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Abstract—An important objective in the analysis of an electronic
circuit is to find its quiescent or dc operating point. This is the
starting point for performing other types of circuit analysis. The
most common method for finding the dc operating point of a non-
linear electronic circuit is the Newton–Raphson method (NR), a
gradient search technique. There are known convergence issues
with this method. NR is sensitive to starting conditions. Hence,
it is not globally convergent and can diverge or oscillate between
solutions. Furthermore, NR can only find one solution of a set of
equations at a time. This paper discusses and evaluates a new ap-
proach to dc operating-point analysis based on evolutionary com-
puting. Evolutionary algorithms (EAs) are globally convergent and
can find multiple solutions to a problem by using a parallel search.
At the operating point(s) of a circuit, the equations describing the
current at each node are consistent and the overall error has a min-
imum value. Therefore, we can use an EA to search the solution
space to find these minima. We discuss the development of an anal-
ysis tool based on this approach. The principles of computer-aided
circuit analysis are briefly discussed, together with the NR method
and some of its variants. Various EAs are described. Several such
algorithms have been implemented in a full circuit-analysis tool.
The performance and accuracy of the EAs are compared with each
other and with NR. EAs are shown to be robust and to have an ac-
curacy comparable to that of NR. The performance is, at best, two
orders of magnitude worse than NR, although it should be noted
that time-consuming setting of initial conditions is avoided.

Index Terms—Circuit simulation, dc circuit analysis, differential
evolution, evolution strategies, tournament selection.

I. INTRODUCTION

T HE FIRST task in simulating the behavior of a circuit is to
find the quiescent or dc operating point. This is important

because the operating point is required when performing other
types of circuit analysis. For example, the dc operating point is
used as the starting point for transient analysis (circuit response
in the time domain) [1]. Circuit design algorithms also need the
dc operating point of the circuit. In this case, the operating point
is required to evaluate the dc performance of the current design
under a given set of constraints on the circuit’s components [1].

Traditionally, the operating point is found by using the
Newton–Raphson method (NR). This method has three po-
tential problems. The first problem is that, at the start of each
iteration, we must recompute the Jacobian matrix. The Jaco-
bian matrix contains all the partial derivatives of the nonlinear
device equations with respect to the circuit variables, node
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voltages, and/or branch currents, which is computationally
costly. The second problem is that the solution can diverge
or fail to converge by oscillating between several potential
solutions. This latter situation can occur in circuits with a large
amount of feedback.

Finally, convergence is only guaranteed if a suitable initial so-
lution vector is chosen. For circuits with more than one possible
solution, the initial guess can influence the final solution and
hence finding multiple global solutions is generally difficult. For
example, an RS latch, which is a common subcircuit found in
computer memory, has three potential solutions. NR-based al-
gorithms will usually only find the metastable solution unless
the user intervenes. This solution represents the latch in a bal-
anced state, but it is often more important to know what the cir-
cuit does in its two other conjugate state outputs at logic (1,0)
in one case and (0,1) in the other. Obviously, these solutions
would give three different starting points for a transient analysis.
Hence, the ability to find multiple dc operating points, when
they exist, can prove very useful for determining the behavior
of the circuit over time.

In this paper, we discuss various aspects of evolutionary com-
puting (EC), in particular evolution strategies (ESs), and differ-
ential evolution (DE), and how these techniques can be applied
to dc circuit analysis. As will be seen, EC has certain advantages
over NR. The main benefits are improved convergence and the
ability to find multiple solutions. These can be attributed to the
parallel nature of EC algorithms, i.e., a search through a pop-
ulation of solutions rather than a sequential search for an indi-
vidual solution, as in NR. There are further adaptations that can
be made to ES, such as more sophisticated mutations and se-
lection schemes. At present, the alternatives to NR are slow, in
part because of the way in which the algorithms have been im-
plemented. We will also see that evolutionary algorithms (EAs)
can find solutions to circuits that fail (without user intervention)
when using NR.

At the end of this paper we will discuss of the results ob-
tained from a SPICE-compatible evolutionary circuit simulator
[evolutionary analog circuit simulator (EACS)] that implements
versions of the basic EAs, including some more sophisticated
features such as tournament selection and higher configurability
with regard to the evolutionary operators and how they are used.

