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Abstract—An important objective in the analysis of an electronic  voltages, and/or branch currents, which is computationally
circuit is to find its quiescent or dc operating point. This is the costly. The second problem is that the solution can diverge
starting point for performing other types of circuit analysis. The 4, i to converge by oscillating between several potential

most common method for finding the dc operating point of a non- uti This latt ituati in circuits with a |
linear electronic circuit is the Newton—Raphson method (NR), a solutions. This fatier situation can occur in circurts with a large

gradient search technique. There are known convergence issuesamc?unt of feedback. _ . . o
with this method. NR is sensitive to starting conditions. Hence,  Finally, convergence is only guaranteed if a suitable initial so-
it is not globally convergent and can diverge or oscillate between |ytion vector is chosen. For circuits with more than one possible

th‘:ﬁg:é Zt‘g?ﬁggoﬁis'\‘p'?agg‘ d?g%;'ggsc’;r? dseo\ll‘;:g‘teosfZﬁ:\tlvogpsolution, the initial guess can influence the final solution and
proach to dc operating-point analysis based on evolutionary com- hence finding multiple global solutions is generally difficult. For

puting. Evolutionary algorithms (EAs) are globally convergentand  €xample, an RS latch, which is a common subcircuit found in
can find multiple solutions to a problem by using a parallel search. computer memory, has three potential solutions. NR-based al-
At the operating point(s) of a circuit, the equations describing the ~ gorithms will usually only find the metastable solution unless
current at each node are consistent and the overall error has a min- the user intervenes. This solution represents the latch in a bal-

imum value. Therefore, we can use an EA to search the solution d state. but it is oft . tant to k hat the ci
space to find these minima. We discuss the development of an anal-anced state, butitis often more important to know what the Cir-

ysis tool based on this approach. The principles of computer-aided CUit does in its two other conjugate state outputs at logic (1,0)
circuit analysis are briefly discussed, together with the NR method in one case and (0,1) in the other. Obviously, these solutions
and some of its variants. Various EAs are described. Several such would give three different starting points for a transient analysis.
algorithms have been implemented in a full circuit-analysis tool. Hence, the ability to find multiple dc operating points, when

The performance and accuracy of the EAs are compared with each th ist ful for det ining the behavi
other and with NR. EAs are shown to be robust and to have an ac- €Y €XISL, €an prove very useiul for determining the behavior

curacy comparable to that of NR. The performance is, at best, two Of the circuit over time.
orders of magnitude worse than NR, although it should be noted  In this paper, we discuss various aspects of evolutionary com-

that time-consuming setting of initial conditions is avoided. puting (EC), in particular evolution strategies (ESs), and differ-
Index Terms—Circuit simulation, dc circuit analysis, differential ~ €ntial evolution (DE), and how these techniques can be applied
evolution, evolution strategies, tournament selection. to dc circuit analysis. As will be seen, EC has certain advantages

over NR. The main benefits are improved convergence and the
ability to find multiple solutions. These can be attributed to the
parallel nature of EC algorithms, i.e., a search through a pop-
HE FIRST task in simulating the behavior of a circuit is talation of solutions rather than a sequential search for an indi-
find the quiescent or dc operating point. This is importartdual solution, as in NR. There are further adaptations that can
because the operating point is required when performing othgr made to ES, such as more sophisticated mutations and se-
types of circuit analysis. For example, the dc operating pointliction schemes. At present, the alternatives to NR are slow, in
used as the starting point for transient analysis (circuit responggt because of the way in which the algorithms have been im-
in the time domain) [1]. Circuit design algorithms also need thgiemented. We will also see that evolutionary algorithms (EAS)
dc operating point of the circuit. In this case, the operating poioan find solutions to circuits that fail (without user intervention)
is required to evaluate the dc performance of the current desighen using NR.
under a given set of constraints on the circuit’s components [1].At the end of this paper we will discuss of the results ob-
Traditionally, the operating point is found by using theained from a SPICE-compatible evolutionary circuit simulator
Newton—-Raphson method (NR). This method has three gevolutionary analog circuit simulator (EACS)] thatimplements
tential problems. The first problem is that, at the start of eaglrsions of the basic EAs, including some more sophisticated
iteration, we must recompute the Jacobian matrix. The Jadeatures such as tournament selection and higher configurability
bian matrix contains all the partial derivatives of the nonlineayith regard to the evolutionary operators and how they are used.
device equations with respect to the circuit variables, nodeBefore continuing with a detailed look at the techniques
outlined above, we will define the notation that is to be used
throughout this work. In the NR algorithm, we represent the
Manuscript received August 27, 2001; revised January 29, 2002. This wdfkal solutions, e.g., the vector of node voltages and/or branch
was supported by the Engineering and Physical Sciences Research Counciprrents, as a real-valued trial vectdir = (1'11‘ . xﬁ)T’ at
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f, we havef(x*) = 0. In the case of EAs, the trial vector I;
has an extra superscripthat denotes théth member of the i >
population.k denotes the generation count and, thus, the trial
vector is written a’ ¥ = (z%*, ..., 2 ¥)T. Without loss of G.
generality, we can restrict ourselves to the task of minimization ¥
because maximizing a functiofi(x*) is the same as mini- v, v
mizing — f(x*), where in generaf(x*) € ® andx* ¢ R,

In the case of circuit analysis, the objective function is a vectbig. 1. Conductive component.

f(x*) € R representing the characteristic equations of the
nonlinear circuit components. In EAs, the objective functfon
represents thétnessof a particular trial vector.

