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Abstract. Well-quasi orders in general, and homeomorphic embedding
in particular, have gained popularity to ensure the termination of tech-
niques for program analysis, specialisation, transformation, and verifica-
tion. In this paper we survey and discuss this use of homeomorphic em-
bedding and clarify the advantages of such an approach over one using
well-founded orders. We also discuss various extensions of the homeo-
morphic embedding relation. We conclude with a study of homeomor-
phic embedding in the context of metaprogramming, presenting some
new (positive and negative) results and open problems.

Keywords: Termination, Well-quasi orders, Program Analysis, Speciali-
sation and Transformation, Logic Programming, Functional & Logic Pro-
gramming, Metaprogramming, Infinite Model Checking.

1 Introduction

The problem of ensuring termination arises in many areas of computer science. It
is especially important within all areas of automatic program analysis, synthesis,
verification, specialisation, and transformation: one usually strives for methods
which are guaranteed to terminate. It can also be an issue for other symbolic
methods such as model checking, e.g., for infinite state systems. One can basically
distinguish two kinds of techniques for guaranteeing termination:
— offline (or static) techniques (e.g., [12,15-17,64]), which prove termination
of a program or process beforehand without any kind of execution, and
— online (or dynamic) techniques, which ensure termination of a process during
its execution.
Offline approaches have less information at their disposal but do not require
runtime intervention (which might be impossible). Which of the two approaches
is taken depends entirely on the application area.

Well-quasi orders [10,70] and in particular homeomorphic embedding [74, 53,
6,2, 13] have become very popular to ensure online termination. In this paper we
survey the now widespread use of these techniques and try to clarify (formally
and informally) why these approaches have become so popular. We will also pay
particular attention to the issue of metaprogramming.

2 Symbolic Methods and Online Termination

In this section we first introduce the general notion of a symbolic method which
manipulates symbolic expressions.



Symbolic Expressions First, an alphabet consists of the following classes of
symbols: 1) variables; and 2) function symbols. Function symbols have an asso-
ciated arity, a natural number indicating how many arguments they take in the
definitions below. Constants are function symbols with arity 0.

In the remainder, we suppose the set of variables is countably infinite and
the set of function and predicate symbols is countable. In addition, alphabets
with a finite set of function symbols will be called finite.

We will adhere as much as possible to the following syntactical conventions
(stemming from logic programming [7, 56]):

— Variables will be denoted by upper-case letters like X,Y, Z, usually taken
from the end of the (Latin) alphabet.

— Constants will be denoted by lower-case letters like a, b, ¢, usually taken from
the beginning of the (Latin) alphabet.

— The other function symbols will be denoted by lower-case letters like f, g, h.

Definition 1. The set of (symbolic) expressions E (over some given alphabet)
s inductively defined as follows:
— a variable is an expression,
- a function symbol f of arity n > 0 applied to a sequence ti,...,t, of n
expressions, denoted by f(t1,...,tn), is also an expression.

For terms representing lists we will use the usual Prolog notation: e.g. []
denotes the empty list, [H|T] denotes a non-empty list with first element H and
tail T'. As usual we can apply substitutions to expressions, and we will use the
conventions of [7, 56].

Symbolic Methods Inspired by [67,73], we now present a general definition
of symbolic methods:

Definition 2. A configuration is a finite tree whose nodes are labelled with ex-
pressions. Given two configurations 71,72, we say that 7 < 7o iff 70 can be
obtained from T by attaching sub-trees to the leaves of T1.

A symbolic method sm is a map from configurations to configurations such that
Vr: 7 < sm(7). The symbolic method is said to terminate for some initial con-
figuration 7o iff for some i € IN: sm'(m9) = sm'*t1(7g), where we define sm’
inductively by sm°(19) = 10 and sm**1 (1) = sm(sm(m)).

This definition of a symbolic method is very general and naturally covers a
wide range of interesting techniques, as shown in Fig. 1. For example, for partial
evaluation [38,36,65], an expression is a partially specified call and the sym-
bolic method will perform evaluation or unfolding. Another symbolic method is
(conjunctive) partial deduction [57, 25,48, 13,49] of logic programs. Here the ex-
pressions are (conjunctions of) atoms and children are derived using resolution.?

! One could argue that there are actually two symbolic methods: one relating to the
so-called local control and the other to the global control.



Other techniques are, e.g., supercompilation of functional programs [79, 30, 76,
75] and partial evaluation of functional logic programs [5, 6,2, 42].

Also, a lot of program transformation techniques can be cast into the above
form [66,67]. Moreover, several algorithms for (infinite) model checking natu-
rally follow the above form. Examples are the Karp-Miller procedure [40] for
Petri nets, Finkel’s minimal coverability procedure [18] for Petri nets, and also
the backwards reachability algorithm for well-structured transition systems [1,
19]. Here, expressions in the tree are symbolic representations of sets of states of
a system to be analysed and the symbolic method is either symbolically comput-
ing new successor or predecessor states. Probably, many other techniques (e.g.,
theorem proving) can be cast quite naturally into the above form.

Symbolic Method Expressions sm(.)

partial evaluation terms with variables evaluation + unfolding
supercompilation terms with variables driving

(conjunctive) partial deduction conjunctions of atoms  resolution

Karp-Miller procedure markings over IN U {w} firing transitions

Fig. 1. Some symbolic methods

Whistles and online termination Quite often, symbolic methods do not
terminate on their own, and we need some kind of supervisory process which
spots potential non-termination (and then initiates some appropriate action).
Formally, this supervision process can be defined as follows:

Definition 3. A whistle W is a subset of all configurations. The trees in W are
called inadmissible wrt W, the others are called admissible wrt W.

Usually whistles are upwards-closed, i.e., 71 S AT € W = € W. In
other words, if a whistle considers 71 to be dangerous then it will also consider
any extension of 73 dangerous.

Now, a combination of a symbolic method sm with a whistle W is said to
terminate iff either sm terminates or for some i: sm®(rg) € W.