Before continuing with a detailed look at the techniques
outlined above, we will define the notation that is to be used
throughout this work. In the NR algorithm, we represent the
trial solutions, e.g., the vector of node voltages and/or branch
currents, as a real-valued trial vector , at
iteration . In general, the aim is to find a set of variables

such that, for some objective function
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, we have 0. In the case of EAs, the trial vector
has an extra superscriptthat denotes theth member of the
population. denotes the generation count and, thus, the trial
vector is written as . Without loss of
generality, we can restrict ourselves to the task of minimization
because maximizing a function is the same as mini-
mizing , where in general and .
In the case of circuit analysis, the objective function is a vector

representing the characteristic equations of the
nonlinear circuit components. In EAs, the objective function
represents thefitnessof a particular trial vector.

It is important at this point to comment on the nature of the
problem that is addressed in this paper. NR is used to find the
roots of an equation or a set of equations, and as such this is
not a minimization problem. We can, however, convert the root-
finding problem of operating-point analysis into a minimiza-
tion problem by specifying a fitness function and attempting to
minimize that. This enables us to use EAs, which are search
techniques that easily lend themselves to solving minimization
problems.

II. CONVENTIONAL CIRCUIT ANALYSIS TECHNIQUES

In this section, we discuss the NR method for dc analysis.
Conventionally, one analyzes a circuit to find its node voltages
using Kirchhoff’s Current Law (KCL) [1]. A node voltage is
calculated with respect to a common reference point. Sometimes
a branch current is also required; in which case, Kirchhoff’s
Voltage Law (KVL) is used [1]. A branch current is the current
flowing between two nodes in the circuit. Before continuing, it
is important to define KCL and KVL. KCL states, “The sum of
currents flowing into and out of a node is zero” and KVL states,
“The sum of branch voltages around a closed loop in any circuit
is zero.”

We formulate equations to represent each branch current and
apply KCL to sum the currents at each node. Thus, we obtain

simultaneous linear equations which must be solved, as a
matrix–vector equation, to find the node voltages. The matrix
is often called the nodal admittance matrix, which contains the
transconductances (partial derivatives of each device’s charac-
teristic equations with respect to the circuit variables, i.e., the
Jacobian) of nonlinear devices as well as the conductances of
linear devices e.g., resistors. The solution vector contains node
voltages and possibly branch currents, and the right-hand side
(RHS) vector contains the circuit excitations in the form of
current sources. The admittance matrix is normally constructed
using element stamps[3], which are briefly discussed below.
Later we will see how evolutionary methods have advantages
over this traditional technique. For example, EAs do not
require the Jacobian, and therefore we do not need to solve a
matrix–vector system. Hence, we no longer require element
stamps.

A. Equation Formulation and Solution

Element stamps are small component-specific tables con-
taining matrix and excitation data [3]. The table indicates the
component values to insert in the nodal admittance matrix and
in the RHS vector. For example, consider a linear conductance

Fig. 1. Conductive component.

TABLE I
MATRIX STAMP FOR CONDUCTANCE

TABLE II
MATRIX STAMP FOR FET

between two nodesand , with node voltages and ,
Fig. 1.

This component has the stamp shown in Table I.
It is similarly possible to define stamps for nonlinear ele-

ments, and such stamps form an efficient method for updating
the admittance matrix and RHS vector. Equation (1) gives the
branch current for a field-effect transistor (FET) at the
NR iteration

(1)

where denotes the FET drain-source current at the
iteration. The transconductances , , and are the
derivatives of with respect to the voltage ,
where and ( ) can be any of , , or (the drain,
the source, and the gate). Note that the above derivation is for
the forward bias case of the MOSFET. If the MOSFET goes
into reverse bias, then and are swapped. Table II shows the
general element stamp for a FET transistor.

The matrix–vector equations can be solved by Gaussian elim-
ination or a related algorithm, such as LU factorization. There
are other improvements that can be made when we have cer-
tain types of matrices. In particular, if a matrix is sparse, one
only need store the nonzero entries, thus eliminating unneces-
sary calculations [1].

B. The NR Method

The most common method for nonlinear circuit analysis is the
NR method coupled with the Gaussian elimination algorithm.
We solve the set of nonlinear equations by formu-
lating the linearized matrix vector equation (2) using element
stamps

(2)
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Equation (2) is solved to find , the node voltage vector
at the iteration. The matrix is the nodal admit-
tance matrix, and the RHS vector is the vector of excita-
tions. Both are initially set to zero and are updated using el-
ement stamps. In fact, to form (2), we need to use the fact that

. If we substitute this expression into (2) and
multiply both sides by , we get ,
which is the multidimensional form of the standard one-dimen-
sional Newton formula , where

is the derivative of the device equation with respect to
, evaluated at , the th approximation to the root of. By

repeatedly solving (2) (using Gaussian elimination or a related
technique) and using the solution to formulate the matrix and ex-
citation vector for the next iteration, the solution vector should
converge to an accurate representation of the state of the circuit.
For further reading, the reader is directed to [1]–[3].

