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Abstract

We present a study of the finite word length (FWL) implementation for digital controller struc-
tures with sparseness consideration. A new closed-loop stability related measure is derived,
taking into account the number of trivial elements in a controller realization. A practical design
procedure is presented, which first obtains a controller realization that maximizes a lower bound
of the proposed measure, and then uses a stepwise algorithm to make the realization sparse.
Simulation results show that the proposed design procedure yields computationally efficient

controller realizations with enhanced FWL closed-loop stability performance.

Index Terms — digital controller, finite word length, closed-loop stability, sparse realization,

optimization, stepwise algorithm, real-time computation.

1 Introduction

It is well-known that a designed stable control system may achieve a lower than predicted
performance or even become unstable when the control law is implemented with a finite-precision
device due to FWL effects. In real-time applications where computational efficiency is critical,
a digital controller implemented in fixed-point arithmetic has certain advantages. With a fixed-
point processor, the detrimental FWL effects are markedly increased due to a reduced precision.

As the FWL effects on the closed-loop stability depend on the controller realization structure,
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many studies have addressed the problem of finding “optimal” realizations of finite-precision
controller structures based on various FWL stability measures [1]-[7]. Except [5], these design
methods usually yield fully parameterized controller structures, that is, they generally do not

produce sparse controller realizations.

It is highly desirable that a controller realization has a sparse structure, containing many
trivial elements of 0, 1 or -1. This is particularly important for real-time applications with
high-order controllers, as it will achieve better computational efficiency. It is known that canon-
ical controller realizations have sparse structures but may not have the required FWL stability
robustness. This poses a complex problem of finding sparse controller realizations with good
FWL closed-loop stability characteristics. In [8], sparseness consideration is imposed as con-
straints in optimizing a FWL stability measure using an adaptive simulated annealing (ASA)
algorithm. This approach is difficult to extend to high-order controllers due to high computa-
tional requirements. In our previous works [9],[10], a design procedure has been given to obtain

sparse controller realizations based on a FWL pole-sensitivity stability related measure.

In this study we derive a new improved FWL closed-loop stability related measure, which
takes into account the number of trivial elements in a controller realization. The true optimal
realization that maximizes this measure will possess an optimal trade-off between robustness to
FWL errors and sparse structure. However, it is not known how to obtain such an optimal real-
ization. We extend an iterative algorithm [2],[11] to search for a suboptimal solution. Specifically,
we first obtain the realization that maximizes a lower bound of the proposed stability measure.
This can easily be done [5],[7] but the resulting realization is not sparse. A stepwise algorithm
is then applied to make the realization sparse without sacrificing FWL stability robustness too
much. The proposed method has some advantages over the existing methods [5],[9],[10]: it is
less conservative in estimating the robustness of the FWL closed-loop stability and the compu-
tational complexity is considerably reduced. Numerical examples are used to test this design

procedure and to compare its performance with the previous method [9],[10].

2 A stability related measure with sparseness considerations

Consider the discrete-time closed-loop control system, consisting of a linear time-invariant plant
P(z) and a digital controller C'(z). The plant model P(z) is assumed to be strictly proper with

a state-space description (Ap,Bp,Cp), where Ap € R™ ™ Bp € R™*! and Cp € RI*™.



Let (A¢,Be, Ceo,De) be a state-space description of the controller C'(z), with Ax € R™ ™,
Bc € R, Co € R and D¢ € RYX4. A linear system with a given transfer function matrix
has an infinite number of state-space descriptions. In fact, if (A%, B%, C%, D%) is a state-space

description of C(z), all the state-space descriptions of C(z) form a realization set
Sc¢ = {(Ac,Bc,Co,De)lAc = T 'ALT, Be = T 'BY, Co = CLT,Dc =D2} (1)

where T € R™*™ is any non-singular matrix. Denote N 2 (I+n)(g+n)and

1 ZTi4n41 "7 TN—-[—n+1
A D C¢ o T2 Xi4n4+2 "7 TN—-l—n+2
X 2 = . . (2)
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The stability of the closed-loop control system depends on the eigenvalues of the closed-loop

system matrix

— | Ap+BpDcCp BpCe
A(X)_ B:Cp Ac
. Ap 0 Bp 0 Cp 0 A
_[ o ol o In]X[ 0 In]_M[nLMIXM2 (3)

where 0 denotes the zero matrix of appropriate dimension and I,, the n x n identity matrix.
All the different realizations X in S¢ have exactly the same set of closed-loop poles if they
are implemented with infinite precision. Since the closed-loop system has been designed to be

stable, all the eigenvalues \;(A (X)), 1 <7 < m + n, are within the unit disk.