Intuitively, we can view this as the whistle supervising the method sm and
“blowing” if it produces an inadmissible configuration (smi(ry) € W). What
happens after the whistle blows depends on the particular application, and we
will not go into great detail. In program specialisation or transformation one
would usually generalise and restart. To ensure termination of the whole process
one has to ensure that we cannot do an infinite number of restarts. This can ba-
sically be solved by viewing this generalisation and restart procedure as another
symbolic method and applying the whistle approach to it as well; see [62, 73] for
more details.

In a lot of cases, whistles are first defined on sequences of expressions, and
then extended to configurations:



Definition 4. A whistle over sequences W is a subset of all finite sequences of
expressions. The sequences in W are called inadmissible wrt W.

Given W, one will then often use the extension W, to configurations , defined
as follows: W, = {7 | 3 a branch v of 7 s.t. v € W}. One can also use more
refined extensions For example, one might focus on subsequences (see, e.g., the
focus on selected literals and covering ancestors concept in [11,61, 60, 59]).

In the remainder of the paper, we will mainly focus on whistles over se-
quences, and only occasionally discuss their extension to trees.

3 Subsumption, Depth Bounds, and Wfos

We now present some of the whistles used in early approaches to online termi-
nation.

Subsumption and Variant Checking The idea is to use subsumption test-
ing to detect dangerous sequences. Formally, such a whistle is defined as follows:
Weup = {e1, €2, ... | i < j such that e;0 = e;} In other words, a sequence is in-
admissible if an element is an instance of a preceding expression. This approach
was used, e.g., in early approaches to partial deduction (e.g., [78,23,9]). It fares
pretty well on some simple examples, but, as shown in [11] (see also Ex. 1 below),
it is not sufficient to ensure termination in the presence of accumulators. Some-
times variant testing is used instead of subsumption, making more sequences
admissible but also worsening the non-termination problem.

Depth Bounds One, albeit ad-hoc, way to solve the local termination problem
is to simply impose an arbitrary depth bound D as follows: Wp = {ejea...ef... |
k > D}. This approach is taken, e.g., in early partial deduction systems which
unfold every predicate at most once. A depth bound is of course not motivated
by any property, structural or otherwise, of the program or system under con-
sideration, and is therefore both practically and theoretically unsatisfactory.

Well-founded Orders A more refined approach to ensure termination is based
on well-founded orders. Such an approach was first used for partial evaluation
of functional programs in [69,82] and for partial deduction in [11,61,60,59].
These techniques ensure termination, while at the same time allowing symbolic
manipulations related to the structural aspect of the program or system under
consideration.

Formally, well-founded orders are defined as follows:

Definition 5. A strict partial order < is an irreflerive, transitive, and thus
asymmetric, binary relation on €. The whistle W< associated with < is defined
by We = {e1,ea,... | Ji such that e;41 £ e;}. We call < a well-founded order
(wfo) iff all infinite sequences of expressions are contained in W.



In practice, wfos can be defined by so-called norms, which are mappings from
expressions to IN and thus induce an associated wfo.

Ezample 1. The following sequence of symbolic expressions arises when partially
deducing the “reverse with accumulator” logic program [11]:

rev([a, b|T), [], R), rev([b|T), [a], R), rev(T, [b,a], R), rev(T’,[H’,b,a], R), ...

A simple well-founded order on expressions of the form rev(ty, t2,t3) might
be based on comparing the termsize norm (i.e., the number of function and con-
stant symbols) of the first argument. We then define the wfo for this example
by:

rev(ty, ta, t3) > rev(sy, s, s3) iff termsize(t1) > termsize(sy).
Based on that wfo, the subsequence consisting of the first 3 expressions is ad-
missible, but any further extension is not. At that point the partial deduction
would stop and initiate a generalisation step.

In the above example we have fixed the wfo order beforehand. This is often
quite difficult and (with the possible exception of [22] [63]) not very often done
in practice. A more widely used approach for generating suitable wfos is to
determine them while running the symbolic method. [11, 61,60, 59], start off with
a simple, but safe wfo and then refine this wfo during the unfolding process.

However, it has been felt by several researchers that well-founded orders are
sometimes too rigid or (conceptually) too complex in an online setting. In the
next section we introduce a more flexible approach which has gained widespread
popularity to ensure online termination of symbolic techniques.

4 Wqos and Homeomorphic Embedding

Formally, well-quasi orders can be defined as follows.
Definition 6. A quasi order is a reflexive and transitive binary relation on .

Henceforth, we will use symbols like <, > (possibly annotated by some sub-
script) to refer to strict partial orders and <, > to refer to quasi orders and binary
relations. We will use either “directionality” as is convenient in the context.

Definition 7. (wbr,wqo) Let < be a binary relation on £. The whistle W<
associated with < is defined as follows W< = {e1,ea,... | I < j such that
e; <ej}. We say that < is a well-binary relation (wbr) iff all infinite sequences
of expressions are contained in W<. If < is also a quasi order then < is called
a well-quasi order (wqo).

Observe that, in contrast to wfos, non-comparable elements are allowed
within admissible sequences. There are several other equivalent definitions of
well-binary relations and well-quasi orders [33,44, 81]. Traditionally, wqos have
been used within static termination analysis to construct well-founded orders
[15,16]. The use of well-quasi orders in an online setting has only emerged quite



recently. In that setting, transitivity of a wqo is usually not that interesting
(because one does not have to generate wfos) and one can therefore drop this
requirement, leading to the use of whbr’s (see also Sect. 7).

An interesting wqo is the homeomorphic embedding relation <. The following
is the definition from [74], which adapts the pure? homeomorphic embedding
from [16] by adding a simple treatment of variables.

Definition 8. The (pure) homeomorphic embedding relation < on expressions
is inductively defined as follows (i.e. < is the least relation satisfying the rules):

1. X <Y for all variables X,Y
2. s f(t1,...,tn) if s It; for some i
3. f(s1y.vy8n) I f(t1, .. tn) ifn>0andVie {1,...,n}: s; <t.

The second rule is sometimes called the diving rule, and the third rule is
sometimes called the coupling rule (notice that n is allowed to be 0 and we thus
have ¢ < ¢ for all constants). When s <t we also say that s is embedded in t or
t is embedding s. By s <t we denote that s <t and t 4 s.

