Agent-based Semantic Web Services

Nicholas Gibbins Stephen Harris Nigel Shadbolt
Department of Electronics and Department of Electronics and Department of Electronics and
Computer Science Computer Science Computer Science
University of Southampton University of Southampton University of Southampton
Southampton, United Kingdom Southampton, United Kingdom Southampton, United Kingdom

nmg@ecs.soton.ac.uk

ABSTRACT

The Web Services world consists of loosely-coupled distributed

systems which adapt to ad-hoc changes by the use of service de-

scriptions that enable opportunistic service discovery. At present,

these service descriptions are semantically impoverished, being con-
cerned with describing the functional signature of the services rather
than characterising their meaning. In the Semantic Web commu-

nity, the DAML Services effort attempts to rectify this by providing

amore expressive way of describing Web services using ontologies.

However, this approach does not separate the domain-neutral com-

municative intent of a message (considered in terms of speech acts)

from its domain-specific content, unlike similar developments from

the multi-agent systems community.

In this paper, we describe our experiences of designing and build-
ing an ontologically motivated Web Services system for situational
awareness and information triage in a simulated humanitarian aid
scenario. In particular, we discuss the merits of using techniques
from the multi-agent systems community for separating the inten-
tional force of messages from their content, and the implementation
of these techniques within the DAML Services model.

1. INTRODUCTION

The world of Web Services may be characterised as a world
of heterogeneous and loosely-coupled distributed systems where
adaptivity to ad-hoc changes in the services offered by the com-
ponents of the systems is considered advantageous. By loosely-
coupled, we mean that the interactions between system components
are not rigidly specified at design time, but that system compo-
nents may opportunistically make use of new services that become
available during their lifetime without having been explicitly told
of their existence from the outset.

The task of searching for a system component which can per-
form some given service, or service discovery, is the enabling tech-
nique that makes loosely-coupled systems possible, and provides
a process by which system components may find out about new
services on offer. An essential adjunct to service discovery is ser-
vice description, by which names or descriptive expressions are at-
tached to services, allowing both the advertisement of services by
providers and the formulation of queries about services by users.
Service discovery services have been seen as an essential compo-
nent of loosely coupled systems such as (but not limited to) multi-
agent systems [10].

A typical service discovery service (also often referred to as a di-
rectory service) consists of a registry (possibly distributed) which
provides two services. The first allows service providers to adver-
Copyright is held by the author/owner(s).

WWW2003, May 20-24, 2003, Budapest, Hungary.
ACM XXX.

swh@ecs.soton.ac.uk

nrs@ecs.soton.ac.uk

tise the services that they offer in the registry, while the second
enables service users to query the registry and so determine which
service providers can provide relevant services.

One rough characterisation of the technologies used for service
discovery in the Web Services world can be made by studying the
difference between approaches which could be considered seman-
tically poor and those which are semantically rich. In the former
case, services are often referred to by opaque names or function
signatures which give little or no indication of the nature of the
services being managed. In the latter, however, service descrip-
tions are more complex expressions which are based on terms from
agreed vocabularies, and which attempt to describe the meaning of
the service, rather than simply ascribing a name to it.

A key component in the semantics-rich approach is the ontol-
ogy, the formal, agreed vocabulary whose terms are used in the
construction of service descriptions. An ontology is a conceptu-
alisation of an application domain in a human-understandable and
machine-readable form, and typically comprises the classes of en-
tities, relations between entities and the axioms which apply to the
entities which exist in that domain. Ontologies are currently a fast-
growing research topic, with interest from several communities,
not least the agent-based computing, Semantic Web and knowledge
management communities, because they offer a more formal basis
for characterising the knowledge assets held by software agents,
Semantic Web services or organisations [12, 11].

Although such an ontology defines the agreed meaning for the
application domain-specific terms used in the content of messages,
it does not define the meaning of the message types themselves, or
their effects upon the recipient. The current approach in the Seman-
tic Web to Web Services, such as that taken by DAML Services,
does not provide a common basis for defining the pragmatics of
different message types, as we might expect from a speech act-like
treatment of messages[16]. Such a basis would provide a way to
ease the introduction of new types of messages, since there would
be a common understanding of what was meant by, for example, a
directive message (which instructs a system component to perform
an action) or an assertive message (which informs a system compo-
nent of some fact) which was independent of any domain specific
meaning.

The technique of factoring out the common attributes of mes-
sage types and ascribing them to different classes of speech acts is
commonly used in the design of agent communication languages
(ACL) for multiagent systems [9, 13], where there is a clear sepa-
ration made between the domain-specific and domain-independent
aspects of communication. We believe that a similar approach can
be applied to Web Services, in which an ACL component is inte-
grated into the semantically rich service descriptions.

In this paper we outline our experiences of building semantically

rich software services based on the integration of ontologically-
motivated DAML-S-based Web Services and an agent communica-
tions language, and describe our prototype demonstrator, a situa-
tional awareness application based on a humanitarian aid scenario.