When a X is implemented with a fixed-point processor, it is perturbed to X + AX due to
the FWL effect. Each element of AX is bounded by +¢/2, that is,
A
n(AX) = jepax |Az;j| < /2 (4)
For a fixed-point processor of By bits, let B, = B; + By, where 2Bi is a “normalization” factor to
make the absolute value of each element of 275X no larger than 1. Thus, B; are bits required
for the integer part of a number and B are bits used to implement the fractional part of a
number. It can easily be seen that e = 275/, With the perturbation AX, ;(A(X)) is moved to
Ai(A(X + AX)). If an eigenvalue of A(X + AX) is outside the open unit disk, the closed-loop
system, designed to be stable, becomes unstable with Bg-bit implemented X. It is therefore
critical to choose a realization X that has a good closed-loop stability robustness to the FWL
error. Another important consideration is the sparseness of X. Those elements of X, which

have values 0, 1 and -1, are called trivial parameters. A trivial parameter requires no operations



in the fixed-point implementation and does not cause any computational error at all. Thus
Azj =0 when z; = 0,1 or —1. In order to take into account this property of trivial controller
parameters, we define an indicator function as

5(z) = 0, ifz=0,1Tor —1
= 1, otherwise

(5)

We are now ready to propose a new FWL closed-loop stability related measure which takes
into account the sparseness of a controller realization. When the FWL error AX is small,

N ) |
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A$j5($j), Vie{l,---,m+n} (6)

where %/\;‘ is evaluated at X. It follows from the Cauchy inequality that

2

|A[N]] < i), Vi (7)

z|?0(z;) < w(AX) | Ny Z‘—

where N; is the number of the nontrivial elements in X. This leads to the following FWL
closed-loop stability related measure

— IN(AX
p1(X) = min A ))‘ (8)

ie{1,---,m+n}
WVZM%H

J

The rationale of this measure is obvious. If the norm of the FWL error AX is smaller than

p1(X), ie. p(AX) < p1(X), it follows from (7) and (8) that |A|N\|| < 1—

J(A(X)) ‘ Therefore

N(A(X +AX))| <

N(AX)| <1 (9)

which means that the closed-loop system remains stable under the FWL error AX. In other
words, for a given controller realization X, the closed-loop system can tolerate those FWL
perturbations AX whose norms, as defined in (4), are less than pq(X). The larger uq(X) is,
the larger FWL errors the closed-loop system can tolerate. Hence, p1(X) is a stability related
measure describing the FWL closed-loop stability performance of a controller realization X.
This measure clearly considers the number of trivial parameters in a controller realization. We

can now discuss how to compute p;(X). First we have the following lemma from [5],[7].

Lemma 1 Let A(X) = Mg + M; XM, given in (3) be diagonalisable, and have eigenvalues

i} = {M(A(X))}. Denote p; a right eigenvector of A(X) corresponding to the eigenvalue



;. Define Mpé [pl P2 ' Pma+n | and Myé Y1 y2 - ym+n] :M;H, where H is the

transpose and conjugate operator and y; the reciprocal left eigenvector related to A;. Then

O\ 01 OTN | —ny1
1 . . TagT
oxX : . : M1 y; p; M3 (10)
N . O\
3£El+n 3CEN

where the superscript * denotes the conjugate operation and 7' the transpose operator.

Next, we have the following result

Lemma 2 For X, A(X) and {\;} as defined in lemma 1,

oy 1 Y
= e [ laX]

A*
X |\
where Re[-] denotes the real part.

Proof: Noting |X\;| = /A7 \; leads to

anl 1 fon N\ 1 (O o1 ON
OX 3 /nn ( it A ax) N (( ) At A ax) e {Al ax} (12)

Combining lemma 1 with lemma 2 results in the following proposition, which shows that,

given a X, the value of p1(X) can easily be calculated.

