalf of mobile devices.

A Shadow is a mobile agent, acting as an intermediary between a mobile
device and infrastructure applications. Being able to migrate allows it to move
“closer” to the mobile device, and to communicate with it using the address
allocated by the local network. The Shadow’s functions include: (%) to create
applications on behalf of the mobile device; (ii) to send messages to the applica-
tions on behalf of the mobile device; (i) to store and forward messages for the
mobile device; (iv) to migrate to a location closer to the mobile device, whenever
the mobile device changes its location, network connectivity permitting.

Our architecture may be summarised as follows. When connected to a net-
work, a mobile device makes contact with a Shadow manager, and requests it
to migrate its Shadows to the manager’s location. If no user’s Shadow is active,
the Shadow Manager creates a new Shadow for the mobile device. In the sim-
plest case, there exists a single Shadow. If migration is successful, the Shadow
interacts locally with the mobile device. The Shadow spawns new applications
as requested by the device and forwards messages to and from them; in essence,
the Shadow acts as a router of messages to the applications. Communications
between Shadow and applications are robust to the migration of Shadows, based
on a transparent routing algorithm [8,9]; on the other hand, communications
between device and Shadow may fail as the device changes location. If the mi-
gration of all Shadows fails, a new Shadow is spawned locally, and the device
keeps a log of all created Shadows. When several Shadows are requested to mi-
grate to a specific destination, the first Shadow to reach the location is assigned
to be the main Shadow; the others coordinate with it to offload information
about applications they were routing messages to.

In the following section, we describe precisely the algorithm of each com-
ponent. Our goal is to define an abstraction layer, which hides the details of
communication and coordination between mobile devices, Shadows and applica-
tions. On top of this abstraction layer, we have constructed an application, which
supports information sharing between mobile users in virtual meeting rooms: in
the mobile device, a programming APT is provided to communicate transparently
with fixed infrastructure applications, while applications are given the possibility
to interact transparently with mobile devices; the abstraction layer takes care
of all necessary routing and coordination. In addition, the coordination between
multiple Shadows introduces a global property, which allows the mobile device

to interact only with a local main Shadow, while Shadows are allowed to interact
directly with the mobile device only if it is connected locally.

4 The Algorithm

In this section, we describe the algorithm coordinating the interactions between
mobile devices, Shadows, Shadow managers and applications. In Figure 1, we
define a set of notations that we use in our algorithm.

LAN; (Local Network 1) BMP oMP (Mobile Device : Identifier, Address)
P;; (Platform j on LAN;) BM5 o™ ~M5 (Main Shadow : Identifier, Address,
SM; ; (Shadow Manager j Counter)

on LAN;) 8%, a° (Shadow : Identifier, Address)

LS (List of active Shadows) g5Mii o Mii (SM;; : Identifier, Address)
LA (List of applications) — gArp_oArp (Application : Identifier, Address)
LOM (List of outgoing messages)
LIM (List of incoming messages)

send(8, a, M sg) (Send message M sg to entity identified by 3, «)
receive(,a, Msg) (Receive message M sg from entity identified by 3, a)

List operations: [M]: L (List composed of a head M and tail L)
Ly : Lo (Concatenation of two lists Ly, L)
L:[M] (Message M added to the end of list L)

enqueuve(M,Ly = L := L : [M]

Fig. 1. Notation

Mobile Device The behaviour of a mobile device is described in Figures 2 and
3. Each mobile device stores a main Shadow identifier and a list of Shadows
(referred to by their identifier and address) that are active on the fixed network.

Every time a mobile device connects to the fixed network, it resets its main
Shadow identifier; it discovers a local Shadow Manager, and sends it a request
to migrate its active Shadows to the platform on which the Shadow Manager
is operating. If the request fails to be sent, another local Shadow Manager is
discovered and a similar request is sent. Otherwise, the mobile device starts
to wait for messages. If no “ShadowlIn formation” message is received in an
expected time range, a timeout occurs and a new request is sent to the Shadow
Manager. A “ShadowlIn formation” message informs about the existence of a
Shadow and its current address. When received, this information is updated
in the list of active Shadows. If no main Shadow exists, the message’s sender
is assigned to be the main Shadow by sending an “M SAssignment” message

Variables: LS, LOM, LIM, 3P M5 .= 0;

When MD connects to LAN; at address a:

— Online := true;
- BMS .= 1;aM% = 1; //resets identifier and address of main Shadow
— D: discover SM; ; with identifier 355 and address oM ;
~ MR: send(8°Mii, o Mii MigrateShadow(LS));
— if failed, then: discover other Shadow Manager, goto D;
— else:
o if receive(B5Mii o5Mii SMA), then:

% start timer(ShadowInformation(3™P, migrateCount®=), d);
Repeatedly process the incoming messages:

— if receive(B8°, o, ShadowInformation(BMP , migrateCount>*)), then:
e stop timer(ShadowInformation(8™? , migrateCount>*), d);
e LS[3°]:=a";
o if 85 = 1, then:
% ﬂMS .= BS;QMS .= aS;,yMS ++’
x enqueue((BM°, o™, MSAssignment(LS,v™*), LOM);
o clse: enqueue((8°, o, MSInformation(8™°,a™5 vM5), LOM);
— if receive(M°, oM Message Failed(347P, M sg)), then:
o engueue((8M°, oM, Message(32PP, M sg)), LOM);
— if receive(8M°, oM CreationFailed(34P?, eAPP)), then:
o enqueue((84PP, CreationFailed(84PP, APPY)), LIM);
— if receive(8M7, oM, Message(3PP, Msg)), then: enqueue((8PP, Msg), LIM);
— if receive(8M°,a™3, ShadowTermination(8°)), then: LS[3%] := L;

In parallel:

— if timeout, then:
e stop timer(ShadowInformation(8™”, migrateCount®=), d);
o send(85Mii, o5Mii StartShadow);

Exported API:

— CreateApplication (PP, ¢APP);
o enqueue((8™°, a3, Create Application(34PPeAPP)), LOM);
- SendMessageT oApp(B3PP, Msg):
o enqueue((8™°,aM%, Message(34P?, M sg)), LOM);
- GetMessageFromApp():
e if LIM = 1, then: return L;
o if LIM = [(84%P, Msg)] : LIM’, then: LIM := LIM'; return (347", Msg);

Fig. 2. Mobile Device’s Behaviour (i)

and if a main Shadow already exists, the Shadow is sent a “MSInformation”
message, which notifies about the new main Shadow.

An API is provided for the application layer to create a new application, to
send a message to an application, or to receive a message from an application on
the infrastructure — applications are referred to by identifiers passed as argu-
ment to the API procedures. The first two procedures result in a message sent
to the main Shadow. In return, the mobile device may receive a failure notifica-
tion from the main Shadow indicating its failure to create the application or to
send a message to the application. Incoming application messages are kept in a
queue of messages, until the application layer reads them. Incoming messages are
changing the internal state and queues of the mobile device. For instance, when
a “ShadowTermination” message, which informs about a recently terminated
Shadow, is received, the terminated Shadow’s detail is removed from the mobile
device’ list of active Shadows.

Messages to be sent to Shadows are added to a queue of outgoing messages,
while in parallel (cf. Figure 3), separate threads are responsible for processing
the enqueued messages. Additionally, messages are validated before they are
sent. For this purpose, we use a counter “y™5” which identifies the number of
times the mobile device has changed location; such a counter is also added as a
“timestamp” to messages. A message can be outdated if the intended recipient no
longer exists or has changed its status or address. An outdated message can still
be valid if the intended recipient is still holding the same status but has changed
its address. Such messages are updated with the new address, while invalid
messages are discarded from the queue. For instance, an “M SIn formation” or
an “MSAssignment” message is no longer valid if a new main Shadow is being
assigned. On failure of sending a message, the message is added back to the
queue.

Continuously in parallel: if Online and 8M° # 1 and o™® # 1, then:

— if LOM = [(B%,a®, Msg)] : LOM’, then:
e LOM := LOM';
o if Msg = MSAssignment(LS',y™5"), then:
* if ”yMS’ = M5 then: sendOut(8M°,a™5, M S Assignment(LS,v*));
//use main Shadow’s latest address a™* and latest LS
o if Msg= MSInformation(ﬂMSl,aMSI,”yMS’), then:
* if ”yMS’ = ™5 then:
sendOut(B%, LS[B%], M SInformation(8M5, o™, ~M5));
//use B% s latest address
o clse: sendOut(B%, a®, Msg);

Subroutine: sendOut(8%, a®, Msg):

— send(B%,a®, Msg);
— if fail, then: enqueue((3%, a®, Msg), LOM);