2. SEMANTIC WEB SERVICES

The aim of this work has been to investigate the integration of
the nascent Web Services infrastructure with the richer semantics
of the Semantic Web, in particular through the use of more expres-
sive languages for service description. In their implementation of
service descriptions, the existing Web Services specifications are
more concerned with the signature of services. Such signatures
comprise the types of the parameters of the service (typically ex-
pressed in terms of XML Schema datatypes), rather than with any
form of ontological classification of the services.

The notion of an ontology is central to the Semantic Web, which
uses languages such as RDF Schema [3] or DAML+OIL [6] (or in
future, the ontology Web language OWL, a current work in progress)
to describe ontologies. An integration of Web Services with the Se-
mantic Web should involve the use of these languages to describe
and characterise services in a manner which the existing Web Ser-
vices service description languages cannot.

There are two options for the form of this integration. We could
choose to layer RDF or DAML+OIL on top of an existing XML-
based service description language (such as the Web Services De-
scription Language or WSDL [5], for example), so that the descrip-
tion includes an RDF expression that characterises the service. Al-
ternatively, we could choose to build on a service description lan-
guage which is itself written in RDF or DAML+OIL, such as the
DAML Services ontology [17].

We have chosen the latter approach, and have used DAML Ser-
vices as the basis for our design because it allows the definition of
classes of related services, which makes service reuse more feasi-
ble (because agents are better able to reason about the relationships
between services) and the system more adaptable as a whole (be-
cause rich service descriptions give agents the means to determine
whether they can use new types of service).

In addition to reuse and adaptability concerns, DAML Services
also allows the types of service parameters to be specified as DAML
class expressions, in addition to the XML Schema datatypes [1] that
are used by WSDL and other Web Services languages, so the pa-
rameter values that are passed when a service is invoked may be
objects from a knowledge base as well as literal values.

3. AGENT WEB SERVICES

In the conventional Web Services approach exemplified by WSDL
[5] or even by DAML Services, the communicative intent of a mes-
sage (for example, whether it is a request or an assertion) is not
separated from the application domain. This is at odds with the con-
vention from the Multi-Agent Systems world, where there is a clear
separation between the intent of a message, which is expressed us-
ing an agent communication language, and the application domain
of the message, which is expressed in the content of the message
by means of domain-specific ontologies.

This separation between intent and domain is beneficial because
it reduces the brittleness of a system. If the characterisation of the
application domain (the ontology) changes, then only that compo-
nent which deals with the domain-specific information need change;
the agent communication language component remains unchanged.

The division of service descriptions into a profile and a process
component, as in DAML Services, provides a means to compart-
mentalise Web Services in a manner similar to that found in agent

service description

domain-specific FIPA ACL
profile process ontology|

profile ‘ ‘
DAML Services

process

Figure 1: Service Description with ACL Process Ontology

systems. We have therefore determined to describe the pragmat-
ics of message types in the process component, giving an abstract
ontology of message types that corresponds to the agent communi-
cation language, while the more application-specific details of the
abilities of a particular agent (expressed as constraints on the con-
tent of messages) are expressed in the profile component, as shown
in Figure 1.

To this end, we have designed a simple process ontology of mes-
sage types based on the FIPA® agent communication language [9].
In this ontology, ACL message types are represented as atomic pro-
cesses (see Figure 2 for a fragment of this ontology containing the
subscribe performative), with the content of the message as a
parameter of the process. The Subscribe process has two prop-
erties, one a sub-property of input which is used to pass the query
expression that forms the content of the message, and one a sub-
property of output which is used to return an indicator of the
success or failure of the subscription.

In addition to input and output parameters, DAML Services also
provides a facility for specifying the necessary preconditions and
the side-effects of a service. While a full description of the FIPA
performatives could make use of this facility to fully describe the
pragmatics of the messages (as described by FIPA in the appendix
to [9]), the facility is not yet fully specified and expressing the FIPA
theory of agency in DAML (a necessary prerequisite for expressing
the pragmatics of individual performatives) is not the focus of this
work.

In FIPA, the query performatives (Qquery-ifand query-ref)
are treated as asynchronous messages which form part of the FIPA
Request protocol, which is in keeping which the message-passing
(as opposed to procedure-calling) idiom used by FIPA. In this id-
iom, a query does not return an answer directly, but causes the for-
mation of an intention in the recipient to send an inform message
(containing the answer) to the sender of the query. However, the
predominant communication idiom found in the Web Services en-
vironment is procedure-calling, as exemplified by the Simple Ob-
ject Access Protocol [2], not plain message-passing. In our adap-
tation of the FIPA ACL for a procedure-calling Web Services envi-
ronment, we have chosen to amend the semantics of the query per-
formatives and make them synchronous messages which return the
answer to the query. The advantage of this approach is that we no
longer need to track the conversations in which a service is partici-
pating (in order to determine which response message corresponds
to which query) because a response message cannot be separated
from the the query to which it is providing an answer. This has the
effect of simplifying the service’s implementation of the ACL, and
allows us to concentrate instead on the service profiles which are
used to determine whether or not a service will be of use to us.