The intuition behind the above definition is that A < B iff A can be obtained
from B by removing some symbols, i.e., that the structure of A, split in parts,
reappears within B. For instance, we have p(a) < p(f(a)) because p(a) can be
obtained from p(f(a)) by removal of “f(.)” Observe that the removal corresponds
to the application of rule 2 and that we also have p(a)<ip(f(a)). Another example
is f(a,b) <Ap(f(g(a)),b) but p(a) A p(b) and f(a,b) A p(f(a), f(b)). Finally, when
adding variables, we have, e.g.: p(X)<p(f(Y)), p(X, X)<p(X,Y"), and p(X,Y) <
p(X, X).

Proposition 1. The relation < is a wqo on the set of expressions over a finite
alphabet.

In the presence of an infinite alphabet < is obviously not a wqo, (take, e.g,
0,1,2,... where we then have i 4 j for i # j).

Example 2. Let us reconsider the sequence from Ex. 1:
rev([a, b|T), [], R), rev([b|T), [a], R), rev(T, [b,a], R), rev(T’,[H’,b,a], R), ...

The sequence consisting of the first three elements is admissible wrt W4, while
the sequence consisting of the first four elements is not because rev (T, [b, a], R) <
rev(T’,[H', b, a], R). Hence, we have obtained the same power as the wfo in Ex. 1,
without having to chose which arguments to measure and how to measure them.
We further elaborate on the inherent flexibility of < in the next section.

Also, < seems to have the desired property that often only “real” loops are
detected and that they are detected at the earliest possible moment (see [58]).

2 The full homeomorphic embedding makes use of an underlying wqo <r over the
function symbols. The pure homeomorphic embedding uses equality for <z, which
is only a wqo for finite alphabets.



< also pinpoints where the dangerous growth has occurred; information which
is vital for generalisation and restarting [74, 52, 53,43].

Looking at Def. 8 one might think that the complexity of checking s <t for
two expressions s and t is exponential. However, the complexity is actually linear
[77,31] (see also [58]); more precisely it is proportional to the size of s and ¢ and
to the maximum arity used within s and ¢.

History < was first defined over strings by Higman [33] and later extended
by Kruskal [41] to ordered trees (and thus symbolic expressions). Since then,
< has been used for many applications. Arguably, the heaviest use of < within
computer science was made in the context of term rewriting systems [15, 16], to
automatically derive wfos for static termination analysis. The usefulness of < as
a whistle for partial evaluation was probably first discovered and advocated in
[58]. It was then later, independently, rediscovered and adapted for supercom-
pilation by Sgrensen and Glick in [74]. Neil Jones played an important role in
that re-discovery. Indeed, Neil was tidying his collection of articles and among
those articles was a worn copy of [15]. Neil brought this article, containing a
definition of homeomorphic embedding, to the attention of Morten Sgrensen.
Morten immediately realised that this was what he was looking for to ensure
termination of supercompilation in an elegant, principled way.

In autumn 1995, Bern Martens and myself were working on the problem of
ensuring termination of partial deduction with characteristic trees [26]. Up to
then only ad hoc approaches using depth bounds existed. Luckily, Bern Martens
visited Neil’s group at DIKU in Copenhagen, and came into contact with <.
Upon his return, we realised that < was also exactly the tool we needed to solve
our problem, leading to [52,53]. Later came the realisation that < provided
a mathematically simpler and still more powerful way than wfos of ensuring
termination of partial deduction in general, which lead to the development of
[47], written during a stay at DIKU.

5 On the Power of Homeomorphic Embedding

It follows from Definitions 5 and 7 that if < is a wqo then < (defined by e; < e9
iff e <eaAey # es) is a wlo, but not vice versa. However, if < is a well-founded
order then =, defined by e; =< es iff e; # es, is a wbr. Furthermore, < and <
have the same set of admissible sequences. This means that, in an online setting,
the approach based upon wbr’s is in theory at least as powerful as the one based
upon wfos. Let us now examine the power of < in more detail.

Let us examine the power of <l on a few examples. For instance, < will admit
all sequences in Fig. 2 (where, amongst others, Ex. 1 is progressively wrapped
into so-called metainterpreters solve and solve’, counting resolution steps and
keeping track of the selected predicates respectively):

Achieving the above is very difficult for wfos and requires refined and in-
volved techniques (of which to our knowledge no implementation in the online
setting exists). For example, to admit the third sequence we have to measure



Sequence
rev([a, b|TY, [], R) ~ rev([b|T], [a], R)
solve(rev([a, b\T] [ R)j()) ~> solve(rev([b|T1], [a], R), s(0))

solve’ (solve(rev([a, b|T], [], R),0),[]) ~ solve’ (solve(rev([b|T], [a], R), s(0)), [rev])
path(a,b,[]) ~ path(b,a,[a])
path(b, a, []) ~ path(a, b, [b])
solve’ (solve(path(a, b,[]),0),[]) ~ solve’ (solve(path(b, a,[a]), s(0)), [path])

)
solve’ (solve(path(b, a,[]),0),[]) ~ solve’ (solve(path(a,b,[b]), s(0)), [path])

Fig. 2. Sequences admissible wrt W4

something like the “termsize of the first argument of the first argument of the
first argument.” For the sequences 6 and 7, things are even more involved. We
will return to the particular issue of metaprogramming in more detail in Sect. 8.
The above examples highlight the flexibility of < compared to wfos. But can
one prove some “hard” results? It turns out that one can establish that — in the
online setting — < is strictly more generous than a large class of refined wfos.

Monotonic wfos and Simplification orderings [47] establishes that < is
strictly more powerful than the class of so-called monotonic wfos. In essence, a
monotonic wfo > has the property that if it considers the sequence sy, s2 to be
inadmissible (i.e., s1 % s2) then it will also reject sequences such as s1, f(s2) and
f(s1), f(s2). This is a quite natural requirement, which actually most wfos used
in online practice satisfy. For instance, the wfo induced by the termsize norm is
monotonic. Also, any linear norm induces a monotonic wfo [47]. Almost all of
the refined wfos defined in [11,61,60,59] are monotonic.3
Formally, monotonic wfos are defined as follows:

Definition 9. A well-founded order < on expressions is said to be monotonic

iff the following rules hold:

1. X #Y for all variables X,Y,
2. s f(t1,...,tn) whenever f is a function symbol and s # t; for some i and
3. f(s1,...y8n) # f(t1,...,tn) whenever Vi € {1,...,n}:s; ¥ t;.