This process is computationally intensive. The matrix equa-
tion needs to be set up and solved once per Newton iteration.
Building the Jacobian matrix requires the evaluation of the par-
tial derivatives of the device equations. Typically, evaluating the
device equations and derivatives, along with the associated ma-
trix operations, requires about 70% or more of the total CPU
time [4], [5].

C. Convergence

NR has some inherent problems that manifest themselves
quite frequently. When they arise, the algorithm can fail to work
correctly. One such problem is NR’s sensitivity to the initial
values in the solution vector used to start the analysis. This is
especially noticeable when we are dealing with nonlinear cir-
cuit equations that have multiple solutions. In this case, different
initial settings can result in convergence to different solutions or
to divergence. In the absence of any other knowledge, the solu-
tion vector is initialized to . This may be simplistic because, if
there are multiple solutions, they will be missed and the algo-
rithm may potentially fail to converge. A randomly initialized
set of start points may seem better, but the main reason this is
not done is that it may yield more failures than successes or re-
peated occurrences of the same solution, all of which increase
the running time. There is, however, a technique calledhomo-
topywhich is a more sophisticated approach to this idea [6]–[8],
and which is potentially globally convergent.

The main problem with the selection of the initial values
is that one can never be sure of the radius of convergence for
a particular problem, and so picking an initial solution that
is outside this radius can lead to divergence, or if there are
multiple solutions, it could lead to finding a solution other than
that being sought. There are several techniques that can be
used to help convergence, such as the-coordinate method [2],
the error-function-curvature-driven Newton update correction
method [9], damping algorithms [10], the source stepping
algorithm [11], and the stepping procedure [12].

In 1977, Hoet al. [10] proposed a damping algorithm to aid
the convergence of NR. A damping factor is used to aid conver-
gence as follows. The damping factorin (3) is initialized to

a small number such that 0 1; is then increased at each
iteration until it reaches 1, at which point it remains constant

(3)

The increments of should be quite large for the first few itera-
tions but should then decrease gradually. Hence, this technique
stops sudden large changes that occur between successive ap-
proximate solutions, particularly over the first few iterations.

The stepping procedure aids convergence by adding a
constant ( ) onto each diagonal component of the Jacobian
matrix . is set to a large initial value and is decreased at
each iteration to a value of 10 or less. The constant stops
zeros from occurring on the diagonal, which in turn prevents the
matrix from becoming singular. This procedure is equivalent to
a large resistance (small conductance) being connected between
every node in the circuit and ground.

These techniques do not all work for every problem. Hence,
commercial simulators employ a number of these techniques
and will switch as necessary between them if convergence prob-
lems arise. The aim is to develop an EA to find a more general
method for solving the majority of circuits.

III. EVOLUTIONARY COMPUTING

In general, when using EC techniques, for each member of the
population , we aim to optimize and in
this case minimize, objectives (nodal equations) for each in-
dividual. is the size of the population. Here, represents
the th trial vector of node voltages for at the

th generation for . We then form theob-
jective vectordenoted by . We
denote the objectives by , 1, 2, , . For the pur-
pose of dc analysis, (the total number of node voltages
and branch currents). In the simplest case, contains only
node voltages, so we can use these in the evaluation of the de-
vice equations. The resulting device currents can then be used
to form the KCL equations for each node. Hence, we define
as the net current flowing at node, which is the node’s KCL
equation.

During the optimization process, we aim to minimize the
values; hence, as a trial vector reaches optimality, thevalues
in the corresponding vector will be tending toward zero. In
other words, the net current flowing into each node should be
zero for a perfect solution, and likewise, if KVL is being used,
the net voltage around a closed loop should be zero. We mini-
mize the values by minimizing the “fitness” of the solutions.
For instance, we could calculate the Euclidean norm of and
this should be zero for an optimal solution. Hence, by keeping
solutions with the better fitnesses, we will steadily be reducing
the values in the objectives vectors over successive generations.