The profile component of the DAML Services expression is used
to express the service being offered or requested. This profile de-

!Foundation for Intelligent Physical Agents
http://www_fipa.org/

<?xm version="1.0" encodi ng="1SO 8859-1" ?>
<! DOCTYPE rdf: RDF [
<IENTITY rdf *http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#' >
<IENTITY dam ' http://ww. dani . org/ 2001/ 03/ dani +oi | # >
<IENTITY fipa 'http://ww.fipa.org/ontol ogy/acl # >
<IENTITY rdfs *http://ww. w3. or g/ 2000/ 01/ r df - schema#' >
<IENTITY proc 'http://ww.dan . org/ servi ces/dam -s/0. 7/ Process. dan ' >
1>
<rdf: RDF xm ns:rdf ="&df;" xm ns:fipa="&fipa;"
xm ns: dani =" &dami ;" xm ns: rdf s=" & dfs; ">
<dam : O ass rdf: | D="Subscri be">
<rdf s: subCl assCOf ref:resource="&proc; #At oni cProcess"/ >
<rdf s: | abel ></ rdf s: | abel >
<rdfs: description>The act of requesting a persistent intention to
notify the sender of the value of a reference, and to notify again
whenever the object identified by the reference changes. The subscribe
act is a persistent version of query-ref, such that the agent receiving
the subscribe will informthe sender of the value of the reference, and
will continue to send further informs if the object denoted by the
description changes. A subscription set up by a subscribe act is
term nated by a cancel act.</rdfs:description>
</ dani : 0 ass>

<rdf:Property rdf:|D="subscribe-reference">
<rdfs: subPropertyCf rdf:resource="&proc;input"/>
<rdfs: domai n rdf:resource="&fi pa; Subscri be"/>
<rdfs:range rdf:resource="&dani ; Thi ng"/>

</rdf:Property>

<rdf:Property rdf:|D="subscri be-success">
<rdf s: subPropertyCf rdf:resource="&proc; output”/>
<rdf s: domai n rdf:resource="&fipa; Subscribe"/>
<rdf s:range rdf:resource="&dan ; Thi ng"/>

</rdf:Property>
<rdf : RDF>

Figure 2: FIPA ACL Process Ontology Fragment

scription defines the parameters of the service, cross-referenced to
the corresponding parameters of the process of which the service is
an instantiation. In conventional DAML Services usage, the param-
eter type restriction in a service’s profile (expressed using the re-
strictedTo property) should be consistent with the range of the
parameter properties on the process on which the service is based,
but there is no logical constraint expressed within DAML-S which
requires this.

We have adapted this usage so that the range of the process pa-
rameter is a superclass of the profile parameter restriction. The pro-
cess therefore gives an abstract, domain-neutral description of the
ACL performative which characterises the service, and the profile
gives a more domain-specific description of the service which con-
strains the parameter type. For example, Figure 3 gives the profile
of a service from our situational awareness system for a simulated
humanitarian aid scenario (see Section 5 for further details of this
system). This service allows an agent to subscribe to reports about
UNHCR vehicle movements (terms from the humanitarian aid do-
main ontology are indicated by the use of the Flood namespace).
The restriction on the input parameter of this service is the class of
reports about the movements of vehicles belonging to the UNHCR,
which is a subclass of the range of the corresponding parameter on
the abstract Subscribe process (Thing, the most general class)
as shown in Figure 2.

The profile in Figure 3 is of type OfferedService, indicating
that this is a service advertisement; an agent requesting a service
would construct a service profile of type NeededService. This
use of offered and needed services allows service brokers to support
interactions that are driven both by the clients (those requesting
services) and the services (those providing services).

The process and profile components of the service description
are referenced together in a top-level service description (see Fig-
ure 4) which also includes a reference to the protocol which is to be
used to access the service, known as the service grounding. In our
example, we have chosen to make the service available via SOAP,
hence the reference to the W3C Note which defines the protocol by
means of the supports property. At the time at which this work
was carried out, this area of DAML Services was still largely unde-
fined, and there was no standard vocabulary for grounding DAML-

<profile: Off eredService rdf: | D="UNHCR- Subscri be-Profile">
<profile:has_process rdf:resource="&fi pa; Subscri be"/>
<profile:input>
<profile:ParaneterDescription>
<profile:paraneterName rdf:resource="subscribe-reference"/>
<profile:refersTo rdf:resource="&fipa: subscribe-reference"/>
<profile:restrictedTo>
<danmi : O ass>
<dam :intersecti onOf rdf: parseType="dan: col | ection">
<dani : O ass rdf: about ="&f | ood; Report"/>
<dam : Restriction>
<dani : onProperty rdf:resource="&f | ood; reportsOn"/>
<dam : t oCl ass>
<dani : O ass>
<dam :intersecti onOf rdf: parseType="dani:col | ection">
<dani : O ass rdf:about="&fl ood; Movenent Event"/>
<dani : Restriction>
<dam : onProperty rdf:resource="&fl ood;actor"/>
<dam : t oCl ass>
<dani : d ass>
<dani : i ntersectionOf rdf: parseType="dani:collection">
<dan : 0 ass rdf: about =" &f | ood; Vehi cl e"/>
<dan : Restriction>
<dani : onProperty rdf:resource="&fI ood; nenber &f "/ >
<dani : hasVal ue rdf:resource="&f | ood; UNHCR'/ >
</dani : Restriction>
</dam :intersectionCOf >
</dani : O ass>
</dam :tod ass>
</dani : Restriction>
</dam :intersectionCf >
</dani : Cl ass>
</dam : tod ass>
</dam : Restriction>
</rdfs:intersectionCf>
</dam : O ass>
</profile:restrictedTo>
</ profile:ParameterDescription>
</profile:input>
<profile:output>
<profile: Parameter Description>
<profile: paranet er Name rdf:resource="subscri be-success"/>
<profile:refersTo rdf:resource="&fipa; subscribe-success"/>
<profile:restrictedTo ref:resource="&dani; Thing"/>
</ profile: ParaneterDescription>
</ profile:output>
</profile: OfferedService>