Note the similarity of structure with the definition of < (but, contrary to <, %
does not have to be the least relation satisfying the rules), which means that
st = s #t.

Another interesting class of wfos are the so called simplification orderings,
which we adapt from term rewriting systems (to cater for variables). It will turn
out that the power of this class is also subsumed by <.

Definition 10. A simplification ordering is a wfo < which satisfies

3 The only non-monotonic wfo in that collection of articles is the one devised for
metainterpreters in Definition 3.4 of [11] (also in Section 8.6 of [59]) which allows to
focus on subterms. We return to this approach below.



1. s<t= f(t1,...,8 ... tn) < f(t1,...,t,...,t,) (veplacement property),

2. s < f(t1,...,8,...,tn) (subterm property) and

8. s <t = so <ty for all variable only substitutions o and - (invariance under
variable replacement).

The third rule of the above definition is new wrt term-rewriting systems and
implies that all variables must be treated like a unique new constant. It turns out
that a lot of powerful wfos are simplification orderings [15, 64]: recursive path
ordering, Knuth-Bendix ordering or lexicographic path ordering, to name just a
few.

Observe that Def. 10 is also very similar to Def. 8 of <. Indeed, for variable-
free expressions we have that s <¢ implies s =< ¢ for all < satisfying Def. 10
(by the Embedding Lemma from [14]). The following theorem is established in
[47]. Transitivity of < is required in the proof and Theorem 1 does not hold for
well-founded relations. For simplification orderings on variable-free expressions,
this theorem is a direct consequence of the Embedding Lemma from [14].

Theorem 1. Let < be a wfo on expressions which is either monotonic or a
simplification ordering (or both). Then any admissible sequence wrt < is also
admissible wrt .

This theorem implies that, no matter how much refinement we put into an
approach based upon monotonic wfos or upon simplification orderings, we can
only expect to approach < in the limit. But by a simple example we can even
dispel that hope.

Ezample 3. Take the sequence § = f(a), f(b),b, a. This sequence is admissible
wrt < as f(a)4 f(b), f(a)Ab, fla)Ba, f()Ab, f(b)Aa and a4 b. However,
there is no monotonic wfo < which admits this sequence. More precisely, to admit
0 we must have f(a) = f(b) as well as b > a, i.e. a ¥ b. Hence < cannot be
monotonic. This also violates rule 1 of Def. 10 and < cannot be a simplification
ordering.

Non-Monotonic Wfos There are natural wfos which are neither simplification
orderings nor monotonic. For such wfos, there can be sequences which are not ad-
missible wrt Wq but which are admissible wrt the wfo. Indeed, < takes the whole
term structure into account while wfos in general can ignore part of the term
structure. For example, the sequence [1, 2], [[1,2]] containing two expressions, is
admissible wrt the “listlength” measure but not wrt <, where “listlength” mea-
sures a term as 0 if it is not a list and by the number of elements in the list if it
is a list [60]. For that same reason the wfos for metainterpreters defined in Defi-
nition 3.4 of [11] are not monotonic, as they can focus on certain subterms, fully
ignoring other subterms. It will require further work to automate that approach
and to compare it with wqo-based approaches, both in theory and in practice.
Still there are some feats of < which cannot be achieved by a wfo ap-
proach (monotonic or not). Take the sequences S1 = p([],[a]),p([al,[]) and
Sa = p(lal,[]),p([], [a]). Both of these sequences are admissible wrt < but there



exists no wfo which will admit both these sequences. By using a dynamic ad-
justment of wfos [11] it is possible to admit both sequences. However, for more
complicated examples (e.g., from Fig. 2) the dynamic adjustment has to be very
refined and one runs into the problem that infinitely many dynamic refinements
might exist [60,59], and to our knowledge no satisfactory solutions exists as of
yet.

Finally, the above example also illustrates why, when using a wqo, one has
to compare with every predecessor state of a process, whereas when using a wfo
one has to compare only to the last predecessor. Hence, the online use of wqo is
inherently more complex than the use of wfos.

6 Homeomorphic Embedding in Practice

In this section we survey the (now widespread) use of < for online termination,
since [58, 74]. Works explicitly addressing metaprogramming will be discussed in
Sect. 8.

Functional programming As already mentioned, the first fully worked out
online use of < was within supercompilation [79,30]. [74,76] presented, for the
first time, a fully formal definition of positive supercompilation, for a first-order
functional language with a lazy semantics. < was applied on expressions with
variables and used to guide the generalisation and ensuring the construction of
finite (partial) process trees. The approach was then later generalised in [71] to
cover negative supercompilation, where negative constraints are propagated. [75]
presents a largely language independent framework for proving termination of
program transformers, where < is one of the possible mechanisms.

Recently, [72] uses < in the context of generalized partial computation (GPC)
[24] and presents a refined termination criterion. The main idea consists in mea-
suring the distance between the current expression and base cases for recursion
(which have to be identifiable). Homeomorphic embedding is then applied to this
sequence of distances, which results in a powerful termination condition, whose
effectiveness in practice still needs to be evaluated.

Logic Programming First use of < for partial deduction of logic programs
occurred in [52,53]. Here, < was not only used on selected literals (to ensure
termination of the so-called local control), but also on the atoms in the so-
called global tree, as well as on characteristic trees. The latter characterise the
computational behaviour of atoms to be specialised, which is often a better basis
for controlling polyvariance than the syntactic structure of expressions.

In [29,39,13] < (and the generalisation process) was then extended to cope
with conjunctions of atoms, to provide a terminating procedure for conjunctive
partial deduction.