Proposition 1 For X, My, M, A(X), {\;}, p; and y; as defined in lemma 1,

ol .. 9N
ox1 OTN_|—nt1
I\ 1
<9|)£| = : . M Re [Ayipl | M] (13)
x| o o I
8:L‘l+n orn

It should be emphasized that the FWL stability related measure (8) is different with the one
used in [5],[9],[10], which is given by

o _ Ai(K(X”\
pa( )_ig{l,?}??l%} \/N 26( )15

The key difference between p1(X) and po(X) is that the former considers the sensitivity of

(14)

8:1:

|A;(A(X))| while the latter considers the sensitivity of \;(A(X)). It is well-known that the

stability of a linear discrete-time system depends only on the moduli of its eigenvalues. As o (X)



includes the unnecessary eigenvalue arguments in consideration, it is generally conservative in

comparison with p1(X). This can be verified strictly. From lemma 2,

9 Ai(K(X))‘ 3 ,\;(K(X))axigj(_x»‘ _ ‘M(K(X))‘ (15)
duj |7 NAX) Oz

which means that p2(X) < p1(X). The result given in [7] has confirmed that by considering the
sensitivity of eigenvalue moduli rather than the sensitivity of eigenvalues, a better FWL closed-
loop stability related measure can be obtained. It is worth pointing out that the proposed
measure 41(X) also has considerable computational advantages over the existing u9(X). This

is because % is real-valued while g/)\(i is complex-valued. Thus the optimisation process and

sparse transformation procedure, discussed in the next section, require much less computation
than the previous approach [5],[9],[10], unless all the system eigenvalues are real-valued in which

case 1(X) and ps(X) become identical.

3 Suboptimal controller realizations with sparse structures

The optimal sparse controller realization with a maximum tolerance to FWL perturbation in

principle is the solution of the following optimization problem:

A
2 X 1
v )ggém( ) (16)

However, it is difficult to solve for the above optimization problem because 1 (X) includes 6(z;)
and is not a continuous function with respect to controller parameters x;. To get around this

difficulty, we consider a lower bound of p1(X) defined by

1—

X(A(X))

N
ng ox;

m(X) = (17)

Obviously, p;(X) < p1(X) and py(X) is a continuous function of controller parameters. It is
relatively easy to optimize ;1 (X) (e.g. [7]). Let the “optimal” controller realization Xy be the

solution of the optimization problem

A
= X 1
w = max i (X) (18)

Notice that X, is generally not the optimal solution of (16) and does not have a sparse

structure. However, it can readily be attempted by the following optimization procedure.



3.1 Optimization of the lower-bound measure

Assume that an initial controller realization has been obtained by some design procedure and is

denoted as Xy. According to (1)-(3), a similarity transformation of Xy by T is

B R I, 0
where det(T) # 0. The closed-loop system matrix for the realization X is
o [1no0 ] I, 0

Obviously, A(X) has the same set of eigenvalues as A (Xy), denoted as {\?}. From (20), applying

proposition 1 results in

oI\l
0X

L0 | 9N
1o T | ox

X [Ig TQT] 1)

For a complex-valued matrix M € C+m)*(@+1) with elements mgy, denote the Frobenius norm

X(T)

A [+n qg+n
Ml = 4| D2 D miman (22)

s=1k=1

Then the lower-bound measure (17) can be rewritten as

1— |2
p(X) = min < - 1]
0T Xlixo| 0 T 7|
1
= ey 1, 0. [L, 0O (23)
i€{l,--,;m+n I ) q
VN 0 T” ‘I”lOT—T]F
where
9|
A X |x
P, = Ao 24
ST #
are fixed matrices that are independent of T. Thus, if we introduce the cost function
[(T)= _ mi 1 (X) (25)
= min =M
iE{l,"',m-i—n}\/N I, 0 P. I, 0 —
0T | ™| 0T "],

the optimal similarity transformation T,y can be obtained by solving for the following uncon-
strained optimization problem

w= max f(T) (26)

with a measure of monitoring the singular values of T to make sure that det(T) # 0 [12]. The

unconstrained optimization problem (26) can be solved, for example, using the simplex search



algorithm [13], the simulated annealing algorithm [14], the ASA algorithm [15] or the genetic
algorithm [16]. In our previous study, we have found that the ASA is very efficient in solving for
this kind of optimization problems [7]. With T, the corresponding optimal realization Xops

that is the solution of (18) can readily be computed.