Figure 3: Sample Profile

S services using WSDL. This has subsequently been addressed in
the most recent version of the DAML-S specification, but these ad-
ditions to the specifications have not yet been reflected in our soft-
ware.

In Figure 5, we have constructed a simple SOAP message (using
the FIPA inform performative) which contains a report from a
UNHCR vehicle (about itself) that is moving with a certain bearing
and speed from a certain location. Again, it should be stressed that
the manner in which we have written this message is the result of
an informed guess as to how one would pass RDF fragments as
parameters to Web Services, and as to how a service specified by
DAML Services might be grounded in SOAP.

4. QUERY LANGUAGE

When the service in the Subscribe example is invoked, the
value of the input parameter should be an instance of the class re-
striction which is given as the input parameter types in both the
profile and the process descriptions. For the various query per-
formatives (query-iT, query-ref and subscribe), this in-
put parameter contains the query expression which would be con-
tained in the message content in a conventional agent-based sys-
tem. However, there is as yet no standard query language for RDF,
DAML+OIL or OWL, although there are several under develop-
ment. One such example is DAML Rules [8], which builds on
DAML+OIL and expresses queries as Horn clause-like structures.

Due to this lack of any standard format for expressing queries,
we have chosen to express queries as anonymous resources, also
known as blank nodes or bNodes. These are instances which are
not identified by a URI, but by the values of their properties. As a
result, they can be considered to be existentially quantified query

<?xm version="1.0" encodi ng="1SO0O 8859-1" ?>
<! DOCTYPE uri def [
<IENTITY rdf "http://wwmv w3. org/ 1999/ 02/ 22- r df - synt ax- ns#" >
<IENTITY rdfs "http://ww.w3. org/ 2000/ 01/ r df - schema#" >
<IENTITY dani "http://ww. dani . org/ 2001/ 03/ dani +oi | . dani #" >
<IENTITY flood ' http://exanple.org/ontol ogy/fl ood# >
<IENTITY fipa "http://ww. fipa.org/ontol ogy/ acl # >
<IENTITY service "http://ww. dani . org/servi ces/ danm - s/ 2001/ 10/ Ser vi ce#" >

1>
<rdf: ROF xmns:rdf = "&df;" xmns:rdfs ="&rdfs;"
xm ns: daml ="&dani ;" xm ns:service = "&service;">
<dam : Ont ol ogy rdf: about="">
<dam : ver si onl nf 0>0. 1</ dani : ver si onl nf 0>
<rdf s: comrent >A description of the UNHCR subscribe service</rdfs: coment >
<dan : i mports rdf:resource="&dan ;"/>
<dani : i nports rdf:resource="&service;" />
</ dani : Ont ol ogy>

<service: Service rdf: | D="UNHCR- Subscri be" >
<!-- Reference to the UNHCR-Subscribe Profile -->
<service: presents rdf:resource="&f | ood; UNHCR- Subscri be-Profile"/>

<!-- Reference to the FIPA Subscribe Process Mdel -->
<servi ce: descri bedBy rdf:resource="&fi pa; #Subscri be"/ >
<l-- Reference to the SOAP service grounding -->

<service:supports rdf:resource="http://ww.w3. org/ TR SOAP/ "/ >
</ service: Servi ce>
</ rdf : RDF>