It is important at this point to comment on the nature of the ‘ v, v, ‘ RHS
problem that is addressed in this paper. NR is used to find the 7 ‘ G G, ‘
roots of an equation or a set of equations, and as such this is
not a minimization problem. We can, however, convert the root-
finding problem of operating-point analysis into a minimiza-
tion problem by specifying a fithess function and attempting to TABLE I
minimize that. This enables us to use EAs, which are search MATRIX STAMP FOR FET

TABLE |
MATRIX STAMP FOR CONDUCTANCE

techniques that easily lend themselves to solving minimizatic | il S i i RHS
n s G
prOblemS D | llk)\‘ -G ;‘& -G :'\ G:"\‘ | - l;)v
s | -6 Gh+Gn -Gi | 1
II. CONVENTIONAL CIRCUIT ANALYSIS TECHNIQUES G | |

In this section, we discuss the NR method for dc analysis.
Conventionally, one analyzes a circuit to find its node voltagés;; between two nodesandj, with node voltages; andwv;,
using Kirchhoff’s Current Law (KCL) [1]. A node voltage is Fig. 1.
calculated with respect to a common reference point. Sometimed his component has the stamp shown in Table I.
a branch current is also required; in which case, Kirchhoff’s It is similarly possible to define stamps for nonlinear ele-
Voltage Law (KVL) is used [1]. A branch current is the curreniments, and such stamps form an efficient method for updating
flowing between two nodes in the circuit. Before continuing, the admittance matrix and RHS vector. Equation (1) gives the
is important to define KCL and KVL. KCL states, “The sum otbranch current for a field-effect transistor (FET) at the- 1)
currents flowing into and out of a node is zero” and KVL state$\R iteration
i;l'gzrsoL.l“m of branch voltages around a closed loop in any cwcwlt,l%l — Ik + Gl U],SJSA +Ghy - v’g;gl

We formulate equations to represent each branch current and :¢’BS+G’BS . (vﬁgl—v]’gs)—f-G’éS . (v’ggl — 'Ulés) . Q)

apply KCL to sum the currents at each node. Thus, we obtain . . h
n simultaneous linear equations which must be solved, adVg€r€ins denotes the FET drain-source curréi at thek
matrix—vector equation, to find the node voltages. The matrigration. The transconductancéys, Gs, andGp, are the

is often called the nodal admittance matrix, which contains tiig"vatives ofif,s with respect to the voltage — vy = vfj,
transconductances (partial derivatives of each device's charg@erel and; (I # j) can be any ofD, 5, or & (the drain,
teristic equations with respect to the circuit variables, i.e., tifse source, and the gate). Note that the above derivation is for
Jacobian) of nonlinear devices as well as the conductanced!§t forward bias case of the MOSFET. If the MOSFET goes
linear devices e.g., resistors. The solution vector contains ndBE reverse bias, thef and.5 are swapped. Table Il shows the
voltages and possibly branch currents, and the right-hand sffgieral element stamp for a FET transistor. o
(RHS) vector contains the circuit excitations in the form of |h€Mmatrix-vector equations can be solved by Gaussian elim-

current sources. The admittance matrix is normally constructisgtion or a related algorithm, such as LU factorization. There
using element stampkg], which are briefly discussed below, &€ other improvements that can be made when we have cer-
Later we will see how evolutionary methods have advantagi@d? types of matrices. In particular, if a matrix is sparse, one
over this traditional technique. For example, EAs do n&nly need store the nonzero entries, thus eliminating unneces-
require the Jacobian, and therefore we do not need to solv8&Y calculations [1].

matrix-vector system. Hence, we no longer require elemegt - \r Method

stamps. _ o .
The most common method for nonlinear circuit analysis is the

NR method coupled with the Gaussian elimination algorithm.

We solve the set of nonlinear equatidf{s*) = 0 by formu-

Element stamps are small component-specific tables cqgfing the linearized matrix vector equation (2) using element
taining matrix and excitation data [3]. The table indicates thﬁamps

component values to insert in the nodal admittance matrix and
in the RHS vector. For example, consider a linear conductance GrxF+ = 1F, )