3.2 Stepwise transformation algorithm for sparse realizations

As the optimal sparse realization that maximizes pq is difficult if not impossible to obtain, we
will search for a suboptimal solution of (16). More precisely, we will search for a realization that
is sparse with a large enough value of 1. Since Xopy maximizes p1 and py is a lower-bound
of p1, Xopty will produce a satisfactory large value of i1, although it usually contains no trivial
elements. We can make X,,; sparse by changing one nontrivial element of X,y into a trivial
one at a step, under the constraint that the value of ;1 does not reduce too much. This process
will produce a sparse realization Xyp, with a satisfactory value of p1. Clearly such a Xgp;, is not
a true optimal solution of (16). Notice that, even though p(Xspa) < p1(Xops), it is possible
that 111(Xspa) > p1(Xopt). In other words, Xg,, may actually achieve better FWL stability
performance than X,,;. The design procedure is very similar to the one used in [9],[10]. We

now describe the detailed stepwise procedure for obtaining Xgpa.

Step 1: Set 7 to a very small positive real number (e.g. 107°). The transformation matrix

T € R" ™ is initially set to Top; so that X(T) = Xops.

Step 2: Find out all the trivial elements {rn;,---,n,} in X(T) (a parameter is considered to be
trivial if its distance to 0, 1 or -1 is less than a tolerance value, say 1078). Denote ¢ the

nontrivial element in X(T) that is the nearest to 0, 1 or -1.

Step 3: Choose S € R™*™ such that
i) p1 (X(T + 78)) is close to py (X(T)).
ii) {n1,---,nr} in X(T) remain unchanged in X(T + 78).
iii) ¢ in X(T) is changed as nearer as possible to 0, 1 or -1 in X(T 4 78S).
iv) 1), = 1.

If S does not exist, Tspy = T and terminate the algorithm.

Step 4: T =T+ 7S. If ¢ in X(T) is nontrivial, go to step 3. If £ becomes trivial, go to step 2.



The key of the above algorithm is Step 3 which guarantees that X(Tsp,) has good performance
as measured by p; and contains many trivial parameters. We now discuss how to obtain S.

Denote Vec(-) the column stacking operator. With a very small 7, condition i) means that

(Vec (%))TVec (S)y=0 (27)

and condition ii) means that

(Vec (%))TVec (S)=0

: (28)
(Vec (‘fi’,}ﬁ))TVec (S)y=0
Denote the matrix _ T -
(vee (1))
T
g2 (Vec (‘flﬂ)) e Rir+1)xn? (29)

Vec(S) must belong to the null space N'(E) of E. If N (E) is empty, Vec(S) does not exist and
the algorithm is terminated. If N'(E) is not empty, it must have basis {by,---,b;}, assuming
that the dimension of N (E) is t. Condition iii) requires moving ¢ to its desired value (0, 1 or
-1) as fast as possible, and we should choose Vec(S) as the orthogonal projection of Vec (;—%)

onto N (E). Noting condition iv), we can compute Vec(S) as follows:

d
a; = bl Vec (%) €ER, Vie{l,---,t} (30)
¢ 2
vV = Zaibi eR" (31)
i=1
A% 2
Vec(S) = + eRrR" (32)

vVvTy

The sign in (32) is chosen in the following way. If £ is larger than its nearest desired value, the

minus sign is taken; otherwise, the plus sign is used.

. - dpy - de  dmy dnr .
In the above algorithm, the derivatives &, 75, g1, "> gr are needed. For calculating

these required derivatives, the following well-known fact is useful. Given any element y;; in a
nonsingular Y € R"*"™ with ¢ € {1,---,n} and j € {1,---,n},
oY o oY~!