Figure 4: Sample Service

<?xm version="1.0" ?>
<env: Envel ope xm ns:env="http://wwm. w3. or g/ 2001/ 12/ soap- envel ope" >
<env: Body>
<fipa:informproposition xmns:fipa="http://ww.fipa.org/ontol ogy/acl #">
<rdf: RDF xm ns:rdf ="http://ww. w3. or g/ 1999/ 02/ 22- r df - synt ax- ns#"
xm ns: flood="http://ww. gi netig.com ontol ogy/fl ood#">
<fl ood: Report rdf:about="">
<fl ood: reportsOn>
<fl ood: Movenent Event >
<flood: act or >
<f | ood: Vehi cl e rdf: about =" &f | ood; UNHCR- 2323" >
<fl ood: member O rdf: resource="&f | ood; UNHCR'/ >
</f1 ood: Vehi cl e>
</flood: act or >
<f1 ood: headi ngTowar ds>
<flood: Direction>
<f | ood: beari ng>284. 5</ f | ood: beari ng>
<f 1 ood: vel oci t y>43</f | ood: vel oci t y>
</flood: Direction>
</ f1 ood: headi ngTowar ds>
<f 1 ood: | ocat edAt >
<fl ood: Locat i on>
<f1 ood: | ongdi t ude>32. 23427</ f | ood: | ongdi t ude>
<flood: latitude>16.33871</fl ood: | atitude>
</flood: Locati on>
</flood: | ocat edAt >
<fl ood: occur sAt >2002- 04- 12T12: 23: 48</ f | ood: occur sAt >
</ fl ood: Movenent Event >
<fl ood: reportsOn>
<flood: reporter rdf:resource="&f | ood; UNHCR- 2323"/ >
<fl ood: certai nty>1. 0</fl ood: certainty>
<f 1 ood: occur sAt >2002- 04- 12T12: 23: 48</ f | ood: occur sAt >
</ fl ood: Report>
</ rdf : RDF>
</ fipa:subscribe-reference>
</ env: Body>
</ env: Envel ope>

Figure 5: Sample SOAP message

<?xm version="1.0" encodi ng="1S0O 8859-1" ?>

<! DOCTYPE rdf: RDF [
<IENTITY rdf *http://ww. w3. org/ 1999/ 02/ 22-r df - synt ax- ns#' >
<IENTITY flood ' http://exanple.org/ontol ogy/fl ood# >

1>
<rdf:RDF xm ns:rdf="&df;" xm ns:flood="&fl ood; ">
<f 1 ood: Report >
<f 1 ood: report sOn>
<fl ood: Movenent Event >
<f 1 ood: act or >
<fl ood: Vehi cl e>
<f | ood: mnember Of rdf:resource="&f | ood; UNHCR'/ >
</ f1 ood: Vehi cl e>
</flood: actor>
</fl ood: Mvenent Event >
<f 1 ood: report sOn>
</ f1 ood: Report >
</ rdf : RDF>

Figure 6: Sample Query

expressions which denote objects of interest. In effect, the query is
a template subgraph which is matched against the RDF graph, with
the query solutions being the locations where the template matches.
The intention behind this approach is to allow us to express the ca-
pabilities of a service by describing the class of queries which may
be asked of that service. The class expression given as the input
parameter type in the profile should contain as instances all the
possible queries (expressed using the bNode technique) that may
be asked of the service.

The main limitation of this approach is that it is only applicable
to queries of a certain structure. The item about which the query is
phrased (the anonymous resource) must be the subject of the RDF
triples, not the object, if more than one property of the resource is to
be specified (this is largely a limitation brought about by the RDF
syntax [14]). This is a significant limitation, but also one which can
be mitigated against by a suitable design of the domain ontology in
which the objects which are most likely to be the subject of queries
appear as the subjects of RDF triples rather than as the objects (see
Section 5.2 and Figures 8 and 9).

As an example, the domain ontology which we have designed
for this application is centred around events and reports of events.
We have taken the approach that communication in the system will
be about these events and reports (rather than about any persistent
world state which the reports might suggest), so the queries can
be expressed using the anonymous resource technique by specify-
ing the properties that the report (and the event it contains) must
possess. It should be noted, however, that we did not specifically
design the ontology in this report to circumvent the expressive lim-
itations of our chosen query language, but rather that the query
language was chosen because it was appropriate for use with the
domain ontology that we had already designed.

In Figure 6 we show an RDF fragment which expresses the no-
tion that there exists some report which reports on the movements
of vehicles owned by the UNHCR; this may be interpreted as a
query about reports with those properties.

An additional limitation of this approach to query construction,
which is unfortunately also shared with several of the other query
languages currently under development, is that it is not possible to
specify literal ranges in queries. An example of such a literal range
might be a query of movement reports about entities that were north
of a particular point, or to put it a different way, whose latitude
was greater than a certain value. This limitation arises because the
RDF and DAML+OIL models have no notion of how different lit-
eral datatypes behave (particularly with respect to ordering and in-
equalities). However, the W3C Web Ontology Language working
group has identified this as a desirable feature for the language that
they are currently developing; although it is still to early to tell con-
clusively, this work may produce a solution to this problem. The

likely solution to this problem is unlikely to involve changes to the
model theories of DAML+OIL and the other ontology languages.
It will most probably be based on the promotion of oracles, entities
which have specific knowledge of the behaviour of different literal
types (integers, latitude/longitude pairs, dates, etc) and which may
be used by inference and query engines to evaluate tests based on
those types.

At present, the development and standardisation of query lan-
guages for the Semantic Web is largely immature. As Semantic
Web development in general becomes more mature, we expect that
the current Precambrian period-like diversity of query languages
will come to a close with standardisation on a small number of lan-
guages. The investigation and design of suitable query languages
for use with the style of agentified Web Services that we discuss in
this paper therefore remains an open direction for future research.

5. APROTOTYPEAGENT WEB SERVICES
SYSTEM

As a proof of concept of the technologies discussed above, we
have designed a system which demonstrates the use of Agent \Web
Services in the application domain of situational awareness in a
humanitarian relief scenario.