By using EAs, we hope to—among other things—find mul-
tiple dc operating points of the circuit when they exist. It is im-
portant to note that the problem of predicting the number of pos-
sible solutions to an arbitrary nonlinear circuit is impossible.
The potential number of solutions may be known in advance
due to the expertise and experience of the user. Obviously, this
is only of use when analyzing variations of known circuits and
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device types. Therefore, regardless of which algorithm we em-
ploy to find the dc operating points, we can never be sure if there
are any solutions left unfound. It is hoped that by the inherent
globally convergent properties of EAs, we will find many, if not
all, of the solutions when they exist and will not have to rely on
user intuition to find the solutions as we do with NR.

A. Fitness Functions

EAs are designed to work on a population of trial vectors and
exhibit an implicit parallelism. To enable the processes of evo-
lution to be simulated, it is necessary for each member of the
population to be assigned a value representing the worth of the
solution. This is called thefitnessof the individual. The fitness
can then be used to decide which trial vectors in the population
are to survive from one generation to the next. The general tech-
nique is to use and other knowledge about the problem to
compute . In the case of dc operating-point analysis, we use
the KCL and KVL equations. We use the data in , which is
essentially the error vector for , to obtain a fitness score for
the trial vector in question. The overall optimization procedure
then aims to minimize the fitness scores.

In developing our circuit simulator, we implemented five fit-
ness functions but after early investigations, the Euclidean norm
was chosen because it provided the best all-round compatibility
with the EAs discussed here in terms of convergence times and
accuracy. The fitness function is

(4)

B. ESs

ESs are probabilistic heuristic direct-search optimization
techniques, invented independently in 1965 by Rechenberg
[13] and Schwefel [14]. They operate at the phenotypic level,
which has advantages for real-valued problems because there is
no need to define suitable genotype representations and the po-
tentially complex genotype-to-phenotype mapping functions.
There is generally no crossover or inversion in ES [or at least
not in the same sense as with genetic algorithms (GAs)], so
there is not always a need to find cutting points. Sometimes,
however, it can be beneficial to have a crossover-like operator.
When this is the case, we userecombination. The cutting points
needed for recombination are simpler than those for GA. In
ES, cutting points are equivalent to simply deciding which
components of the parents’ trial vectors are used to build a
recombined intermediate vector. This kind of recombination
is calleddiscrete recombinationbecause we are recombining
two parents by discretely swapping their vector components,
selected at random.

We use a population of size divided into two pools such that
, where the first members of the population form

the parent pool and the remainingmembers form the offspring
pool. There are several variations of ESs. The first is ()-ES,
where at the end of each generation, thebest children are taken
as the parents for the next generation for 1 .
All other individuals are discarded. Although it can seem like
a waste to throw away potentially useful solutions, this form of

ES is known to avoid stagnation. In the developmental stages
of this work, the use of this ES was explored but was discarded
because it incurred longer running times, and so another form
of ES was chosen instead. This version is denoted ( )-ES;
at the end of a generation, the bestindividuals from the union
of the parent and offspring pools are taken as the parents for the
next generation. Generally, each parent is required to generate
at least one offspring. The exact number depends on the value
of .

Usually, ESs mutates a parent by adding a Gaussian dis-
tributed random vector of mean zero and predefined deviation
to it [15] as follows:

(5)

Here, themutation vector is computed from

(6)

In (6), represents a predefined deviation or step size of
the mutation vector at generation, is a user-set scale factor,
and is the standard deviation of theth component over the
entire population at generation. The new solution has its fit-
ness evaluated, and if its fitness is better than the mean fitness
of the population, then it is included in the offspring pool. This
continues until the offspring pool is full.

It can be seen that the basic ES uses the same deviation to
generate each variable in all the mutation vectors in a single
generation. This is not very realistic because the magnitude of
each component of the solution vector can be very different. It
can sometimes be better to have a different deviation or step
size for each of the components. This can allow for more diver-
sity among the solutions and a better exploration of the solution
space [15]. If one implemented this directly, it would involve
many user-defined parameters; hence, it is useful if the step sizes
can self-adapt, thus letting the algorithm find the best settings
[16].