All of the above led to the development of the ECCE partial deduction system,
which can achieve both deforestation and tupling [48]. Moreover, the refined



way in which < ensures termination opened up new application areas, such as
infinite model checking [54]. For some particular applications, such as coverability
analysis of Petri nets, < is “fully precise,” in the sense that it whistles only
when a real infinite sequence is being constructed. As shown in [51,50], one
then obtains a decision procedure for these problems and one can establish some
relatively surprising links with existing model checking algorithms such as the
Karp-Miller procedure [40] or more recent techniques such as [18] and [1,19].

In some cases, although < is fully precise, the associated generalisation opera-
tion of partial deduction is not. Hence, [43] defines a new generalisation operator
which extrapolates the growth detected by <. This enables to solve some new
problems, such as the conjunctive planning problem for the fluent calculus.

In another line of work, one might use < as the basis for specialising and
transforming constraint logic programs. First steps in that direction have been
presented in [20, 21], where a wqo for constrained goals is developed and a generic
algorithm is developed.

Functional logic programming Functional logic programming [32] extends
both logic and functional programming. A lot of work has recently been carried
out on partial evaluation of such programs [5,4, 2, 6, 3], where < is used to ensure
termination. This work has resulted in the INDY partial evaluation system, which
has been successfully applied to a wide range of examples.

In another line of work, [42] has adapted < for constraint-based partial eval-
uation of functional logic programs.

7 Extensions of the Homemorphic Embedding

While < has a lot of desirable properties it still suffers from some drawbacks.
First, the homeomorphic embedding relation < as defined in Def. 8 is rather
unsophisticated when it comes to variables. In fact, all variables are treated as
if they were identical, a practice which is often undesirable (namely when the
same variable can appear multiple times within the same expression). Intuitively,
p(X,Y) <p(X, X) could be justified, while p(X, X) <p(X,Y) can not. Indeed
p(X, X) could be seen as representing something like and(p(X,Y),eq(X,Y)),
which embeds p(X,Y"), but not the other way around. Second, < behaves in quite
unexpected ways in the context of generalisation, posing some subtle problems
wrt the termination of a generalisation process [53,46].

Strict Homeomorphic Embedding <t To remedy these problems, [53] in-
troduced the so called strict homeomorphic embedding, which was then taken
up, e.g., by [29,42,13]. The definition is as follows:

Definition 11. Let A, B be expressions. Then B (strictly homeomorphically)
embeds A, written as A<t B, iff A<\ B and A is not a strict instance of B.*

4 A is a strict instance of B iff there exists a substitution 7 such that A = By and
there exists no substitution o such that B = Aoc.



Example 4. We now still have that p(X,Y) <T p(X, X) but not p(X,X) <+
p(X,Y). Note that still X <TY and X <% X.

The following is proven in [53].

Theorem 2. The relation < is a wbr on the set of expressions over a finite
alphabet.

Unfortunately, <7 is not a wqo as it is not transitive. For example, we have

- p(X,X,Y,)Y) <t p(X,Z,Z,X) and p(X, Z, Z, X) <t p(X, X,Y, Z)

— but p(X, X,Y,Y) 4% p(X, XY, 7).
One might still feel dissatisfied with <™ for another reason. Indeed, although
going from p(X) to p(f(X)) looks very dangerous, a transition from p(X,Y) to
p(X, X) is actually not dangerous, as there are only finitely many new variable
links that can be created. To remedy this, [46] develops the following refinement
of <7, which is useful, for example, in the context of Datalog programs (logic
programs who operate on constants only).

Definition 12. We define s <yt iff s <t or s is a variant of t.

It is obvious that <4, is strictly more powerful than <% (if ¢ is strictly more
general than s, then it is not a variant of s and it is also not possible to have
s<t). For example, we have p(X) <yqr p(f(X)) as well as p(X,Y) Qyor p(Z, X)
but p(X, X) Aparp(X,Y) and p(X,Y) Aparp(X, X).

Theorem 3. The relation <,q- is a wqgo on the set of expression over a finite
alphabet.

The Extended Homeomorphic Embedding <* Although <" has a more
refined treatment of variables than <, it is still somewhat unsatisfactory. One
point is the restriction to a finite alphabet. Indeed, for a lot of practical programs,
using, e.g., arithmetic built-ins, a finite alphabet is no longer sufficient. Luckily,
the fully general definition of homeomorphic embedding [41,16] remedies this
aspect. It also allows function symbols with variable arity (which can also be
seen as associative operators). We will show below how this definition can be
adapted to incorporate a more refined treatment of variables.

However, there is another unsatisfactory aspect of <% (and <,,.). Indeed,
we have p(X, X) 47p(X,Y) and p(X, X) < p(X,Y) as expected, but we have,
e.g., fla,p(X, X)) <F f(f(a),p(X,Y)), which is rather unexpected. In other
words, the more refined treatment of variables is only performed at the root of
expressions, but not recursively within the structure of the expressions.

The following, new and more refined embedding relation remedies this some-
what ad hoc aspect of <7 and adds support for infinite alphabets.

Definition 13. Given a wbr <p on the function symbols and a wbr <g on
sequences of expressions, we define the extended homeomorphic embedding on
expressions by the following rules:



1. X<*Y if X and Y are variables

2. s<9* f(t1,...,tn) if s <I*t; for some i

3. f(s15--y8m) L g(tr, .. tn) f2pgandIl <ip <...<ipym <n such
that Vj € {1,...,m} : s; I t;; and (s1,...,5m) =5 (t1,...,ln)

Observe that for rule 3 both n and m are allowed to be 0, but we must have
m < n. In contrast to Def. 8 for <, the left- and right-hand terms in rule 3 do
not have to be of the same arity. The above rule therefore allows to ignore n —m
arguments form the right-hand term (by selecting the m indices i1 < ... < in,).

Furthermore, the left- and right-hand terms in rule 3 do not have to use the
same function symbol: the function symbols are therefore compared using the
wbr <p. If we have a finite alphabet, then equality is a wqo on the function
symbols (one can thus obtain the pure homeomorphic embedding as a special
case). In the context of, e.g., program specialisation or analysis, we know that
the function symbols occurring within the program (text) and call to be analysed
are of finite number. One might call these symbols static and all others dynamic.
A wqo can then be obtained by defining f < ¢ if either f and g are dynamic
or if f = g. For particular types of symbols a natural wqo or wbr exists (e.g.,
for numbers) which can be used instead. Also, for associative symbols (such
as the conjunction A in logic programming) one can represent ¢1 A ... A ¢, by
A(ct, ..., ¢n) and then use equality up to arities (e.g., A/2 = A/3) for <p.