The scenario for this study is set in a river delta region which
has experienced flooding due to unseasonally heavy rainfall. The
people who have been displaced from their homes by the flooding
are being sheltered in relief camps. The timeline for the scenario
includes a rapid flooding event which forces the creation of new re-
lief camps, and a hostile event upon a relief convoy which requires
military intervention and support.

The system contains a number of agents which generate reports
on the state of the world (eg. refugee movements, meteorological
reports and forecasts) with differing degrees of certainty. A feature
of this scenario is that it includes a number of different types of
user, each of which has different information needs, and so each of
which should be sent a different subset of the reports generated by
the entities in the system. The aim of this system is the provision of
filtered report streams to these users in a timely manner, a process
often referred to as information triage.

In addition, the sets of agents which produce and consume re-
ports are not static; agents may join and leave the system while it is
running. The requirement for the system both to adapt to the loss
of agents, and to opportunistically integrate new agents provides
a motivation for the semantically richer service descriptions that
were discussed earlier in this paper.

5.1 System Architecture

In our system architecture, illustrated in Figure 7, the flow of in-
formation is from left to right. On the left are various data sources
which correspond to entities in the domain environment and gener-
ate streams of reports about different types of events, while on the
right are consumers which take the reports and present them to the
user (the map panel), or which perform some further processing on
the reports.

The key component of the system is the central broker which me-
diates the interaction between the other system components. Data
consumers use the broker to find sources which can satisfy their
information needs, which typically depend on the user view which
is being presented, by registering a service requirement (expressed
as a NeededService in the DAML Services profile model) with
the broker. Similarly, the data sources register a service advertise-
ment describing their capabilities with the broker (expressed as a
OfferedService in the DAML Services profile model). The

broker compares the service requirement to the service advertise-
ments that it has received from the data sources and responds with
the matching services. The consumers then communicate directly
with the data sources, typically by formulating a subscription to
some subset of the reports that the source offers, as was illustrated
in Figure 3.

The data sources in the system are grouped into three rough cat-
egories. The first category consists of entities which have GPS de-
vices and so can produce high-certainty reports of their own po-
sitions and movements. The second category consists of entities
which are able to observe their immediate environment, and so are
able to generate moderate certainty reports on the movements of
other entities, on hostile, support and relief events or on changes to
the infrastructure present in the environment (damage to roads and
bridges, for example). The final category consists of meteorologi-
cal sensors which provide reports on the level of the flood waters.

5.2 Domain Ontology Design

As a demonstration of our approach to Agent Web Services, we
have designed an ontology to describe the application domain and
scenario that we have outlined earlier. This domain has a number
of features which are interesting from an information management
point of view. An agent in such a system is unlikely to have di-
rect knowledge of the status of entities in the domain environment,
since almost all knowledge is mediated through reports of events
(entity state changes) which are issued by other entities in the sys-
tem. For this reason, the provenance and certainty of the reports
become of prime importance, and the role of the agents through
which users interact with the system becomes one of information
triage and filtering.

Therefore, the queries which agents ask of the system are less
likely to be about domain entities directly, and are more likely to
be about reports about those entities. In a scenario where there may
be many conflicting and partial reports, the query idiom would be to
ask only for high certainty reports from trusted sources about those
entities which are of interest, but one has the ability to configure
or change this assumption. To this end, the ontology that we have
designed comprises two main parts. The first part consists of the
entities in the domain environment and their invariant properties,
as shown in Figure 8

The other part of the ontology consists of the events which de-
scribe changes to the state of the entities, as shown in Figure 9.
The key class in this hierarchy is the Report, which represents
information which has been gleaned from some source (newsfeed,
satellite image, etc) about some event which has occurred in the en-
vironment. For example, if the movement of an entity (a relief con-
voy) has been observed by a third party (a journalist from CNN),
this datapoint is represented by a report about a movement event
by the convoy, which has been reported by the journalist. This ap-
proach captures the provenance of the report (as the entity which
reported it), as well as the degree of certainty that the reporter has
in the report. We have adopted the Stanford Certainty Factor Al-
gebra [4] for dealing with certainty measures; although this has
some shortcomings, it is a well-understood formalism and provides
a general representation of confidence.

The separation of reports from events makes it possible to sep-
arate the time at which the event occurred from the time at which
the report was made, which allows us to represent both the timeli-
ness of reported events (yet another report facet which can be used
to filter the stream of incoming reports) and also to represent event
predictions as reports about future events. Finally, by making Re-
port atype of Event, we make possible secondary reporting (re-
ports about reports).