One self-adaptive technique is given as follows:

(7)

This provides a different deviation for each variable in.
Overall, we form adeviation vector for each trial
vector . The variable (0, 1) is a normalized Gaussian
random deviate globally set and regenerated at the start of each
generation and (0, 1) is the th independent normalized
Gaussian random deviate. The parametersand are defined
in (8) [16]. is a user-set scale factor

(8)

Other similar self-adaptive mutations are possible [15].
In general, ESs use only a mutation operator, but the self-

adaptive scheme (ESA) outlined above also uses a recombina-
tion operator. One possible recombination operator has already
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been mentioned: discrete recombination, but for our ESA al-
gorithm, a different recombination operator has been used as a
result of earlier experiments. It works as follows. Two parents
vectors and , 1, 2, , are randomly
selected before mutation occurs. The recombined intermediate
vector and the intermediate deviation vectorare calculated
as

(9)

The variable is a uniformly distributed random deviate be-
tween 0 and 1. The vector becomes the new offspring ,
and if its fitness is better than the mean fitness of the population,
then it is included in the offspring pool. This continues until the
offspring pool is full. When using both mutation and recombi-
nation, we first use recombination on the parent pool and then,
after generating offspring, we apply mutation to the parent pool
and generate further offspring.

C. An EA and Tournament Selection Scheme

The EAs described thus far have had one thing in common,
they each usetruncation selection[15]. This means that the
best individuals are selected from the union of the parent and
offspring pools, which become the set of new parents and are
ranked in order of fitness. However, with truncation selection,
we do not directly have any control over the selection pres-
sure on an individual. It has been demonstrated that as selec-
tion pressure increases convergence time decreases [15], but in-
creasing selection pressure can make it harder to escape from
local optima.

Tournament selectionis a selection mechanism found in the
area of EC called evolutionary programming [15], [17]. At the
start of each generation, each member of the population
is, in turn, compared pairwise with each ofrandomly selected
and distinct members of the population, where 1 . For
each of the members, a tally point is added onto a temporary
tally score , if is fitter than that member. Therefore, any

can achieve at most tally points. Hence, we calcu-
late the selection probability for as , and
so 0 1. When a parent is required, such as in the re-
combination or mutation operators, we randomly pick a parent
from the population and randomly accept or reject that choice
using a coin toss biased according to . We can increase the
selection pressure by pitting a parent against more population
members, e.g., increasing. Typically, 0.6 , where is
the size of the parent pool.

Here, we apply tournament selection to the ES population de-
scribed in the previous section. Thetournament selection EA
(TSEA) uses the mutation operator found in the standard ES and
it also uses a recombination operator as used in ESA. The algo-
rithm’s operation is the same as ESA, except that we have no
parameter self-adaptation and, hence, the deviation vector is no
longer required, but mutation and recombination operations are
carried out in much the same way. We also do not compare the
offspring with the population’s mean fitness before including
them in the offspring pool as with ES and ESA. Instead, we just
place the first offspring that gets generated, by an operator,

directly into the offspring pool. The only other difference is the
need to calculate selection probabilities for each trial solution,
as discussed above.

By increasing the selection pressure, we increase the level of
discrimination made by the algorithm and hence we get a sub-
stantial speed increase. This can have the side effect of making
the algorithm find only one out of several possible solutions as
can be seen later in the experimental results. If the speed in-
crease is sufficient, it is possible to perform multiple runs of the
algorithm to find other solutions.

D. Differential Evolution

Storn and Price have described an EA that is self-adaptive,
simple, and yet very powerful called differential evolution
(DE) [18]. DE is perhaps the simplest EA to implement and
to understand out of those described in this paper. It has also
been shown [19] to be one of the most robust methods. It has
been tested against many other methods, including simulated
annealing, adaptive simulated annealing, genetic algorithms,
and annealed genetic algorithms, and was found to be at least
as good as the other techniques, and in many cases far better.

Several DE schemes have been proposed by Storn [20]; some
are more successful than others, and some are problem depen-
dent. Only two schemes will be discussed here: DE1 and DE2
[18]. In DE1, for each trial vector in the population, we
generate an intermediate vectoras follows:

(10)

In (10), is a positive real-valued user-set scale factor and,
, and are randomly1 selected integers in the range

and are all mutually distinct. The intermediate vectoris then
used with in a crossover procedure to generate a new off-
spring . If is fitter than , then and
we discard , else we keep . We generate potential off-
spring using the following formula:

for

otherwise.
(11)

In (11), is a randomly selected integer in the range [0,
1] and is an integer selected from the same range but with the
probability , where is the user set crossover
probability such that . The notation denotes the
function .

DE2 is identical to DE1 except for the generation of the in-
termediate vector . This time, an additional difference vector
is used, as follows:

(12)

Note that this time we only need two random integersand
, and is positive user-set scale factor. The point of DE2

is that by including the extra difference vector, involving the
current generation’s best solution, we enhance the greediness
of the algorithm.