A. Equation Formulation and Solution
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Equation (2) is solved to fin&**!, the node voltage vector a small number such that® o 1; « is then increased at each
at the(k + 1)t iteration. The matrixG* is the nodal admit- iteration until it reaches 1, at which point it remains constant
tance matrix, and the RHS vect®t is the vector of excita-
tions. Both are initially set to zero and are updated using el- kD" = gk +a- (xM o xb). ()
ement stamps. In fact, to form (2), we need to use the fact that
I* = G*x*—f(x"). If we substitute this expression into (2) andrhe increments of should be quite large for the first few itera-
multiply both sides byG~*, we getx**! = x* = G™*-£(x*),  tions but should then decrease gradually. Hence, this technique
which is the multidimensional form of the standard one-dimeRyops sudden large changes that occur between successive ap-
sional Newton formulary, = ) — f(zx)/f'(xx), where proximate solutions, particularly over the first few iterations.
f'(zx) is the derivative of the device equation with respect to The ¢, .. stepping procedure aids convergence by adding a
x, evaluated aty, the kth approximation to the root of. BY  constant (7,,,,) 0nto each diagonal component of the Jacobian
repeatedly solving (2) (using Gaussian elimination or a relat@ghtrix G*. (7, is set to a large initial value and is decreased at
technique) and using the solution to formulate the matrix and €xach jteration to a value of 18 or less. The constarit;, stops
citation vector for the next iteration, the solution vector shoulghros from occurring on the diagonal, which in turn prevents the
converge to an accurate representation of the state of the circyihtrix from becoming singular. This procedure is equivalent to
For further reading, the reader is directed to [1]-{3]. alarge resistance (small conductance) being connected between
This process is computationally intensive. The matrix equgyery node in the circuit and ground.
tion needs to be set up and solved once per Newton iterationThese techniques do not all work for every problem. Hence,
Building the Jacobian matrix requires the evaluation of the pafommercial simulators employ a number of these techniques
tial derivatives of the device equations. Typically, evaluating the,q will switch as necessary between them if convergence prob-

device equations and derivatives, along with the associated Mgns arise. The aim is to develop an EA to find a more general
trix operations, requires about 70% or more of the total CPiethod for solving the majority of circuits.

time [4], [5].
I1l. EVOLUTIONARY COMPUTING

C. Convergence In general, when using EC techniques, for each member of the
populationP* = {x!'* ... x™k} we aim to optimize and in

NR has some inherent problems that manifest themsel\}{hlssf case minimizen objectives (nodal equations) for each in-

. ! . ik
quite frequently. When they arise, the algorithm can fail to wor] |V|QUaI..N Is the size of the populatlpn. Here), " represents
; ; o . .. thesth trial vector of node voltages far= 1, 2, ..., N atthe
correctly. One such problem is NR’s sensitivity to the initia .
; : . ._kth generation fok = 1, 2, ..., K,.x. We then form theb-
values in the solution vector used to start the analysis. This. is . ik ik ik i kAT
. . . . . ective vectordenoted byy** = (y; ", yy °, ..., ¥4 ) . We

especially noticeable when we are dealing with nonlinear cit- o o

! : ; : X .. denote the objectives by,,, m =1, 2,..., no. For the pur-
cuit equations that have multiple solutions. In this case, differen .
C ) : : : ose of dc analysis,o = n (the total number of node voltages
initial settings can result in convergence to different solutions Qr

to divergence. In the absence of any other knowledge, the so?ﬂ]pl branch currents). In the simplest case; contains only

. o : L ..node voltages, so we can use these in the evaluation of the de-
tion vector is initialized td. This may be simplistic because, if . . : i

. . . . vice equations. The resulting device currents can then be used
there are multiple solutions, they will be missed and the alg

rithm may potentially fail to converge. A randomly initializedPO form the KCL equations for each node. Hence, we dejipe

) . -as the net current flowing at node, which is the node’s KCL
set of start points may seem better, but the main reason thisis _ .

. . . . equation.
not done is that it may yield more failures than successes or re-:

peated occurrences of the same solution, all of which increas%jur"_qg the opt|m|za_1t|on Process, we alm.to "‘."”'m'zem
the running time. There is, however, a technique caietho- Values; hence, as a trial vector reaches optimalityythealues

s L - in the corresponding® * vector will be tending toward zero. In
topywhich is a more sophisticated approach to this idea [6]_[éj1ther words pthe ncg current flowing into ea%h node should be
and which is potentially globally convergent. '

zero for a perfect solution, and likewise, if KVL is being used,
The main problem with the selection of the initial valueghe net voltage around a closed loop should be zero. We mini-
is that one can never be sure of the radius of convergence fgke they,, values by minimizing the “fitness” of the solutions.
a particular problem, and so picking an initial solution thatoy instance, we could calculate the Euclidean noryidf and
is outside this radius can lead to divergence, or if there a#§s should be zero for an optimal solution. Hence, by keeping
multiple solutions, it could lead to finding a solution other thago|ytions with the better fitnesses, we will steadily be reducing
that being sought. There are several techniques that canyRevalues in the objectives vectors over successive generations.
used to help convergence, such asgtmordinate method [2],_ By using EAs, we hope to—among other things—find mul-
the error-function-curvature-driven Newton update correcth;b|e dc operating points of the circuit when they exist. It is im-
method [9], damping algorithms [10], the source steppingyrtant to note that the problem of predicting the number of pos-
algorithm [11], and the&.,;i, stepping procedure [12]. sible solutions to an arbitrary nonlinear circuit is impossible.
In 1977, Hoet al.[10] proposed a damping algorithm to aidThe potential number of solutions may be known in advance
the convergence of NR. A damping factor is used to aid convelue to the expertise and experience of the user. Obviously, this
gence as follows. The damping facterin (3) is initialized to is only of use when analyzing variations of known circuits and
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device types. Therefore, regardless of which algorithm we efS is known to avoid stagnation. In the developmental stages
ploy to find the dc operating points, we can never be sure if theséthis work, the use of this ES was explored but was discarded
are any solutions left unfound. It is hoped that by the inherebécause it incurred longer running times, and so another form
globally convergent properties of EAs, we will find many, if nobf ES was chosen instead. This version is denoteé ()-ES;