GPS-equipped[.movement reports
q. PP H P movement reports map
entities
panel
— sighting
sighting reports
gning Tep observer
o '], sighting reports :
entities ml 9 9 rep . . - infrastructure .
rastructure reports information | infrastructure reports observer aggregation
broker agents
flood level
flood reports
observer
water level [, flood reports fl00d reports
monitor P flood level -
overlay agent
e — flood overlay Y ag
Figure 7: System architecture
Entity
- b ~
Abstract Physical
Entity Entity
partOf C
N
N
o Physical -
Organisation Individual
Group
- = _ A
- ’/ -7 / RN -7 ! S
_ - - / ~ - | ~
Military Media Governmental .
S - NGO . Vehicle Person Sensor
Organisation | | Organisation Organisation
Figure 8: Domain ontology - entity
reportsOn
Event
=== S == _
_ S BN
P - | ~ == o -
Movement R Hostile Relief Support Infrastructure Meteorological
Event eport Event Event Event Event Event
s
actor actee actg actee located. f T~a -
headingTowards| tor actor actee locatedAt| K
locatedAt Flood Rainfall
Event Event
o . Physical .
Direction Location reporter . Location
Entity

Figure 9: Domain ontology - event

We have designed this ontology using the Protege ontology ed-
itor [15] which uses RDF Schema as its output format, but in the
examples that follow in this report, we use DAML+OIL constructs
to define new (unnamed) classes based on the primitive classes in
the RDF Schema ontology. An example of these unnamed classes
can be found in the parameter restriction in Figure 3. These un-
named classes are especially useful because they allow us to spec-
ify classes which were not explicitly created by the ontology de-
signer by describing the necessary and sufficient conditions for
class membership. The ability to specify unnamed classes simpli-
fies ontologies by removing the need to state

, and is a particular strength of description logic characterisations
of ontologies.

5.3 Simulator Software

Our proof of concept implementation is a Java application which
simulates a day of events for the situational awareness system. The
events and reports themselves are predetermined and are served ac-
cording to a script, but the behaviour of the information agents (re-
questing services and responding to service requests) is not fixed
beforehand.

The application consists of two parts, a map panel which pro-
vides an overview of the entities in the simulated environment and
the current whereabouts, and a control panel which provides a more
detailed view of the flow of reports in the system and contains a
number of report consumers (users).

The map panel shown on the right of the diagram in Figure 7 is a
canonical example of a consumer; it registers its service require-
ment with the broker, and then subscribes to movement reports
from the relevant sources (see the map panel screenshot in Fig-
ure 10). The next three consumers provide an aggregation service
to the system (and so are not ‘pure’ consumers) by subscribing to
certain types of report, cross-correlating those reports which deal
with the same event, and then generating new composite reports
which describe those events (often with greater certainty, due to
the combination of knowledge from different sources). Finally, the
flood level overlay agent takes flood reports and generates an over-
lay for the map panel which indicates the areas of the map which
are under flood waters (again, see the screenshot in Figure 10).

The control panel for the simulator, pictured in Figure 11, pro-
vides an overview of the system. For this simulation, we assume
a context in which users have an interest in supply, an interest in
keeping the bridges up and a requirement to understand. Conse-
quently, the three panes in the middle of the panel show the filtered
streams of reports which are being delivered to the various users in
the system (respectively, logistics, civil engineering and meterolog-
ical). The scrolling panel at the bottom shows an aggregated feed
of all the reports that have been made in the system (effectively a
user who subscribes to all reports).

As a proof of concept and illustrative example, our demonstra-
tion implementation of this system differs from the description above
in several important ways. We have chosen not to implement the
interactions between system components using Web Services tech-

nologies such as SOAP bhecause the combination of these with DAML

Services and other Semantic Web technologies was still largely
undecided; at the time at which this part of the system was writ-
ten, there was no way to specify a SOAP binding for a service in
DAML-S. This has since been rectified in the most recent version
of DAML-S, as has been noted earlier in this paper. In our im-
plementation, the agents communicate using standard Java method
invocation. This choice is largely unimportant because the process
of transferring the system to use SOAP as a message transport tech-
nology instead of Java is straightforward, given the procedure-call

friendly-1

Figure 10: Simulator Map Panel

Logistics reports Civil engineering reparts

BC
Time rate (times realtime)
=
i |) |) | |) |
L1} 250 200 750 1000 1250 1500 1750 2000
Required Confidence N
=
o 10 20 30 40 a0 60 70 80 90 100
|09'] 2 vl Overlay View KE ‘| View Taxonomy

Met reports

convoy-1 dispached to camp-1=
convoy-2 dispached to camp-2

et Office; Eegqular Met Repart =
Met Office; New water level ovel

et Office: Rapid rise in water |

MapPanel <-

MapPanel <- (htp://aktors orgfflood#convay-2, hitp:/ faktors, org/flooci#location, 'S61:353%
M apPanel <- (http:/faktors org/flood#convoy-1, http://aktors orgfflood#location, '932:514"

MapPanel <- (http://aktors, org/flood#convoy-2, hitp://aktors. org/flood#location, 'S&0:3547
M apPanel <- (http:/faktors. orgfflood#convoy-1, http:/faktors. orgfflood#location, '94:512% 1

(http://akiors. org/flood#convoy-2, hitp://aktors. org/flood#location, 'S&0:3567 =

Figure 11: Simulator Control Panel

approach that we have taken in the FIPA ACL process ontology.

The hybrid WSDL-based service grounding in the most recent
version of DAML-S is sufficiently expressive for us to be able to
use SOAP instead of Java method invocation for communication;
our future plans for this system include a migration to a SOAP-
based message transport layer.