1All the random numbers used in DE are assumed to be uniformly distributed
unless stated otherwise.
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When using DE there are several rules that, where possible,
should be obeyed to improve the performance of the algorithm.
For instance, it has been suggested that the initial population
should be spread over the full range of the problem variables
[20]. should usually be set to a value less than 0.5, but if the
algorithm fails to converge, then can be increased to as much
as 1.0. As an initial guess, the best population size is usually

and the user should try [0.5, 1.0]. Further-
more, as is increased above 10 , then and should be
decreased.

IV. DC ANALYSIS USING EC

A. Implementation

The new simulator, EACS, has been built on an existing
SPICE-like simulator. The existing simulator uses linked lists
and similar data structures to represent the circuit components:
the circuit nodes and the sparse network matrix. The EC
package uses the existing device models to evaluate branch
currents (to calculate the fitness of the solution), and returns
newly calculated node voltages into the simulator structure.
To some extent, therefore, the use of an existing simulator has
compromised the performance of the new solution methods,
but on the other hand, there are significant advantages to using
existing implementations of complex device models.

In addition to NR, the following solution algorithms may be
selected: ES, ESA, DE1, DE2, and TSEA. It is possible to man-
ually set all relevant scale factors and to choose a fitness func-
tion from those discussed in section or to use default settings for
each algorithm. As in a conventional SPICE simulator, the set-
tings can be applied by setting options in the circuit netlist file.
EACS has been tested using a variety of benchmark circuits. A
short description of each of these circuits is given in the next
subsection and the results of these tests follow.

B. Benchmark Circuits

To test the basic test simulator, several CMOS benchmark cir-
cuits were used to evaluate the performance of all of the EAs.
SPICE level-3 MOS models were used throughout. Each cir-
cuit has one solution, with the inputs described, unless otherwise
stated. Circuits such as the latch, the Schmitt trigger, the CMOS
inverter, the multiplexers, and the differential pair are often used
as benchmark circuits for simulators and the remaining circuits
given here are used to test scalability when simulating com-
posite circuits, involving subcircuits of devices such as trans-
mission gates and inverters. Thus, the benchmark circuits are as
follows.

• An inverter containing two MOS transistors, a p-type and an
n-type.

• A tristate inverter consisting of four MOS transistors.
• An RS latch consisting of two cross-coupledNAND gates

(eight MOSFETs in total). The latch inputs, set (S) and reset
(R), were both set at logic 1 (or in analog terms at the supply
voltage ). In this mode, the circuit has three possible
solutions: 1) output at ; 2) at 0 V; and 3) the
metastable state with at approximately /2. This cir-
cuit is not difficult to simulate with NR but illustrates NR’s
failure to find multiple solutions without the user assistance.

• A transmission gateXOR with inputs 1 and 1. This
circuit contains six MOSFETs. The inputs 1 and
0 were also tried but NR failed to converge, while the EAs
found the correct solution. NR fails on the second configura-
tion due to gain in the circuit and strong positive feedback.

• A transmission gate multiplexer (MUX1) consisting of two
transmission gates (four transistors). This circuit should sim-
ulate without problem; it is used here to test a composite
circuit.

• A tristate inverter multiplexer (MUX2) formed by using tris-
tate and regular inverters and consisting of twelve MOS-
FETs. This circuit is, again, used to illustrate the use of a
larger composite circuit.

• An inverting Schmitt trigger. The Schmitt trigger is made up
of five p-type and five n-type MOSFETs. This circuit usually
has one solution: the inverse of its input. However, the circuit
has hysteresis and when the input voltage is between two
critical thresholds the output depends on the previous state
of the circuit. In dc analysis, there are two possible solutions
as there is no memory of any previous state. This circuit is
used to illustrate the failure of NR to find multiple solutions
and to show that EAs can be used to simulate a circuit for
which NR fails to converge to either solution without user
assistance.

• A CMOS differential pair with two nMOS transistors, resis-
tive loads, and a constant current source.

• A one-bit adder that is constructed using a transmission gate
XOR (see above) together with two inverters and four trans-
mission gates. The three inputs were set to logic 1. The adder
contains 18 transistors. Again, this is another composite cir-
cuit and is used to test the scalability of our circuit simulator
when using EAs.

C. Experimental Results

Five EAs are implemented in the simulator, along with NR.
The NR algorithm employs damping in the form of step-size
limiting to assist convergence. Initial values can be set to assist
convergence.

The following EC algorithms were used for all the benchmark
circuits, with the control settings shown.