all, of the solutions when they exist and will not have to rely oat the end of a generation, the bgshdividuals from the union

user intuition to find the solutions as we do with NR. of the parent and offspring pools are taken as the parents for the
_ _ next generation. Generally, each parent is required to generate
A. Fitness Functions at least one offspring. The exact number depends on the value

EAs are designed to work on a population of trial vectors arff .
exhibit an implicit parallelism. To enable the processes of evo-Usually, ESs mutates a parent by adding a Gaussian dis-
lution to be simulated, it is necessary for each member of théuted random vector of mean zero and predefined deviation
population to be assigned a value representing the worth of thedt [15] as follows:
solution. This is called thétnessof the individual. The fithess
can then be used to decide which trial vectors in the population
are to _survive erT one generation to the next. The general teﬂb’re, themutation vectonr’
nique is to use® “ and other knowledge about the problem to

%0k = xbk 4l (5)

is computed from

computey® *. In the case of dc operating-point analysis, we use ut = (UL ug . ujl)T

the KCL and KVL equations. We use the datayin®, which is i = N;(0, o) ©6)
essentially the error vector far> ¥, to obtain a fitness score for J I

the trial vector in question. The overall optimization procedun@ (6), s = T_J]k represents a predefined deviation or step size of
then aims to minimize the fitness scores. the mutation vector at generatiénr is a user-set scale factor,

In developing our circuit simulator, we implemented five fitandgf is the standard deviation of théh component over the
ness functions but after early investigations, the Euclidean nogntire population at generatidn The new solution has its fit-
was chosen because it provided the best all-round compatibiliyss evaluated, and if its fitness is better than the mean fitness
with the EAs discussed here in terms of convergence times asidhe population, then it is included in the offspring pool. This
accuracy. The fitness function is continues until the offspring pool is full.

It can be seen that the basic ES uses the same deviation to

(4) generate each variable in all the mutation vectors in a single
generation. This is not very realistic because the magnitude of
each component of the solution vector can be very different. It

B. ESs can sometimes be better to have a different deviation or step
' size for each of the components. This can allow for more diver-

ESs are probabilistic heuristic direct-search optimizatiagity among the solutions and a better exploration of the solution
techniques, invented independently in 1965 by Rechenbejgace [15]. If one implemented this directly, it would involve
[13] and Schwefel [14]. They operate at the phenotypic levehany user-defined parameters; hence, itis useful if the step sizes
which has advantages for real-valued problems because theksais self-adapt, thus letting the algorithm find the best settings
no need to define suitable genotype representations and the[pej.
tentially complex genotype-to-phenotype mapping functions. One self-adaptive technique is given as follows:

There is generally no crossover or inversion in ES [or at least .

not in the same sense as with genetic algorithms (GAs)], so uj = N(0, Uf“)

there is not always a need to find cutting points. Sometimes, e :g]k: ~exp (/- N(0, 1) +7-N;(0,1)). (7)
however, it can be beneficial to have a crossover-like operator.

When this is the case, we ussombination The cutting points This provides a different deviation for each variableuh
needed for recombination are simpler than those for GA. Mverall, we form adeviation vectorg™**! for each trial
ES, cutting points are equivalent to simply deciding whichiector x**. The variableN (0, 1) is a normalized Gaussian
components of the parents’ trial vectors are used to buildrandom deviate globally set and regenerated at the start of each
recombined intermediate vector This kind of recombination generation andV;(0, 1) is thejth independent normalized
is calleddiscrete recombinatiofbecause we are recombiningGaussian random deviate. The parameteasdr’ are defined
two parents by discretely swapping their vector componenis,(8) [16]. { is a user-set scale factor

selected at random.

frxorm(x”®) = NORM(y"*) =

We use a population of siZ€ divided into two pools such that T=( /V 2n
N = p+ A, where the firsj: members of the population form
the parent pool and the remainidgnembers form the offspring ' ZC/\/ 2vn . (8)

pool. There are several variations of ESs. The firstisX)-ES,

where at the end of each generation,gheest children are taken Other similar self-adaptive mutations are possible [15].

as the parents for the next generation fok1y < A < oo. In general, ESs use only a mutation operator, but the self-
All other individuals are discarded. Although it can seem likadaptive scheme (ESA) outlined above also uses a recombina-
a waste to throw away potentially useful solutions, this form dion operator. One possible recombination operator has already
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been mentioned: discrete recombination, but for our ESA alirectly into the offspring pool. The only other difference is the
gorithm, a different recombination operator has been used asesd to calculate selection probabilities for each trial solution,
result of earlier experiments. It works as follows. Two parents discussed above.

vectorsx™* andx">*, r # o €1, 2,..., uare randomly By increasing the selection pressure, we increase the level of
selected before mutation occurs. The recombined intermedidiscrimination made by the algorithm and hence we get a sub-
vectorv and the intermediate deviation vectoare calculated stantial speed increase. This can have the side effect of making

as the algorithm find only one out of several possible solutions as
can be seen later in the experimental results. If the speed in-
v=x""F4p. (x"F - x"F) crease is sufficient, it is possible to perform multiple runs of the
g=0"v" 4 p(oa"F — g k), (9) algorithm to find other solutions.