When MD disconnects from LAN;: Online := false;

Fig. 3. Mobile Device’s Behaviour (ii)

SM;; running at address oy k:

— advertise its presence at address «; i;
— Repeatedly process the incoming messages:
— if receive(8MY, a™P | MigrateShadow(LS)), then:
° S@nd(ﬂMD,OéMD,SMACk);
e C:=0;//a counter
e for each pair (3°,a°) in LS:
¥ send(B°,a®, MigrateRequest(8™°, a™P a; 1));
x if successful, then C:=C+1;
e if C =0, then:
 startShadow(BMP oMP);
— if receive(BMP,a™P | StartShadow), then:
e startShadow (8™, a™?);
Subroutine: startShadow(fM? o*P)

— start a Shadow S; with new identifier 3° at address o°;
— send(B°,a°, MDInformation(8M”, a™P)); resend on failure;

Fig. 4. Shadow Manager’s Behaviour

Shadow Manager In our architecture, Shadow Managers are stationary agents
running on the fixed network and in order for the algorithm to work, we assume
there is at least one Shadow Manager operating on each local network. When a
Shadow Manager is started (cf. Figure 4), it advertises its presence through a
service directory, such as Jini or LDAP, and then waits for messages. A Shadow
Manager may receive a request from a mobile device to migrate Shadows; the
Shadow Manager then sends a “Migrate Request” message to each Shadow re-
questing them to migrate to the platform on which it is operating. If no Shadow
was able to migrate or if it receives a “StartShadow” request, it starts a new
Shadow, to which an “M DIn formation” message that contains information on
the requesting mobile device is sent. The message is repeatedly sent on failure
until the Shadow eventually gets it.

Shadow Figure 5 describes the global behaviour of Shadows while Figure 6
and 7 are describing specific behaviour of a regular Shadow and a main Shadow.
A Shadow is able to create applications on request from mobile device. Each
application has an identifier and an address. A variable “LA” is used to keep a
mapping of application identifier to application address, which is initially empty.
A Shadow has a handOver flag, which is set to false on its creation. This flag
becomes true if the Shadow’s function has been transferred to the main Shadow.
Messages to be sent to the mobile device are queued in a list of outgoing messages
to mobile device (LOM™P), while messages to be sent to the main Shadow are
queued in a list of outgoing messages to main Shadow (LOM™?). Incoming mes-
sages from the mobile device for the applications are queued in a list of incoming
messages (LIM), while a list (LOMA*) queues acknowledgement messages to

other Shadows. In parallel, separate threads are responsible for processing the
enqueued messages, which would add messages failed to be sent, back to their
respective queues.

Variables: 3%, M5 ~M5 o™MP MDA handOver, LOM™? LOM™> LIM,
LOM™* migrateCount, handOverCount, M S, LS,

Continuously in parallel:

— if LOM™P = [Msg]: LOM™P" then:
e remove all ShadowInformation(,migrateCount’) messages from
LOM™MP where migrateCount’ # migrateCount;
LOMMP .= LOM™MP";
if 85 = 1, then: send(3MP,a™?, Msg);
else: send(BM°,a™M5 SendMessageToM D(Msg));
if failed, then: enqueue(Msg, LOM™?);
— if LIM = [(84??, M sg)] : LIM', then:
o LIM := LIM';
o send(BAPP, LA[BPP], M sg); if failed, then: enqueue((84PP, Msg), LIM);
— if LOMA* = [(8% %, Msg)] : LOM*°*" | then:
o LOMA* .= LOMAF',
o send(8%°, %, Msg); if failed, then: enqueue((8°*,a°, Msg), LOMA°);

/BMD

Subroutine: migrate(a’=¥):

— if (LAN, # LAN;), then: migrate to af=;

- migrateCount + +;

— BMS .= 1;aM% = 1;MS = false;

— enqueue(ShadowInformation(8™” migrateCount), LOM™?P);

Fig. 5. Global Behaviour of Shadows

A migrateCount is a variable, which keeps track of the number of migrations
of a Shadow. This variable is important to validate messages during the pro-
cess of sending out messages from the list of outgoing messages. For example,
a “ShadowlIn formation” message, which is used to inform the mobile device
about the Shadow’s arrival on a platform is no longer valid if the Shadow has
already migrated to a new platform. In this case, the migrateCount variable
recorded in the “ShadowlIn formation” message would be less than the cur-
rent migrateCount, thus showing that the message is outdated and invalid. Such
messages are discarded from the list. In a Shadow, there is a hook for intelligent
decision making about migration; such decision is not part of this algorithm,
and may depend on the state of the application or prevailing network condi-
tion. The output of this decision making process is obtained by the “callback”
canMigrate(), which returns true if the application layer decides to migrate.