• DE1: 0.4, 0.5, convergence threshold 5
10 , population size (i.e., number of parents) 10
( is the number of circuit nodes)

• DE2: 0.8, 0.9, 0.3, convergence threshold
5 10 , 10

• ES: 0.7, Convergence Threshold5 10 ,
50 (“smaller” circuits), 100 (“larger” circuits)

• ESA: 1.0, convergence threshold5 10 ,
150

• TSEA: 1.5, convergence threshold5 10 ,
50 (“smaller” circuits), 100 (“larger” circuits), 0.6 .

These settings were found to work well for all circuits. For
DE1 and DE2, can be varied, and for TSEA it is necessary
to vary between 1.0 and 2.0 to find multiple solutions. All
the EAs are sensitive to the convergence threshold; making the
threshold smaller increases the accuracy, but also increases the
run time. In fact, the thresholds suggested above were found
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TABLE III
RESULTS FOR ACMOS NOT GATE (INPUT= 1)

TABLE IV
RESULTS FOR ACMOS TRISTATE INVERTER

TABLE V
RESULTS FOR ACMOS RS LATCH (R = S = 1)

TABLE VI
RESULTS FOR ACMOS XOR GATE (A = B = 1)

by performing several “tune-up” runs of the algorithms across
the range of benchmark circuits and these values were found to
work well in general. The algorithm halts once the best member
of the current population has a fitness less than the threshold.

For the Schmitt trigger and the RS latch, it was necessary to
manually set initial conditions to force NR to find all the solu-
tions. By default, NR will find the metastable state for the latch.
NR will not converge for the Schmitt trigger—it was necessary
to artificially set the input voltage just outside the hysteresis
band to find a solution.

The performance for each algorithm with each of the cir-
cuits is shown in Tables III–XI. The RS latch (Table V) and the
Schmitt trigger (Table IX) have multiple solutions. The algo-
rithm is stated in the first column of each table. In the second

TABLE VII
RESULTS FOR ACMOS MULTIPLEXER 1

TABLE VIII
RESULTS FOR ACMOS MULTIPLEXER 2

TABLE IX
RESULTS FORSCHMITT TRIGGER

TABLE X
RESULTS FOR ACMOS DIFFERENTIAL AMP

TABLE XI
RESULTS FOR ACMOS ONE-BIT ADDER

column, the number of solutions found by each algorithm au-
tomatically is stated as an integer. If multiple solutions could
be found by changing settings, this is stated as an expression
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Fig. 2. Convergence graph for DE1 and an RS latch.

Fig. 3. Convergence graph for TSEA and an RS latch.

(e.g., 1 1 means two solutions were found by restarting the
algorithm). The third column shows the number of generations
(or for NR, the number of iterations). The fourth column shows
the accuracy compared with the solution found by NR (assumed
to be the most accurate). In the case of multiple solutions, the
mean error across all solutions is stated. Finally, the CPU time
in milliseconds is given. The benchmark tests were run on a PC
workstation with an 800-MHz 586 CPU and 256 MB of RAM,
running Windows NT. Again, if multiple runs were needed to
find multiple solutions, this is stated as a sum. As well as mon-
itoring the best solution of the current generation, various other
values were monitored at each generation to provide an idea
of the performance of the EAs. In particular, the mean fitness,
mean solution, and the standard deviation of the population were
obtained and stored in a separate results file for later study. This
data gives an insight into the convergence of the EAs. Fig. 2 il-
lustrates the progression of DE1 for an RS latch, with respect
to the mean fitness of the population. (The analysis takes 301
generations, but the graph shows only the first 45 generations.)
The initial population’s mean fitness was5.12 10 and the
final population’s mean fitness was1.08 10 . As another
example of the convergence behavior of the EAs, Fig. 3 shows
the convergence of TSEA for an RS latch, but unlike DE1, only
one solution was found for a single run of TSEA. In this case,
the initial population’s mean fitness was2.50 10 and the
final population’s mean fitness was 5.82 10 . A similar
pattern can be found among the data collected for the other al-
gorithms and circuits.

DE1 and ES are the best algorithms for finding multiple
solutions automatically. ESA is least good at finding multiple
solutions, even when restarted.

NR is always the fastest, in terms of CPU time (but note
the comment above concerning the manual intervention needed
to find multiple solutions). For circuits with a single solution,
TSEA is always the fastest of the EAs in terms of the number of
generations and in terms of CPU time, with the exception of the
RS latch, where DE1 is fastest. ESA is consistently the slowest
(apart from for the Schmitt trigger circuit, where it only found
one solution). The best-performing EAs are, however, between
16 and 170 times slower than NR.