= eje! d =-Y leel Y ! 33
e eie; an e e;e; (33)

where e; denotes the ith coordinate vector. In (19), define

I, O

Ulz[o T} and UQZ[Iq 0} (34)

0O T

9



For any element zp, in X = UI_IXOUQ, where k € {1,---,l +n} and s € {1,---,¢g + n}, and

any t;; in T, where i € {1,---,n} and j € {1,---,n},

axks TaU_ 1 aU
= XoUsqe, +el U IX
Oti; K ogy 02O TR T 0T, G
= —e;‘chl_leHieﬁle_ngUges + e Ul_ngeq+ieqT+jes
= —erfleHielTﬂ-Xes + erlegequqTHes (35)
That is,
e{Ul_l Xgeq+1eqT_|_1 tet Xoeq+1eg’+n
dxps ) ]
Ty7-1
e, Uy Xoeqin€qr1 1t Xoeginelin
eef X - eqiel,X e
- : : : (36)
el+nelT+1X eH_neljjrnX €
Thus, we can readily calculate j—%, %, R ‘g,’li. Next, define
1
19 = 37
0 7,6{1,.,m+n} \/— & Iq 0 ( )
0 TT ‘lo T 1|,
Similar to the derivation of g,fs, for any element wys in W = Ur{@iOUQ_T, where k € {1,---,1+
n}and s € {1,---,q + n}, we have
e;f ez+1e;f+1‘1>io ez+ne;f+1‘1>io
dwgs ] ]
dT :
ef el+1elT+n<I>i0 el+nelT+n<I>i0
Weg1e), -+ Wegnel, U, e,
- : : (38)
Wi T - Wi T U,%e
€q+1€44p €q+n€yin 2 &5
Since
1 (39)
w1 =
/_\/EHn Z+? Wk W
We can calculate
e[ S e (40
= IR | &

Before presenting some simulation results, we point out that given a FWL pole-sensitivity
measure, such as p; (X), an estimated minimum bit length for guaranteeing closed-loop stability

can be estimated using [6],[7]
By min = B; + Int[— log, (111 (X))] — 1 (41)

where the integer Int[z] > .

10



4 Numerical examples

We present two design examples to show how our approach can be used efficiently to search for

sparse controller realizations with satisfactory FWL closed-loop stability performance.

Example 1. This was a single-input single-output fluid power speed control system studied in
[17],[18]. The plant model was in the continuous-time form and a continuous-time H., optimal
controller was designed in [17]. In this study, we obtained a discrete-time plant P(z) and a
discrete-time controller C'(z) by sampling the continuous-time plant and H, controller using a

sampling rate of 2 kHz. The discrete-time plant P(z) was given by

9.9988e — 01 1.9432e¢ — 05 5.9320e — 05 —6.2286e — 05
—4.9631e — 07 2.3577e — 02 2.3709e — 05  2.3672e — 05
—1.5151e — 03 2.3709e — 02 2.375le — 05  2.3898e — 05 |’

1.5908e — 03 2.3672e — 02 2.3898e — 05  2.3667e — 05

Ap =

3.0504¢ — 03
—1.2373¢ — 02

Br=| o375 02| ©P= [1 00 0]
—8.8703¢ — 02

The initial realization of the controller C(z) given in a controllable canonical form was

—8.0843e — 04 —1.6112e — 03 —1.5998e — 03 —1.5885e — 03 —1.5773e — 03

1 0 0 0 —3.3071le — 01
Xy = 0 1 0 0 1.9869¢ + 00
0 0 1 0 —3.9816e + 00
0 0 0 1 3.3255¢ + 00

Notice that the controllable canonical form was very sparse, containing only 9 non-trivial el-
ements. The closed-loop transition matrix A(Xg) was then formed using (3), from which the
eigenvalues and the corresponding eigenvectors of the ideal (infinite-precision) closed-loop system

were computed. The closed-loop eigenvalues were:

TALT 19.9956e — 01 + 7 2.5674e — 047
A2 9.9956e — 01 — j 2.5674e — 04
A3 9.9955¢ — 01
Aa| 9.9333e — 01
As | 3.3333e — 01
A6 2.3625e — 02
A7 2.7819¢ — 19

L Ag L —3.8735¢ — 09 _

The optimisation problem (26) was constructed, and the ASA algorithm [15] obtained the fol-

lowing solution

2.3644e + 07  2.0268e + 06  1.0498e + 08 —4.7194e + 06
—1.1839¢ + 08 —9.9623e + 06 —5.2570e 4+ 08  2.3636e + 07
1.6622e + 08 1.3872¢ +- 07 7.3801e + 08 —3.3191e + 07
—7.1475e + 07 —5.9364e + 06 —3.1729e¢ 4+ 08  1.4274e + 07

Topt =

11



The corresponding controller realization, which maximises the lower-bound measure p1, was