Ezample 5. If we take <p to be equality up to arities and ignore <g (i.e., define
<s to be always true) we get all the embeddings of <, for example, p(a) <*
o(f ( )). But we also get

p(a) <* p(b, f(a), c) (while p(a) < p(b, f(a),c) does not hold),
(p(a), (b)) < A(s,p(f(a)), 7> q(b)), and

- /\(a,b, ¢) <* A(a, b, ¢, d).
One can see that <* provides a convenient way to handle associative operators
such as the conjunction A. (Such a treatment of A has been used in [29, 39, 13]
to ensure termination of conjunctive partial deduction.) Indeed, in the context
of < one has to use, e.g., a binary representation. But then whether A(a, b, c) is
embedded in A(a, b, ¢,d) depends on the particular representation, which is not
very satisfactory:

— Aa, A(b,c)) < Ala, A(A ( ),d)), but

o /\(av /\(bv C))é A ( ( a,b (Ca d))

In the above definition we can now instantiate <g such that it performs
a more refined treatment of variables, as done for <*. For example, we can
define: (s1,...,8m) =g (t1,...,tn) Uf (t1,...,¢,) is not strictly more general
than (sq,...,Sm). (Observe that this means that if m # n then <g will hold.)
This relation is a wbr (as the strictly more general relation is a wfo [35]). Then, in
contrast to <7 and <, this refinement will be applied recursively within <*.
For example, we now not only have p(X, X) €*p(X,Y) but also f(a,p(X, X))
2% F(f(a), p(X,Y)) whereas f(a, p(X, X)) <% f(f(a),p(X,Y)).

The reason why a recursive “not strict instance” test was not incorporated in
[63] (which uses <T) was that the authors were not sure that this would remain



a wbr (no proof was found yet). In fact, at first sight it looks like recursively ap-
plying the “not strict instance” might endanger termination.® But the following
result, proven in [46], shows that this is not the case:

Theorem 4. <* is a wbr on expressions. Additionally, if <p and <g are wqos
then so is <*.

Other extensions Other extensions, in the context of static termination ana-
lysis of term rewriting systems, are proposed in [68] and [45]. Further research
is required to determine their usefulness in an online setting.

[28] presents an extension of < which can handle multiple levels of encodings
in the context of metaprogramming. We will examine the issue of metaprogram-
ming in much more detail in the next section.

8 Metaprogramming: Some Results and Open Problems

As we have seen earlier in Sect. 5, < alone is already very flexible for metain-
terpreters, even more so when combined with characteristic trees [53] (see also
[80]). This section we will study the issue of metaprogramming in more detail,
present some new results, and show that some subtle problems still remain. This
section is slightly more biased towards partial deduction of logic programs. The
discussions should nonetheless be valid for most of the other application areas,
namely when the symbolic method is not applied to a system/program directly
but to an encoding of it.

Ground versus Non-Ground Representation Let us first discuss one of the
main issues in the context of metaprogramming, namely the representation of
object-level expressions at the metalevel. In setting with logical variables, there
are basically two different approaches to representing an object level expression,
say p(X, a), at the metalevel. In the first approach one uses the expression itself
as the object level representation. This is called a non-ground representation,
because it represents an object level variable by a metalevel variable. In the
second approach, one uses something like struct(p, [var(1), struct(a, [])]) to rep-
resent the object level expression. (Usually one does not use the representation
p(var(l),a), because then one cannot use the function symbol var/1 at the ob-
ject level.) This is called a ground representation, as it represents an object level
variable by a ground term. Fig. 3 contains some further examples of the partic-
ular ground representation which we will use in this section. For a more detailed
discussion we refer the reader to [34, 8].

Of course, one is not restricted to just one level of metainterpretation; one
can have a whole hierarchy of metainterpretation [27] where each layer adds its
own functionality.

5 If we slightly strengthen point 3 of Def. 13 by requiring that (si,...,s) is not a
strict instance of the selected subsequence (t;,,...,t,,), we actually no longer have
a wbr [46].



Object leve1| Ground representation
X var(1)
c struct(c, [])
f(X,a) |struct(f, [var(1), struct(a,[])])

Fig. 3. A ground representation

In this section we want to study the relationship between admissible se-
quences at the object and metalevel. The simplest setting is when one just uses
metainterpreters which mimic the underlying execution and do not add any
functionality (in functional programming, such interpreters are often called self-
interpreters [37]). Now, the first question that comes to mind is: “If a sequence
of evaluation steps at the object level is admissible wrt some well-quasi order,
what about the corresponding sequence of evaluation steps at the meta level 77
Ideally, one would want a well-quasi order which is powerful enough to also ad-
mit the sequence at the metalevel. In the context of partial deduction this would
ensure that if an object program and query can be fully unfolded then the same
holds at the metalevel, no matter how many layers of interpretation we put on
top of each other. Unfortunately, as we will see below, finding such a wqo turns
out to be a daunting task.

8.1 The Representation Problem

In this subsection we will concentrate on the difficulties arising from the fact that
object level expressions have to be represented in a different (and possibly more
complex) manner at the metalevel. We will ignore for the moment that sequences
of expressions at the metalevel might actually be even more involved (i.e., there
might be intermediate expressions which have no counterpart at the object level;
or a sequence at the object level might correspond to multiple sequences at the
metalevel). We will return to some of these issues in Sect. 8.2 below.

To abstract from the number of layers of metainterpretation and the partic-
ular representation employed at each layer, we define a function enc(.) which
maps object level expressions to corresponding metalevel expressions. For exam-
ple, if we just use the logic programming, (non-ground) vanilla metainterpreter
[34, 8] depicted in Fig. 4 we have enc(p(X)) = solve(p(X)). If we use two nested
vanilla metainterpreters we will get enc(p(X))= solve(solve(p(X))). More in-
volved metainterpreters might actually have additional arguments, such as a
debugging trace. For the ground representation of Fig. 3 we will get enc(p(X))
= solve(struct(p, [var(1)]), CAS), where C AS is an output variable for the com-
puted answer substitution, which has to be returned explicitly.