10

A regular Shadow S is recently started or migrated on platform P;; at address a;,, on
LAN;:

handOver := false; handOverCount := length(LA); LS := 1; MS := false; M5 .=
1; oM = 1;

Repeatedly process the incoming messages:

if receive(3°Mis, o5 Mii MDInformation(ﬂMDl,aMD’)), then:
o if BMP = | and aMD 1, then:
% ﬂMD — ﬂMD’ aMD .= aMD’
* enqueue(Shadow[nformatwn(ﬂMD, migrateCount), LOM™?);
— if receive(BMP, a™P M S Assignment (LS, 'yMS’)), then:

o MS := true; LS := LS'; yM5 := 4yMS". gMS .= |, oM5 .= |, //behave as in

Figure 7)
— if receive(8MP, aMP, MSInformation(ﬁMS’, MS ’,”y ’)) then:
o if AMS > AMS then: MS .= gMS', G MS . (MS', MS . (M’

o enqueve(Transfer’ (M7 LA, LOMMD LIM) LOMMS);
- if receive(ﬂsﬂ”,ozsz MSInformatwn(ﬁMS ,aMS ,’yMSI)) then:

o if YM5' > M5 then: gMS = gMS’, G MS . o MS', ,yMs — M,
— if receive(B5Mwa, o5 Mua MzgrateRequest(ﬁMD,aMD ,ahy), then.
o aMP =MD’ if canMigrate(), then: migrate(a®);
- if receive(ﬁSm,aS“,Location[nformation(ﬁMD,aMD’,aP,'yMSI)) and VMS’ >
+M5 then:
o QMD .= oMD'. gMS . gSu. (MS ._ 5.,

o if caangrate(), then: migrate(a®);
o enqueue(Transfer? (8P, LA, LOM™P LIM), LOM™%);
— if receive(BM5,a™3, Transfer” _Ack), then: handOver := true;
— if receive(8M5,a™? Termination_Ack), then: terminate();
— if receive(M°, aM3,
SendMessageToNewMS(MSInformation(ﬁMS’, aMs' , ’yMSI), M sg)), then:
o if ,yMS > ,yMS then: ﬂMS ﬁMs MS . _ aMS’;
o enqueue(Msg, LOM™7P);
— if receive(8°, o, M sg), then:
o if Msg = Transfer®(BMP, LA LOMMPs® LIM®*) or Msg =
TerminationMessage(), then:
x enqueue((3°®,a°* , MSInformation(B™5,a™5 yM9)), LOMA);
e if Msg= SendMessageToM D(M), then:
x enqueue((8°=, =,
SendMessageToNewMS(MSInformation(™%,a™5 v™5), M)), LOM**);
— if receive(84P?, LA[3*PP], M sg)), then: enqueue(Msg, LOM™P);
— if receive(54PP, LA[B4PP], App”*)), then: handOverCount — —;

Continuously in parallel:

— if handOver, then: for each application mapping (3477, *PP) in LA:

o enqueue((47P, NewShadowInformation(3°, o™ %)), LIM);
— if handOverCount = 0, then: enqueue(TerminationMessage(3MP), LOM™MS);
— if LOM™S = [Msg]: LOM™?’ | then:

e LOMMS .= LOM™MS',

o send(BM5,a™M5 Msg); if failed, then: enqueue(Msg, LOM™M5);

Fig. 6. Regular Shadow’s Behaviour (MS=false)

11

A main Shadow S is running on platform P;; at address a;,, on LAN;:
Repeatedly process the incoming messages:

— if receive(B5Mwa, o5 Mua MigrateRequest(,BMD,aMD’,aP)), then:
o oMP =MD" MS := false; //behave as in Figure 6)
e if canMigrate(), then: migrate(a®);
—if receive(ﬂsﬁ,as"‘,LocationInformation(ﬂMD,aMD’,aP,vMSI)) and 'yMS’ >
M5 then:
o MS := false;a™MP = aMDI;ﬂMS := 3%;aM5 .= o, //behave as in Figure
6)
e if canMigrate(), then: migrate(a®);
o clse: enqueue(Transfer” (BMP LA, LOM™P” LIM), LOM™MS);
if receive(3°*, o Transfer? (MY, LAS> LOM™Ps® LIM?®#)), then:
e LA:=LA:LA%: LIM :=LIM : LIM®=,
o LOMMP .= LOMMP . LOMMPs®,
o enqueue((8°*,a° Transfert _Ack), LOMA*);
if receive(3°=, a5, SendMessageT oM D(Msg)), then:
o enqueue(Msg, LOM™P);
— if receive(8°7, o, TerminationMessage(8™?)), then:
e enqueue(ShadowT ermination(8°=), LOM™P);

)

o enqueue((8°+,a’ Termination_Ack), LOM*A°);

Continuously in parallel, if LS # | then:

~ i LS =[(85,a%")] : LS and 85" # B35, then:
) send(ﬂsr,asr, LocationInformation(8MP a™P a; 1, vM5))

e if fails, then: LS := LS : [(85",a%)]; else: LS := LS';

)

Interface with Applications:

— if receive(BMP, aMP | Create Application(84PP, eAPP)), then:
o StartApplication(84P?, e*PP); its address is a”*PP;
e if success, then: LA[34PP] := a??P;
o clse: enqueue(CreationFailed(34PP, APP), LOM™MP);
— if receive(BMP, aMP | Message(84PP, M sg)), then:
o if LA[BAPP] # L, then: enqueue((847P, Msg), LIM);
o clse: enqueue(MessageFailed(84PP, Msg), LOM™?P);
— if receive(84PP, PP Msg)), then:
o if LA[BAPP] # L, then: enqueue(Message(5PP, Msg), LOM™P);
o clse: enqueue((8PP, MessageFailed(Msg)), LIM);

Fig. 7. Main Shadow’s Behaviour (MS=true)

When started (cf. Figure 6), a Shadow waits for “M DIn formation” mes-
sage, which contains information about a mobile device. Then, the Shadow
sends the mobile device a “ShadowlIn formation” message informing its ex-
istence at its current address. The Shadow waits for messages; if it receives an
“M S Assignment” message, it sets its main Shadow (MS) flag to true as it is

12

being assigned by the mobile device to be the main Shadow. Instead of receiving
an “MSAssignment” message, a Shadow may receive an “M SInformation”
message, which signifies that another Shadow has been assigned to be the main
Shadow. The Shadow sets its MS flag to false and updates its information about
the main Shadow accordingly. A Shadow may receive a “Migrate Request” mes-
sage from a Shadow Manager, which requests the Shadow to migrate to the
platform on which the Shadow Manager is operating. If canMigrate() returned
true, the Shadow migrates to the new platform. On arrival at the new platform
the Shadow resets its MS flag to false and sends a “ShadowlIn formation” to
the mobile device. Then it waits for messages. If a Shadow cannot migrate, it
stays on the same platform and continues to wait for further messages.

A regular Shadow has to hand over its function to the main Shadow by send-
ing its LA, LOMMP and LIM in a “Transfer’” message. Then, the Shadow
sets its handOver flag to true when it received a “I'rans fer! _Ack” message, and
sends messages to all applications it is interacting with that the main Shadow
is the new intermediary to communicate with the mobile device. Every message
sent to the applications requires an acknowledgement to ensure that the recipi-
ent has successfully received the message. Subsequently, the Shadow is ready for
termination; before terminating itself, it sends a “T'erminationM essage” to the
main Shadow and waits for an acknowledgement.

“M S Assignment”, “M SInformation” and “LocationInformation” are types
of messages, which carry information about the main Shadow. Each of this mes-
sages contains main Shadow assignment counter “y™5”. This is to avoid Shad-
ows to use an outdated information about the main Shadow. For instance, if
a Shadow received an “MSInformation” message with a counter that is less
than the one contained in a previously received message, the message is con-
sidered as outdated and discarded. Sometimes, a regular Shadow may receive
a message intended for a main Shadow, such as when a Shadow receiving a
“T'ransferf” or a “T'erminationM essage” message from another Shadow. In
this case, an “M SInformation” message is returned informing about the cur-
rent main Shadow. If a “SendMessageT oM D” message is received, which re-
quests it to send a message to the mobile device, a “SendMessageToNewM S”
message containing an “M SInformation” and the message for the mobile de-
vice is replied to the sending Shadow.