—8.0843e — 04  6.4378¢ — 02 —1.1974e — 02 —1.1493e — 02 —2.2104e — 01

2.7588¢ — 03 1.0010e +00 —1.4054e — 02 1.0924e — 03 —8.9552e — 03

Xopt = | —2.2776e — 04 —5.8175e — 02 3.3649¢ — 01 ~ 7.5457¢ — 02  1.3962¢ — 03
—2.5200e — 04 1.0668e — 03 1.6778¢ — 02 9.9766e — 01  1.5423e — 03

8.1179e — 03 5.1520e — 03  3.1311le — 02 —3.8681le — 03  9.9031le — 01

The stepwise transformation algorithm was then applied to make X, sparse, which yielded the
following similarity transformation matrix and corresponding controller realization

—1.7499e 4+ 05 —4.5848e + 05 2.1159e 4+ 08  3.0140e + 02
8.1616e + 05 1.8611le + 06 —1.0592e + 09 —1.2931e + 03
—1.0789¢ 4+ 06 —2.3503e + 06  1.4869e¢ + 09 1.8162e + 03
4.3753e +05  9.4770e + 05 —6.3921e + 08 —7.8105¢e + 02

Tspa. =

—8.0843e — 04  1.6372e — 02 —5.4228e¢ — 04 —1.8348e — 03 —6.9866e — 02

0 1 0 0 —1.4073e — 03

Xspa = 0 —6.8678e — 02 3.3285e — 01  4.2230e — 01  5.8895e — 04
0 —5.6623e — 06 —7.6002¢ — 04 1 0

2.3061e — 02 —8.1961e — 06 0 4.5476e — 05 9.9262e¢ — 01

Table 1 compares the FWL closed-loop stability performance and the number of non-trivial
elements for the three controller realizations Xg, Xy and Xgp,, respectively. For a comparison
purpose, the values of the previous stability related measure ps and its lower-bound po together
with their corresponding estimated minimum bit lengths [9],[10] are also given in Table 1 for the
three realizations. We also exploited the true minimum bit length that guaranteed closed-loop
stability for a controller realization X using the following computer simulation. Starting with a
large enough bit length, e.g. B, = 1000, we rounded the controller X to B bits and checked the
stability of the closed-loop system, i.e. observing whether the closed-loop poles were within the
open unit disk. Reduced B; by 1 and repeated the process until there appeared to be closed-loop
instability at B, bits. Then B ynin = B, + 1. The values of Bj iy for the three realizations are
given in Table 1. Notice that for B, > B, min, the B,-bit implemented controller will always
guarantee closed-loop stability. However, there may exist some B; < B,, which regains closed-
loop stability. For example, for the initial realization Xy, B, = 32, i.e. when the bit length is
smaller than 33, the closed-loop becomes unstable. At By = 16 or 15, the closed-loop becomes

stable again. With B, < 15 instability is observed again.

For this example, the canonical realization Xj is the most sparse with only 9 non-trivial pa-
rameters, but its FWL closed-loop stability related measure p1(Xy) is very poor. The realization
Xopt has a much better FWL stability robustness as indicated by p1(Xopt), but its all 25 ele-

ments are non-trivial. The realization Xy, has the largest p1(Xsp,) and, moreover, it is sparse

12



with only 16 non-trivial parameters. This example only has a pair of complex eigenvalues. Even
so, the results shown in Table 1 indicate that the proposed j; (p) respectively) is less conserva-
tive in estimating the robustness of FWL closed-loop stability than the previous measure 5 (u2
respectively)!. We also computed the unit impulse response of the closed-loop control system
when the controllers were the infinite-precision implemented X and 16-bit implemented three
different controller realizations. Notice that any realization X € S¢ implemented in infinite
precision will achieve the exact performance of the infinite-precision implemented X, which is
the designed controller performance. For this reason, the the infinite-precision implemented X
is referred to as the ideal controller realization Xjqea1. Fig. 1 compares the unit impulse response
of the plant output y(k) for the ideal controller X;qea with those of the 16-bit implemented X,
Xopt and Xgp,. It can be seen that the performance of the 16-bit implemented X, is almost

identical to that of the 16-bit implemented X, ¢, which is very close to the ideal performance.