The variablep is a uniformly distributed random deviate beD. Differential Evolution

st _ _ _ _
tween 0 and 1. The vectar becomes the new offspring"*, Storn and Price have described an EA that is self-adaptive,

and if its fitness is better than the mean fithess of the populati%ple and vyet very powerful called differential evolution
then it is included in the offspring pool. This continues until th?DE) [i8] DE is perhaps the simplest EA to implement and
offspring pool is full. When using both mutation and recombig, |y qerstand out of those described in this paper. It has also
nation, we first use recombination on the parent pool and th en shown [19] to be one of the most robust methods. It has

after generating offspring, we apply mutation to the parent POBéen tested against many other methods, including simulated

and generate further offspring. annealing, adaptive simulated annealing, genetic algorithms,

and annealed genetic algorithms, and was found to be at least

as good as the other techniques, and in many cases far better.
The EAs described thus far have had one thing in common,Several DE schemes have been proposed by Storn [20]; some

they each uséruncation selectior{15]. This means that the are more successful than others, and some are problem depen-

besty individuals are selected from the union of the parent ariént. Only two schemes will be discussed here: DE1 and DE2

offspring pools, which become the set of new parents and §18]. In DE1, for each trial vectox® * in the population, we

ranked in order of fitness. However, with truncation selectiogenerate an intermediate vectdras follows:

we do not directly have any control over the selection pres- ,

sure on an individual. It has been demonstrated that as selec- vi=x"F g (xh—xe k), (10)

tion pressure increases convergence time decreases [15], but iR{lo _ i lvalued ¢ le fact q
creasing selection pressure can make it harder to escape f}B ), 7 IS a positive real-valued user-set scale factoran

local optima 72, andr; are randomly selected integers in the ranfie V]
Tournament selectiois a selection mechanism found in theanOI are all mkutually distinct. The intermediate veatofs then
ik 3
area of EC called evolutionary programming [15], [17]. At thgsed WJE“;‘ 1'2 21_cro_ssover pr?ckgdure tC; %eir;eratei 2 new off
start of each generation, each member of the population sprlg_gx ’ dxllf,f( ’ | 'S f|ttelr<than;<k= V,Vthenx 7 ¢ N :( ’ i alndﬁ
is, in turn, compared pairwise with each-pfandomly selected W€ 21S¢ar ’th, efsltle we efe;x ' It € generate potential ofi-
and distinct members of the population, wher€ &y < u. For spring using the following formula.

C. An EA and Tournament Selection Scheme

each of they members, a tally point is added onto a temporary vt forj = (K) +1,(K4+1) +1
i i,k i fi . 77 n ’ n ]
tally scoreT™, if x" " is fitter than that member. Therefore, any ik _ (K+L-1) +1
x%* can achieve at mo§t’ = ~ tally points. Hence, we calcu- 2% otherwise
Jj ’

late the selection probabilitf?, for x"* asP;, = T*/~, and (11)

s0 0< P, < 1. When a parent is required, such as in the rgy (11), K is a randomly selected integer in the range:{o
combination or mutation operators, we randomly pick a parefif and, is an integer selected from the same range but with the
from the population and randomly accept or reject that choiggonabilityPr (L = ) = Pr, whereP, is the user set crossover
using a coin toss biased according/tQ,. We can increase the propability such thaP, € [0, 1]. The notatior{ K),, denotes the
selection pressure by pitting a parent against more populati@iction K mod 7.

members, e.g., increasing Typically,y < 0.6-x, wherey. is DE2 is identical to DE1 except for the generation of the in-

the size of the parent pool. . ~ termediate vectov’. This time, an additional difference vector
Here, we apply tournament selection to the ES population dg-sed, as follows:

scribed in the previous section. Theurnament selection EA

(TSEA) uses the mutation operator found in the standard ES and = x*"* 4 7/ - (x”*%F — xi ¥y 4 7. (x"F — x"2 k) (12)

it also uses a recombination operator as used in ESA. The algo-

rithm’s operation is the same as ESA, except that we have Ngte that this time we only need two random integersand
parameter self-adaptation and, hence, the deviation vector i¥pno@nd’ is positive user-set scale factor. The point of DE2
longer required, but mutation and recombination operations a¥ethat by including the extra difference vector, involving the
carried out in much the same way. We also do not compare fH&rent gen.eration’s best solution, we enhance the greediness
offspring with the population’s mean fitness before includingf the algorithm.