A main Shadow sends a “LocationInformation” message to all Shadows
of the mobile device. The message indicates current location of the mobile de-
vice. If a main Shadow received a “Transferf” message, the LA, LOM™MP
and LIM of another Shadow, contained in the message are extended to the
Shadow’s local lists. A main Shadow may also receive a “SendM essageT oM D”
request from a Shadow, which requires it to relay the included message in the
request to the mobile device. A “T'erminationM essage” received notifies about
the termination of a Shadow. This information is relayed to the mobile device
in a “ShadowT ermination” message. For every message received from another
Shadow, an acknowledgement is returned to the sender. As for messages com-
ing from the mobile device, a main Shadow may receive requests to create an

13

application or send a message to an application on the fixed infrastructure. The
details of a newly created application are added to LA. If the Shadow failed to
create an application or to send a message, a failure notification is returned to
the mobile device. The Shadow also relays messages from the applications to the
mobile device.

Summary In our algorithm, we make sure that messages are not lost, in
which case whenever communication failures occur, messages involved are put
in queues. For instance, when a mobile device is disconnected from the network
and no longer able to send messages to the main Shadow, those messages are
added to the queue of outgoing messages. Once the mobile device reconnects
to the network, messages from the queue are sent out. The same applies to the
Shadows; once a Shadow failed to send a message to another Shadow or to the
mobile device, the message is stored in a queue to be sent out again later. The
algorithm also tries to terminate Shadows that no longer act as routers for appli-
cations and have handed over their functions to the main Shadow. Terminating
such Shadows is important as it clears garbage in the system. The outcome is
that some Shadows maybe temporarily disconnected from the main Shadow, and
therefore may loose the route to deliver messages to the mobile device. Messages
are not lost; they remain in the queue and will be forwarded when connectivity
get re-established again. We are considering another approach where termination
of Shadows is not as eager, in order to ensure some redundancy in the routing
along the lines of [9]. Similarly, such an approach may be considered for handling
host failures.

The coordination layer really benefits from Mobile Agent technology. First,
mobile code can be transported to a remote platform and activated, in order
to perform its tasks. Second, mobile agents also incorporate a state in addition
to mobile code. Such a mobile state is needed to hold all information required
to perform the coordination algorithm, which includes information on the ap-
plications the Shadow is interacting with, the mobile device location, the main
Shadow information, handOver flag and queues of messages.

5 Application Implementation

We have developed our application using the Southampton Framework for Agent
Research (SoFAR) [10], which supports weak mobility. The algorithm of the
abstraction layer is implemented by three agents, namely a Mobile Device Agent,
a Shadow Manager Agent and a Shadow Agent. Our application is currently
applicable for high capability mobile machines such as laptops. We host a Mobile
Device Agent on the mobile machine. The Shadow Agent is mobile, while Mobile
Device Agent and Shadow Manager Agent are stationary. Although stationary
on the hosting laptop, a Mobile Device Agent benefits from the physical mobility
of its hosting environment. On top of the abstraction layer, we are prototyping
the application mentioned earlier in Section 2. The Recommender system [11] is
a stationary application located on the fixed infrastructure.

14

RECOMMENDER
SYSTEM

BROWSER RECOMMENDER
smEBA?r BROWSER INTERFACE AGENT

g

(CreateApplication) | QueryRef(SimilarLinks)

USER - e EE——
APPLICATION QueryRef MOBILE USER
g (SimilarLinks) DEVICE
AGENT AGENT

Inform(BookMarks)

Inform(BookMarks)

MOBILE DEVICE | ABSTRACTION LAYER
y

FIXED
INFRASTRUCTURE

SHADOW

Fig. 8. Application Interactions

The application interactions are illustrated in Figure 8. A mobile user uses a
browser on a laptop to access information. The browser sidebar interacts directly
with a User Application, which is also an agent running on the laptop. User’s
requests are sent by the browser sidebar to the User Application. If no User
Agent is started on the fixed infrastructure, the User Application requests the
abstraction layer to start a User Agent. Then, the User Application is ready
to route user’s requests to the User Agent using the delivery mechanism we
described in Section 4. For a request to get recommendations on related urls or to
get other users’ bookmarks, a “Similar Links” query is constructed. An inform
“Bookmarks” message is created if the User Application received a request
to export a set of bookmarks to the infrastructure. These messages are then
forwarded to the User Agent. For a “Similar Links” query, the User Application
would get a set of urls to similar documents or a set of other users’ bookmarks
in return. These urls or bookmarks are then forwarded to the browser sidebar
to be displayed.