The accuracy of the EAs is very similar. TSEA or DE2 are
the most accurate in all cases except MUX1, when ESA is best.
It must be noted that all these accuracy figures are relative to
NR, and are not absolute errors. The error is calculated as the
mean of the difference between the NR solution(s) and the EA
solution(s).

In general, therefore, DE1, DE2, ES, and TSEA are accurate
and robust in terms of convergence and the number of solu-
tions found. Accuracy and speed can be gained at the expense
of finding multiple solutions. Although NR is always fast, it
may depend on the user setting the initial state of the solu-
tion vector. The EAs are more likely to succeed from arbitrary
starting points. Therefore, the CPU time does not necessarily
represent the total effort required to find a solution. This is par-
ticularly true when multiple solutions exist and are sought. It
can therefore be argued that the best algorithms in terms of ac-
curacy, speed, and the ability to find multiple solutions and to
analyze problem circuits, such as the Schmitt trigger, are DE1
and DE2.

V. CONCLUSIONS

The use of EAs for nonlinear operating-point analysis of
MOS circuits has been demonstrated. It has been shown that
EAs, and particularly DE and TSEA, have some significant
advantages over conventional NR. DE and the other EAs are
globally convergent, whereas NR is only locally convergent.
NR requires manual intervention to find all the solutions to a
circuit; it has been shown that DE can find multiple solutions
in a single pass. An important property of EAs is that they
can find multiple solutions in a single pass, but this can
sometimes take significantly longer than using NR to find a
single solution. It is important to get a good balance between
speed, accuracy, and the number of solutions found. We can
often make improvements to an EA that, for instance, increases
the speed of the algorithm, but this can have side effects.
For example, if we increase the amount of discrimination an
algorithm makes with regards to selecting parents, then this
gives a speed increase along with improved accuracy, i.e.,
TSEA. We have seen, however, that there is a significant side
effect in losing the ability to find multiple solutions. Hence, if
TSEA is to be a suitable alternative to NR, improvements to
the algorithm must be made to give it the ability to find all the
solutions in a single pass.

All of the EAs are sensitive, by varying degrees, to repro-
duction parameters, such as the mutation rate, population size,
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recombination strategies, etc. The success of DE is partly due to
its self-adaptive nature, and although DE uses mutation as a pri-
mary operator, it also contains a recombination operator so as to
not neglect the benefits of sexual reproduction. Another excel-
lent feature of the DE algorithms is that the population size is au-
tomatically scaled in proportion to the size of the given problem,
which can help avoid over- and under-sized populations. These
features and the way they are implemented in DE have been the
major contribution to DE’s good performance.

All of the EAs here are slow compared with NR, even though
the Jacobian matrix is not constructed. This can be attributed
to two factors. First, a significant amount of sorting of popula-
tions has to be done. This accounts for the majority of the CPU
time taken. For example, in a -ES, with typical values of

100 and 200, we will have it so the parent pool is or-
dered fittest first and the offspring pool is in no particular order.
Hence, we will need to reorder a population that may not be
close to being correctly ordered and with 300 members, as with
the example above; this is not a trivial task. The sorting algo-
rithm used, in this version of EACS, is simple and based on the
insertion sort. A better choice of algorithm, such as one based on
the quick sort algorithm, would produce a significant speed up.
Secondly, because the device models have been inherited from
an earlier simulator, they evaluate both the current (as required
for EC) and the partial derivatives, which are not required. If
the models were modified to remove these unnecessary calcu-
lations, we would expect the time taken for device evaluation to
be approximately halved. Therefore, overall we can reasonably
expect that the EAs can be speeded up by at least an order of
magnitude. This would make them very competitive with NR.
Having demonstrated the computational effectiveness of using
evolutionary computation for circuit analysis, the next phase of
this research will seek to increase the speed of the algorithms.

As well as increasing the speed, we will also endeavor to
improve the accuracy. It is felt that the best way to approach
this is by way of a hybrid method with the NR algorithm. In
other words, a population can be searched in a fairly coarse way
using an EA, perhaps DE1, and then the solution can be refined
using NR. This will provide accuracy almost identical to NR and
should also reduce the number of generations needed to reach
convergence. Much larger benchmark circuits, up to 100 nodes,
will be constructed and used to test the performance of the EAs
when simulating such large circuits.
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