them in the offspring pool as with ES and ESA. Instead, we jUSt1A|| the random numbers used in DE are assumed to be uniformly distributed
place the first\ offspring that gets generated, by an operatainless stated otherwise.
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When using DE there are several rules that, where possible A transmission gat®or with inputsA = 1 andB = 1. This
should be obeyed to improve the performance of the algorithm. circuit contains six MOSFETs. The inputs= 1 andB =
For instance, it has been suggested that the initial populationO were also tried but NR failed to converge, while the EAs
should be spread over the full range of the problem variables found the correct solution. NR fails on the second configura-
[20]. P. should usually be set to a value less than 0.5, but if the tion due to gain in the circuit and strong positive feedback.
algorithm fails to converge, the. can be increased to as muche+ A transmission gate multiplexer (MUX1) consisting of two
as 1.0. As an initial guess, the best population size is usually transmission gates (four transistors). This circuit should sim-

N = 10 - n and the user should try, 7/ € [0.5, 1.0]. Further- ulate without problem; it is used here to test a composite
more, asN is increased above 1@, thent andr’ should be circuit.
decreased. « Atristate inverter multiplexer (MUX2) formed by using tris-
tate and regular inverters and consisting of twelve MOS-
IV. DC ANALYSIS USING EC FETs. This circuit is, again, used to illustrate the use of a

larger composite circuit.
 Aninverting Schmitt trigger. The Schmitt trigger is made up

The new simulator, EACS, has been built on an existing of five p-type and five n-type MOSFETSs. This circuit usually
SPICE-like simulator. The eXiSting simulator uses linked lists has one solution: the inverse of its input_ However, the circuit
and similar data structures to represent the circuit componentshas hysteresis and when the input voltage is between two
the circuit nodes and the sparse network matrix. The EC critical thresholds the output depends on the previous state
package uses the existing device models to evaluate branchyf the circuit. In dc analysis, there are two possible solutions
currents (to calculate the fitness of the solution), and returns s there is no memory of any previous state. This circuit is
newly calculated node voltages into the simulator structure. ysed to illustrate the failure of NR to find multiple solutions
To some extent, therefore, the use of an existing simulator hasgnd to show that EAs can be used to simulate a circuit for

compromised the performance of the new solution methods, which NR fails to converge to either solution without user
but on the other hand, there are significant advantages to usinggssistance.
existing implementations of complex device models. « A CMOS differential pair with two nMOS transistors, resis-

In addition to NR, the fOllOWIng solution algorlthms may be tive |oadS, and a constant current source.
selected: ES, ESA, DE1, DE2, and TSEA. Itis possible to man- A one-bit adder that is constructed using a transmission gate
ually set all relevant scale factors and to choose a fitness func-xor (see above) together with two inverters and four trans-
tion from those discussed in section or to use default settings formission gates. The three inputs were set to logic 1. The adder
each algorithm. As in a conventional SPICE simulator, the set- contains 18 transistors. Again, this is another Composite cir-

tings can be applied by setting options in the circuit netlist file. cyit and is used to test the scalability of our circuit simulator
EACS has been tested using a variety of benchmark circuits. Aywhen using EAs.

short description of each of these circuits is given in the next
subsection and the results of these tests follow.

A. Implementation

C. Experimental Results

B. Benchmark Circuits Five EAs are implemented in the simulator, along with NR.
To test the basic test simulator, several CMOS benchmark cfite NR algorithm employs damping in the form of step-size

cuits were used to evaluate the performance of all of the EA#Niting to assist convergence. Initial values can be set to assist

SPICE level-3 MOS models were used throughout. Each cfionvergence.

cuit has one solution, with the inputs described, unless otherwise he following EC algorithms were used for all the benchmark

stated. Circuits such as the latch, the Schmitt trigger, the CM@8cuits, with the control settings shown.

inverter, the multiplexers, and the differential pair are oftenused « DE1: + = 0.4, P. = 0.5, convergence threshold 5 x

as benchmark circuits for simulators and the remaining circuits  10~%, population sizeV (i.e., number of parents} 10-n

given here are used to test scalability when simulating com- (5, is the number of circuit nodes)

posite circuits, involving subcircuits of devices such as trans- « DE2: + = 0.8,7/ = 0.9, P. = 0.3, convergence threshold

mission gates and inverters. Thus, the benchmark circuitsareas =5 x 1078, N = 10-n

follows. « ES: 7 = 0.7, Convergence Threshotd5 x 1076, N =
 Aninverter containing two MOS transistors, a p-type and an 50 (“smaller” circuits), 100 (“larger” circuits)
n-type. « ESA: ¢ = 1.0, convergence threshotd5 x 1075, N =
* A tristate inverter consisting of four MOS transistors. 150