Even though we do not currently use Web Services technologies
for message transport, our implementation is still ontologically in-
formed; the reports and events are described using our domain on-
tology, and expressions from the domain ontology are used as ser-
vice requests, demonstrating that a formal ontology of a domain
can be effectively used to filter and aggregate knowledge and ser-
vices.

6. CONCLUSION

In this paper, we have described our experience of building a
flexible agent-based Web Services system which performs infor-
mation triage on heterogeneous streams of data in order to provide
a situational awareness capability in a simulated humanitarian aid
scenario.

A key aspect of the system design is the separation of the inten-
tional force of the messages from their application domain-specific
content, and the embodiment of this separation in the process and
profile components (respectively) of a DAML Services service de-
scription. The resulting rich service descriptions provide a pwerful
way of assembling information resources in contexts that require
the agile construction of virtual organisations. This agent-based
perspective on Web Services is very consistent with the views on
the construction of distributed information systems to be found in
the Semantic Web and also the Semantic Grid[7].

This work has highlighted the need for expressive query lan-
guages which fit well with existing Web Services and Semantic
Web technologies. In addition to the migration of the message
transport layer to SOAP as mentioned in the previous section, our
plans for future work on this system include the investigation of
such query languages.

7. ACKNOWLEDGMENTS

This work was supported by QinetiQ contract CU016-016492
and the Advanced Knowledge Technologies (AKT) Interdisciplinary
Research Collaboration (IRC). The AKT IRC is sponsored by the
UK Engineering and Physical Sciences Research Council under
grant number GR/N15764/01 and comprises the Universities of
Aberdeen, Edinburgh, Sheffield, Southampton and the Open Uni-
versity.

The authors would like to thank Peter Hoare of QinetiQ for his
comments on an earlier draft of this work.

8. REFERENCES

[1] P. V. Biron and A. Malhotra. XML Schema Part 2:
Datatypes. W3C Recommendation, World Wide Web
Consortium, May 2001.

[2] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman,

N. Mendelsohn, H. F. Nielsen, S. Thatte, and D. Winer.
Simple Object Access Protocol (SOAP) 1.1. W3C note,
World Wide Web Consortium, May 2000.

[3] D. Brickley and R. Guha. Resource Description Framework
(RDF) Schema Specification 1.0. Technical Report
CR-rdf-schema-20000327, World Wide Web Consortium,
Mar. 2000.

[4] B. Buchanan and E. Shortliff, editors. Rule-Based Expert
Systems: The MYCIN Experiments of the Sanford Heuristic
Programming Project. Addison-Wesley, 1984.

[5] E. Christensen, F. Curbera, G. Meredith, and
S. Weerawarana. \Web Services Description Language
(WSDL) 1.1. W3C note, World Wide Web Consortium, Mar.
2001.

[6] D. Connolly, F. van Harmelen, 1. Horrocks, D. L.
McGuinness, P. F. Patel-Schneider, and L. A. Stein.
DAML+OIL (March 2001) Reference Description. W3C
Note, World Wide Web Consortium, Dec. 2001.

[7] D. de Roure, N. Jennings, and N. Shadbolt. The semantic
grid: A future e-science infrastructure. Int. J. of Concurrency
and Computation, 2002. (to appear).

[8] S. Decker. DAML Rules - An RDF Query, Inference and
Transformation Language. Draft available online at
http://www-db.stanford.edu/"stefan/daml/
2001/07/03/rules/damlrules.ps, 2001.

[9] FIPA. FIPA Communicative Act Library Specification.
Technical Report XC000371, Foundation for Intelligent
Physical Agents, Oct. 2002.

[10] L. Gasser. MAS infrastructure definitions, needs and
prospects. In Proceedings of the First Workshop on
Infrastructure for Agents, MAS and Scalable MASat the
Fourth International Conference on Autonomous Agents
(ICMAS2000), 2000.

[11] A. Gomez-Pérez and O. Corcho. Ontology languages for the
semantic web. |EEE Intelligent Systems, Jan.—Feb. 2002.

[12] N. Guarino and P. Giaretta. Ontologies and knowledge bases:
Towards a terminological clarification. In N. Mars, editor,
Towards Very Large Knowledge Bases. 10S Press, 1995.

[13] KAG. An overview of KQML: A knowledge query and
manipulation language. Technical report, KQML Advisory
Group, Mar. 1992.

[14] O. Lassila and R. Swick. Resource Description Framework
(RDF) model and syntax specification. Technical Report
REC-rdf-syntax, World Wide Web Consortium, Feb. 1999.

[15] N. Noy, M. Sintek, S. Decker, M. Crubezy, R. Fergerson, and
M. Musen. Creating Semantic Web Contents with
Protege-2000. |EEE Intelligent Systems, 16(2):60-71, 2002.

[16] J. Searle. Speech Acts: An Essay in the Philosophy of
Language. Cambridge University Press, 1969.

[17] The DAML Services Coalition. DAML-S: Semantic Markup
for Web Services, Dec. 2001.