We say that a wfo or wbr is invariant under a particular encoding enc(.) if
whenever it admits a sequence of expressions 01, 09,...,0, then it also admits
enc(oy), enc(oz2), ..., enc(oy,), and vice-versa. Solving the representation problem
then amounts to finding an adequate wfo or wbr which is invariant under a



solve(true) —
solve(A&B) «— solve(A) A solve(B)
solve(H) < clause(H, B) A solve(B)

Fig. 4. The vanilla metainterpreter

given encoding and still powerful enough (obviously the total relation <+ with
Vs,t:s =7 tis a wqo which is invariant under any encoding enc(.)).

We now show that < solves the representation problem in the context of the
vanilla metainterpreter of Fig. 4. In the following we use f™(¢) as a shorthand
for the expression f(...(f(t)...).

——

n

Proposition 2. Let 01,09,..., oy be a sequence of expressions. 01,02,..., On i
admissible wrt < iff solve™(01), solve™(02), ..., solve™(o,) is admissible wrt <.

Proof. It is sufficient to show that o; < o; iff solve(o;) < solve(o;). Obviously 0; < o;
implies solve(o;) < solve(o;) by applying the coupling rule 3 of Def. 8. Now suppose
that solve(o0;) < solve(o;). Either rule 3 of Def. 8 was applied and we can conclude that
0; Joj. Or the diving rule 2 was applied. This means that solve(o;) <o;. At that point
it is possible that the diving rule 2 was further applied, but sooner or later rule 1 or 3
must be applied and we can then conclude that o; <t for some subterm ¢ of o;. Hence
we know that o; <o;. O

The above result also holds for more involved vanilla-like encodings with
extra-arguments provided that within every sequence under consideration an
extra-argument does not use the solve function symbol and that it embeds all
the earlier ones. This holds, e.g., for extra-arguments which contain constants,
increasing counters, or histories. For example, the sequence p, ¢ is admissible and
S0 are

— solve(p, 0), solve(q, s(0)) (where the interpreter counts evaluation steps) and

— solve(p,[]), solve(q, [p]) (where the interpreter keeps track of the evaluation

history).

However, if the extra argument does not necessarily embed the earlier ones, then
more sequences might be admissible at the metalevel. For example, if we add
to Fig. 4 a resolution counter, counting downwards, we have that p(a), p(f(a))
is not admissible while solve(p(a), s(0)), solve(p(f(a)),0) is. Alternatively, if the
extra argument can contain the solve symbol then we can have sequences ad-
missible at the object level but not at the meta level: p, q is admissible while
solve(p, 0), solve(q, solve(p,0)) is not.

One might hope that a similar invariance property holds for a ground repre-
sentation. Unfortunately, this is not the case due to several problems, which we
examine below.

Multiple arity If the same predicate symbol can occur with multiple arity, then
the following problem can arise. Take the expressions p(X) and p(X,X). We



have that p(X) A p(X, X) (< inherently treats p/1 and p/2 as different symbols
and the coupling rule 3 of Def. 8 cannot be applied). However, for the ground
representation we have struct(p, [X]) < struct(p, [X, X]) because all arguments
of p/n are put into a single argument of struct containing a list of length n.

A simple solution to this problem is to use a predicate symbol only with a
single arity. Another one is to use <* (instead of <) with an underlying identity
of function symbols up to arities. A third solution is to add the arity as an extra
argument in the ground representation. For the above example, we then obtain
struct(p, 1, [X]) A struct(p, 2, [X, X]). This approach also solves more contrived
examples such as p(X) A p(X, f(X)), where we then have struct(p,1,[X]) A
struct(p, 2, [X, struct(f,1,[X])])-

Variable encoding If we represent variables as integers of the form 7 = 0 | s(7),
we can have that X <Y while var(s(0)) 4 var(0). (In that case < on the encoding
is actually more admissible.) One solution is to use a different function symbol
for each distinct variable (meaning we have an infinite alphabet) and then use
<* with an underlying wqo on these new function symbols, e.g., either treating
all encodings of variables as one fresh constant or even incorporating refinements
similar to <t and <,q.

Multiple embeddings in the same argument Unfortunately, even in the
absence of variables and even if every function symbol only occurs with a single
arity, < is not invariant under the ground representation. For example, we have

f(a,0) A f(g(a,b), )

struct(f, [“a”,“b”]) < struct(f, [struct(g, [“a”,“b"]),“c”])

where we have used “c” to denote the ground representation struct(c,[]) of a
constant symbol c.

The reason for this odd behaviour is that the coupling rule 3 of Def. 8 checks
whether the term a is embedded in g(a,b) (which holds) and b is embedded in ¢
(which does not hold). The rule disallows to search for both a and b in the same
argument g(a,b) (which would hold). But this is exactly what is allowed when
working with the ground representation, due to the fact that an argument tuple
is translated into a list.

One might think that one possible solution to this problem would be to adapt
< such that one is allowed to examine the same argument multiple times for
embedding. In other words one would define a relation <~ by adapting rule 3 of
Def. 8 to (and keeping rules 1 and 2):

3. f(s1y.vey8m) 97 ft1,...,t,) if 31 < 43 < ...4y < n such that Vj €

{1,...,m}:s; 47 ;.

Note that, contrary to <, i; can be equal to ;41 and we now have f(a,b) I~
f(g(a,b),c). Unfortunately, this solution is not invariant under the ground rep-
resentation either. A counterexample is as follows: f(a)A ~g(f(b), g(a)) while
struct(f,[“a”])Q™ struct(g, [struct(f,[“b7]), struct(g, [“a”])]).

while



So, despite the usefulness of < for metaprogramming exhibited earlier in the
paper, there still remains the open problem: Can we find a strengthening or
useful adaptation of < which is invariant under the ground representation? It
might be possible to achieve this by using (a refinement of) [68], which extends
Kruskal’s theorem. A pragmatic solution would of course be to simple decode
data as much as possible in, e.g., the program specialiser, and then apply < (or
<*) on the de-encoded data only. This, however, requires knowledge about the
particular encodings that are likely to appear. A more refined and promising
approach for handling multiple levels of encodings within < is presented in [28].