* An RS latch consisting of two cross-coupledND gates « TSEA: 7 = 1.5, convergence threshoid5 x 1077, N =
(eight MOSFETSs in total). The latch inputs, set (S) and reset 50 (“smaller” circuits), 100 (“larger” circuits)y = 0.6-N.
(R), were both set at logic 1 (or in analog terms at the supply These settings were found to work well for all circuits. For
voltage Vpp). In this mode, the circuit has three possibI®E1 and DE2; can be varied, and for TSEA it is necessary
solutions: 1) outputl at Vpp; 2) Q at 0 V; and 3) the to vary r between 1.0 and 2.0 to find multiple solutions. All
metastable state wit§ at approximatelWpp/2. This cir- the EAs are sensitive to the convergence threshold; making the
cuit is not difficult to simulate with NR but illustrates NR’s threshold smaller increases the accuracy, but also increases the
failure to find multiple solutions without the user assistanceun time. In fact, the thresholds suggested above were found
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TABLE Il TABLE VII
REsSULTS FOR ACMOS NOT GATE (INPUT = 1) RESULTS FOR ACMOS MULTIPLEXER 1
Algorithm | No. of No. of Mean Error CPU Time Algorithm | No. of No. of Mean Error CPU Time
Solutions | Generations Per Node (milliseconds) Solutions | Generations Per Node (milliseconds)
or Iterations or Iterations
NR ! 8 - 5 NR 1 9 ~ 4
DE1 I 257 1.19x10° 170 DE1 1 85 255%107 10
DE2 ! 248 1.16x10° 110 DE2 i I8 5.06x107 110
ES ' 35 1.41x10° 550 ES I 44 1.22x10° 170
ESA ' 34 1.24x10° 980 ESA 1 90 1.07x107 1100
3
TSEA ! 20 142107 90 TSEA 1 15 1.12x107 103
TABLE IV TABLE VIII
RESULTS FOR ACMOS TRISTATE INVERTER RESULTS FOR ACMOS MULTIPLEXER 2
Algorithm | No. of No. of Mean Error CPU Time Aleorithm | No. of No. of Noan Error CPU Time
Solutions | Generations Per Node (milliseconds) Solutions | Generations Per Node (milliseconds)
or Iterations or Iterations
NR 1 2 - 3 NR 1 10 - 6
DEI1 1 175 2.61x10 320 DEI , 3 1762102 250
DE2 ' 300 1.89x107 350 DE2 | 100 4.01x107 720
ES ' 93 3.37x10° 390 ES I 99 3.63x107 1210
ESA I 149 3.70x107 2030 ESA , 736 73610 11330
TSEA 1 48 2.19x107 270 TSEA 1 20 9.98x10° 600
TABLE V
TABLE IX
RESULTS FOR ACMOS RS IaTCH (R = S = 1) RESULTS FORSCHMITT TRIGGER
Algorithm IS\IO] 0}1‘ } 20 ()f: . I\/llbca_n Er:or C_P_U.:ljimcy Algorithm | No. of No. of Mean Error CPU Time
olutions “nerf“fon‘\. er Node (milliseconds) Solutions | Generations Per Node (milliseconds)
NR 14141 olrohelr ;ZOII]ZM 60+10+10 or lterations
+1+ +184+ ~ 60+10+
) NR 1+1 144+13 ~ 11+2
DEI 2 Jol 439)(10.: 1270 DEI1 2 270 1.68x10 1810
DE2 2 376 4.20x10 1920 DE2 5 S VTR 350
ES 3 43 4.60x10° 2030 ES 2 14 2.18%10" 1430
ESA 1+1 247+935 2.27x107 | 20650+4610 TN [ % o1 il R 790
2 3 = < : -
TSEA 14141 23424432 9.05x107 | 600+660+880 TSEA — T TR 1907550
TABLE VI
_n_ TABLE X
RESULTS FOR ACMOS XOR GNTE (4 = B = 1) RESULTS FOR ACMOS DFFERENTIAL AMP
Algorithm | No. of No. of Mean Error CPU Time Algorithm | No. of No. of Mean Error CPU Time
Solutions | Generations Per Node (milliseconds) Solutions | Generations Per Node (milliseconds)
or Iterations or Iterations
NR ! 9 ~ 5 NR 1 28 ~ 4
DEIL ‘ 133 8.72x10 440 DEI i 292 6.03x10° 710
DE2 1 126 4.57x107 490 DE2 1 152 6.04x10” 390
ES ! 21 1.39x107 990 ES I 333 6.04x10~ 980
ESA 1 89 1.16x10~ 4720 ESA ] 1502 3.78x10” 5000
ISEA ! 14 5.16x107 280 TSEA i 28 207107 490
by performing several “tune-up” runs of the algorithms across TABLE XI
the range of benchmark circuits and these values were found to RESULTS FOR ACMOS ONE-BIT ADDER
work well in general. The algorlthm halts once the best memh Alzorthm | Noof Noof Y ——— TR
of the current population has a fitness less than the thresholt Solutions | Generations Per Node (milliseconds)
For the Schmitt trigger and the RS latch, it was necessary or lterations
manually set initial conditions to force NR to find all the solu: ]1)"]?1 } 2;; RTTE 30;8
tions._By default, NR will find the m_etastable s_tate for the latct —pg2 I 30 2 09x107 3130
NR will not converge for the Schmitt trigger—it was necessat ES | 238 6.04x10™ 3020
to artificially set the input voltage just outside the hysteres —_ESA ! 275 1.65x10_ 5760
TSEA I 106 1.54x10" 2690