On the infrastructure, a User Agent queries a Registry Agent for a Recom-
mender Interface Agent, with which it interacts in order to use services offered
by the Recommender system. Every “SimilarLinks” query or “Bookmarks” in-
form message received from the mobile device is forwarded to the Recommender
Interface Agent. Results of “SimilarLinks” queries are returned to the mobile
device. Interactions between a User Application on the mobile device and a User
Agent on the fixed infrastructure are supported by our abstraction layer.

At this stage, we have not completed a formal evaluation of our architecture,
but we are collecting observations about it. Given the application, we informally
compared the use of a laptop with our abstraction layer and without it. In both
cases, the laptop can interact with applications on the fixed infrastructure. In
the second case, when the laptop is disconnected, messages may be lost and
resending of messages will has to be programmed at the application level. In the

15

first case, the use of a mobile agents and the transparent routing of messages to
them [8] solved the problem of delivering messages to the laptop; alternatively
in the second case, full IPv6 may be necessary to route messages to the laptop
mobile address. Finally, by addressing the problem of the reliable delivery and
of the routing of messages in an abstraction layer, we have designed a generic
solution reusable by other applications having to support mobile users.

6 Related Work

In [6], mobile agents are used to move between resources on the fixed infras-
tructure to take advantages of those resources in order to accomplish tasks for
a mobile user. An Agent Gateway, which is a stationary host, is acting as the
mediator between the wireless device and fixed infrastructure resources. This is
different from our approach as we adopt a mobile agent to be such a mediator.
Having a mobile mediator is more flexible as it can move closer to the current
location of the user, which allows local communication to be established.

The “Personal Agent System” [1] provides a mobile user with a personalised
information retrieval service. The Personal Agent is a mobile agent that resides
on the fixed infrastructure and communicates with agents residing on the mobile
device. The system is similar to ours in the sense that it involves migration of
the Personal Agent to other stationary servers so that it follows the mobile
user around in the wired network, while the user moves around in the wireless
network. In comparison, our abstraction layer provides more flexibility since we
allow multiple mobile agents to exist when the user’s current local network is
not connected with the user’s previous location.

The Mobile Agents Platform (MAP) architecture [2] involves data servers to
store results acquired by a mobile agent for a mobile user once the mobile user
is disconnected from the network. When reconnected, the user has to undergo
multiple communication steps to get the result, like having to query the lookup
table for data server address and then to query the data server for the result. Our
approach is much simpler since we provide a store and forward mechanism built
in the abstraction layer, which allows the results of user’s queries to be forwarded
to the mobile user once the mobile user is reconnected to the network.

In the M-Commerce Framework [7], a mobile agent called Service Agent is
moving around the wired network to gather information for a mobile user, while
another mobile agent called Courier Agent is migrating to the mobile device
to establish an interaction with the Service Agent on the fixed infrastructure.
Migrating the Courier Agent to the mobile device in order to interact with the
Service Agent puts more burden on the network connection than a migration
between two hosts on the fixed network, as it involves the ability to move the
agent state and code, which includes the serialisation and deserialisation of the
transferred data through the low bandwidth wireless communication channels.
In our abstraction layer, we adopt a simpler approach, where an application
residing on the mobile device is responsible for interacting with applications on
the fixed infrastructure.

16

In the Tacoma Architecture [4], a support specific to PDA application is
provided using an entity called “hostel”, which is the host that a PDA normally
uses to synchronise data with. The hostel is also assumed to act as the network
provider or proxy for the PDA, i.e. the hostel is a networked workstation. In
this architecture, mobile agents are used to gather information on the wired
network assuming the presence of a host that they can inquire in case the PDA
is not connected. This approach is suitable for a PDA user that has the hostel
as the only connection point needed for the PDA. But in the case of a user who
is always on the move and needs to connect to different hosts, a more flexible
approach such as having a mobile agent acting as the “hostel” is more suitable.

7 Conclusion

A mobile agent able to migrate around the network trying to stay as close as
possible to the mobile user, gives a major advantage by allowing local com-
munication to be established with the mobile device. With this capability, the
mobile agent is designed to be the main component in our abstraction layer,
which allows transparent interactions between fixed infrastructure applications
and applications on mobile devices.