Example 2. This was a dual wrist assembly which was a prototype telerobotic system used
in micro-surgery experiments [19]. This dual wrist assembly is a two-input (I = 2) two-output
(¢ = 2) system with a plant order m = 4, and the digital controller designed using H ., method
had an order of n = 10 [19]. The total number of controller parameters was N = 144. The
Hoo controller designed in [19], which was fully parameterised with Ny = N, was used as
the initial controller realization Xy, and the realization X, that maximized the lower-bound
measure 11 was obtained using the ASA algorithm. This realization was then made sparse using
the algorithm given in subsection 3.2 to yield Xg,,. Table 2 summarizes the performance of
these three different controller realizations. It can be seen that the proposed measure p (g1
respectively) yielded less conservative results in estimating the robustness of FWL closed-loop

stability than the previous measure 3 (p2 respectively).

Fig. 2 compares the first-input to first-output unit impulse response of the closed-loop system
obtained using the ideal controller Xjgea1 with those obtained using the 20-bit implemented
controller realizations X, and Xgp,. The 20-bit implemented X, is unstable and therefore is
not shown. It can be seen that the performance of the 20-bit implemented X is close to the
ideal performance, and the 20-bit implemented Xg,,, although deviating from the ideal one,
achieves a stable closed-loop performance. Fig. 3 compares the second-input to second-output

ideal unit impulse response of the closed-loop system with those of the 24-bit implemented

'If arg py = arg p2 = io (arg j1 = arg ps respectively) and \;, is real valued, then obviously p1 = p2 (g1 = p2
respectively).
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X0, Xopt and Xgp,. It can be seen that the performance of the 24-bit implemented X,
closely matches that of the 24-bit implemented X, which itself is almost identical to the ideal
performance. Deviation from the ideal performance by the 24-bit implemented X can clearly
be seen from Fig. 3. This example clearly demonstrates the effectiveness of the proposed design
procedure. The sparse controller realization Xg,, obtained has almost half of its parameters
being trivial, and it has a much improved FWL closed-loop stability robustness over the initial

controller realization Xj.

5 Conclusions

We have studied FWL implementation of digital controller structures with sparseness consid-
eration. A new FWL closed-loop stability related measure has been derived, which takes into
account the number of trivial parameters in a controller realization. It has been shown that this
new measure yields a more accurate estimate for the robustness of FWL closed-loop stability. A
practical procedure has been presented to obtain sparse controller realizations with satisfactory
FWL closed-loop stability characteristics. Two examples demonstrate that the proposed design
procedure yields computationally efficient controller structures suitable for FWL implementation

in real-time applications.
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realization Xo Xopt Xspa

N 9 25 16
H1 2.604531e-12  6.862889¢-05  6.108122e-05

Bs,min based on iy 40 14 14
141 4.417941e-12  6.862889e-05 1.348887e-04

Bs,min based on 39 14 13
M2 2.604531e-12  5.500982e-05  6.108052e-05

By min based on po 40 15 14
7 4.417941e-12  5.500982e-05  1.348839e-04

Bs,min based on w9 39 15 13

Bs,min 33 11 11

Table 1: Performance comparison of the three different controller realizations for Example 1.

realization Xo Xopt Xspa

N 144 144 75
M1 4.306085e-04  3.224443e-03  1.279414e-03

Bs,min based on p 27 24 25
11 ~ [ 4.306085e-04 3.224443e-03  2.331625¢-03

Bs,min based on p 27 24 24
M2 1.173382e-04 1.057405e-03  4.393420e-04

Bs,min based on o 29 25 27
149 1.173382e-04  1.057405e-03  9.249032e-04

Bs,min based on w9 29 25 26

Bs,min 22 20 20

Table 2: Performance comparison of the three different controller realizations for Example 2.
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Figure 1: Comparison of unit impulse response of the infinite-precision controller implementation
Xideal With those of the three 16-bit implemented controller realizations Xy, Xop; and Xgp, for
Example 1.
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Figure 2: Comparison of first-input first-output unit impulse response of the infinite-precision
controller implementation Xjqea with those of the 20-bit implemented controller realizations
Xopt and Xgpa for Example 2. The 20-bit implemented X is unstable.
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1.5 I
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Figure 3: Comparison of second-input second-output unit impulse response of the infinite-
precision controller implementation Xjqe, With those of the 24-bit implemented controller real-
izations X, Xop; and Xgp, for Example 2.

20