8.2 The Parsing Problem

In the context of metaprogramming. we also encounter the so-called parsing
problem [59]. Below we provide another view of the parsing problem, in terms
of invariance under representation.

In partial deduction of logic programs, nobody has found it useful to compare
complete goals, only the selected atoms within the goals are compared. Also, it
was quickly realised that it was difficult to define an order relation on the full
sequence that was giving good results and that it was sufficient and easier to do
so on certain subsequences containing the so-called covering ancestors [11].

Take, for example, the program P consisting of the two clauses:

P(F(X)) — p(b) A p(f(X))

pla) —
Let us unfold the goal — p(f(Y)) by using < on the selected atoms (selected
atoms are underlined):

- p({(Y))
—p(d) Ap(f(Y))
1
fail

The covering ancestor sequence for p(b) is p(f(Y)),p(b) which is admissible
wrt <. We were thus successful in fully unfolding < p(f(Y")) and detecting finite
failure. If we had looked at the entire goals, we would not have been able to fully
unfold — p(f(Y)), because p(f(¥)) < p(b) A p(f(Y)).

Let us examine how this refinement fares in the context of metaprogramming.
For this we take the standard vanilla metainterpreter of Fig. 4, together with
the following encoding of the above program P:

clause(p(f (X)), (p(b)&ep(f(X)))) —

clause(p(a), true) «—

One would hope that, by using < on the selected atoms and comparing with the
covering ancestors, it would be possible to fully unfold < solve(p(f(Y))) in a
similar manner as for <« p(f(Y)) above. Let us examine the sequence of goals,
needed to detect finite failure:



— solve(p(f(Y)))
— clause (p( f(Y%), B) A solve(B)
— solve(p(bl)&p(f ()
« solve(p(b)) /\lsolvdp(f(Y)))
— clause(p(b), B') A so%ve(B')/\ solve(p(f(Y)))

!
fail

Unfortunately, even if we ignore the intermediate goals containing clause
atoms (they have no counterpart at the object level) we have a problem: at
the third step we select solve(p(b)&p(f(Y))) who has the covering ancestor
solve(p(f(Y))) with solve(p(f(Y)))<Qsolve(p(b)&p(f(Y))). The same embedding
holds for <% or <*. We are thus unable to fully unfold « solve(p(f(Y))). The
problem is that, in the metainterpreter, multiple atoms can be put together in a
single term, and the refinement of looking only at the selected atoms and their
covering ancestors is not even invariant under the non-ground representation!

Solving this problem in a general manner is a non-trivial task: one would have
to know that solve will eventually decompose p(b)&p(f(Y')) into its constituents
p(b) and p(f(Y)) giving us the opportunity to continue with solve(p(b)) while
stopping the unfolding of solve(p(f(Y))). [80] presents a solution to this problem
for the particular vanilla metainterpreter above, but unfortunately it does not
scale up to other, more involved metainterpreters.

9 Discussion and Conclusion

Crritical Evaluation and Future Work In theory, existing online systems, such as
INDY and ECCE, based on <, ensure termination in a fully automatic manner
and can thus be used even by a naive user. However, for more involved tasks,
these systems can lead to substantial code explosion, meaning that some user
expertise is still required to prevent such cases. Also, these systems might fail
to provide a specialised program that is more efficient in practice, because ex-
isting control techniques fail to take certain pragmatic issues into account [49].
Indeed, although < has proven to be extremely useful superimposed, e.g., on
determinate unfolding, on its own it will sometimes allow too much unfolding
than desirable for efficiency concerns: more unfolding does not always imply a
better specialised program and it can also negatively affect the efficiency of the
specialisation process itself. Moreover, < can be used to fully evaluate the non
primitive recursive Ackerman function (this is a corollary of Theorem 1; see also
[58, p. 186-187]). Hence, < on its own can lead to a worst case complexity for
the transformation/specialisation process which is not primitive recursive. Al-
though cases of bad complexity seem to be relatively rare in practice, this still
means that < should better not be used as is in a context (such as within a



compiler) where a tight upper-bound on memory and time requirements is es-
sential. However, we hope that it is going to be possible to engineer an efficient
approximation of < (or <*), which takes more pragmatic issues into account.

On the other hand, for some applications, <! as well as <7 and <* remain
too restrictive. As we have discussed in Sect. 8, they do not always perform
satisfactorily in the context of arbitrary metainterpretation tasks. Only future
research can tell whether one can solve these problems, while not (substantially)
deteriorating the complexity. A completely different approach to termination has
very recently been presented in [55]. It will be interesting to see how it compares
to < and its derivatives.

Conclusion In summary, we have shed new light on the relation between wqos
and wfos and have formally shown why wqos are more interesting, at least in
theory, than wfos for ensuring termination in an online setting. We have illus-
trated the inherent flexibility of < and shown that, despite its simplicity, it is
strictly more generous than a large class of wfos. We have surveyed the usage
of < in existing techniques, and have touched upon some new application areas
such as infinite model checking.

We have also discussed extensions of <, which inherit all the good proper-
ties of < while providing a refined treatment of (logical) variables. We believe
that these refinements can be of value in contexts such as partial evaluation
of (functional and) logic programs or supercompilation of functional program-
ming languages, where — at specialisation time — variables also appear. One can
also simply plug <* into the language-independent framework of [73]. We also
believe that <* provides both a theoretically and practically more satisfactory
basis than <t or <.

Finally, we have discussed the use of < in the context of metaprogramming,
proving some positive results for the non-ground representation, but also some
negative results for both the ground and non-ground representation.

In summary, < is an elegant and very powerful tool to ensure online termi-
nation, but a lot of research is still needed to make it efficient enough for full
practical use and powerful enough to cope with arbitrary metalevel encodings.
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