This paper has presented an application, which supports information shar-
ing between mobile users in virtual meeting rooms. The main challenge in de-
veloping the application is to construct an intermediary layer, which supports
seamless communication between a traveling mobile user and virtual meeting
rooms hosted by the fixed infrastructure. We have introduced an architecture
and algorithm of the intermediate layer, based on a mobile agent called Shadow.
This intermediary layer takes care of coordination of multiple Shadows, as well
as the communication between a mobile device and its Shadows. It is defined as
an abstraction layer, which hides the details of communication and coordination,
allowing transparent interactions between fixed infrastructure applications and
applications on a mobile device.

Having the intermediary layer has made the implementation of the applica-
tion straightforward, in which the layer takes care of complex interactions with
mobile devices. An agent-based Recommender system [11] is used in our applica-
tion to provide an information sharing environment between User Agents, which
are mobile-users’ representative in the virtual meeting room. The User Agents
interact transparently with a mobile device through the intermediary layer. We
believe such ability is important to allow more applications for mobile users to
be easily developed.

8 Acknowledgement

This research is funded in part by QinetiQ) and EPSRC Magnitude project (ref-
erence GR/N35816).

17

References

10.

11.

12.

. Debbie Chyi. An Infrastructure for a Mobile-Agent System that Provides Per-

sonalized Services to Mobile Devices. Technical Report TR2000-370, Dartmouth
College Computer Science, 2000.

A. La Corte, A Puliafito, and O. Tomarchio. An Agent-based Framework for Mobile
Users. In Proceedings of European Research Seminar on Advances in Distributed
Systems 1999, Madeira, Portugal, 1999.

Robert S. Gray, David Kotz, Ronald A. Peterson, Joyce Barton, Daria Chacon, Pe-
ter Gerken, Martin Hofmann, Jeffrey Bradshaw, Maggie R. Breedy, Renia Jeffers,
and Niranjan Suri. Mobile-Agent versus Client/Server Performance: Scalability in
an Information-Retrieval Task. In Mobile Agents, pages 229-243, 2001.

Kjetil Jacobsen and Dag Johansen. Mobile Software on Mobile Hardware — Experi-
ences with TACOMA on PDAs. Technical Report 97-32, Department of Computer
Science,University of Troms, Norway, 1997.

Danny B. Lange and Mitsuru Ishima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

Q.H. Mahmoud. MobiAgent — An Agent-based Approach to Wireless Informa-
tion Systems. In Proceedings of the 8rd International Bi-Conference Workshop on
Agent-Oriented Information Systems (AOIS-2001), Montreal, 2001.

Patrik Mihailescu and Walter Binder. A Mobile Agent Framework for M-
Commerce. Computer Science 2001, GI/OCG annual Convention:2:959-967. .
Luc Moreau. Distributed Directory Service and Message Router for Mobile Agents.
Science of Computer Programming, 39(2-3):249-272, 2001.

Luc Moreau. A Fault-Tolerant Directory Service for Mobile Agents based on
Forwarding Pointers. In The 17th ACM Symposium on Applied Computing
(SAC’2002) — Track on Agents, Interactions, Mobility and Systems, Madrid,
March 2002.

Luc Moreau, Nick Gibbins, David DeRoure, Samhaa El-Beltagy, Wendy Hall,
Gareth Hughes, Dan Joyce, Sanghee Kim, and Danius Michaelides. SoFAR with
DIM Agents An Agent Framework for Distributed Information Management. In
Proceedings of the 5th International Conference on the Practical Application of In-
telligent Agents and Multi-Agent Technology (PAAM 2000), pages 369-388, 2000.
Luc Moreau, Norliza Zaini, Jing Zhou, Nicholas R. Jennings, Yan Zheng Wei,
Wendy Hall, David De Roure, Ian Gilchrist, Mark O’Dell, Sigi Reich, Tobias Berka,
and Claudia Di Napoli. A Market-Based Recommender System. In Paolo Giorgini,
Yves Lespérance, Gerd Wagner, and Eric Yu, editors, Proceedings of the Fourth
International Bi-Conference Workshop on Agent-Oriented Information Systems at
AAMAS 2002 (AOIS’02), Bologna, Italy, July 2002. http://CEUR-WS.org/Vol-
59/.

Mark Weiser. Some Computer Science Problems in Ubiquitous Computing. Com-
munications of the ACM, 36(7):74-84, July 1993.