band to find a solution.
The performance for each algorithm with each of the cir-

cuits is shown in Tables IlI-XI. The RS latch (Table V) and theolumn, the number of solutions found by each algorithm au-
Schmitt trigger (Table 1X) have multiple solutions. The algotomatically is stated as an integer. If multiple solutions could
rithm is stated in the first column of each table. In the secor found by changing settings, this is stated as an expression
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600 DE1 and ES are the best algorithms for finding multiple
2 500 |® solutions automatically. ESA is least good at finding multiple
£ . solutions, even when restarted.
F NR is always the fastest, in terms of CPU time (but note
2300 % the comment above concerning the manual intervention needed
g . to find multiple solutions). For circuits with a single solution,
§ 200 ., TSEA is always the fastest of the EAs in terms of the number of
S 100 ‘e, generations and in terms of CPU time, with the exception of the
"'-.., RS latch, where DEL1 is fastest. ESA is consistently the slowest
- o insssssssessessscessscss (apart from for the Schmitt trigger circuit, where it only found

one solution). The best-performing EAs are, however, between
16 and 170 times slower than NR.

The accuracy of the EAs is very similar. TSEA or DE2 are
the most accurate in all cases except MUX1, when ESA is best.
It must be noted that all these accuracy figures are relative to
NR, and are not absolute errors. The error is calculated as the
mean of the difference between the NR solution(s) and the EA
solution(s).

In general, therefore, DE1, DE2, ES, and TSEA are accurate
and robust in terms of convergence and the number of solu-
tions found. Accuracy and speed can be gained at the expense
of finding multiple solutions. Although NR is always fast, it
may depend on the user setting the initial state of the solu-

Number of Generations

Fig. 2. Convergence graph for DE1 and an RS latch.
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500 * tion vector. The EAs are more likely to succeed from arbitrary
0 e o eeeesesesessoseeoesee — Starting points. Therefore, the CPU time does not necessarily
0 5 10 % 20 25 represent the total effort required to find a solution. This is par-
Number of Generations ticularly true when multiple solutions exist and are sought. It
can therefore be argued that the best algorithms in terms of ac-
Fig.3. Convergence graph for TSEA and an RS latch. curacy, speed, and the ability to find multiple solutions and to

analyze problem circuits, such as the Schmitt trigger, are DE1

(e.g., 1+ 1 means two solutions were found by restarting thand DE2.
algorithm). The third column shows the number of generations
(or for NR, the number of iterations). The fourth column shows V. CONCLUSIONS

the accuracy compared with the solutionfounc_zl by NR(gssumedThe use of EAs for nonlinear operating-point analysis of
to be the most accurate). In the case of multiple solutions, g circuits has been demonstrated. It has been shown that
mean error across all solutions is stated. Finally, the CPU tirgg\s and particularly DE and TSEA, have some significant

in ml(illits?p ond.stki]s givgg(.) mf' bggghénPaLer tezt;;vGe;/(laéurf] ;&ﬁﬂ%%antages over conventional NR. DE and the other EAs are
workstation with an -MHz an 0 'globally convergent, whereas NR is only locally convergent.

running Windows NT. Again, if multiple runs were needed t R requires manual intervention to find all the solutions to a

find multiple solutions, this is stated as a sum. As wellas mon- .~ " ' . .
o . . . circuit; it has been shown that DE can find multiple solutions
itoring the best solution of the current generation, various oth%ra sinale pass. An important broperty of EAs is that the
values were monitored at each generation to provide an id8a i dg plt' I. | t'p it prop Iy but thi y
of the performance of the EAs. In particular, the mean ﬁtnes(‘s‘”’,ln Ind mulliple solutions in -a singleé pass, but this can

mean solution, and the standard deviation of the population W&%meUmes _take s_|gr_1|f|cantly longer than using NR to find a
obtained and stored in a separate results file for later study. THiQgle solution. It is important to get a 9009‘ balance between
data gives an insight into the convergence of the EAs. Fig. 2 fiPe€d, accuracy, and the number of solutions found. We can
lustrates the progression of DE1 for an RS latch, with respétifen make improvements to an EA that, for instance, increases
to the mean fitness of the population. (The analysis takes 3¢ Speed of the algorithm, but this can have side effects.
generations, but the graph shows only the first 45 generatiorfsd example, if we increase the amount of discrimination an
The initial population’s mean fitness was5.12 x 10% and the algorithm makes with regards to selecting parents, then this
final population’s mean fitness was1.08x 10-6. As another gives a speed increase along with improved accuracy, i.e.,
example of the convergence behavior of the EAs, Fig. 3 shol§EA. We have seen, however, that there is a significant side
the convergence of TSEA for an RS latch, but unlike DE1, onBffect in losing the ability to find multiple solutions. Hence, if
one solution was found for a single run of TSEA. In this casd SEA is to be a suitable alternative to NR, improvements to
the initial population’s mean fitness was2.50 x 10* and the the algorithm must be made to give it the ability to find all the
final population’s mean fitness was 5.82 x 10~7. A similar  solutions in a single pass.

pattern can be found among the data collected for the other alAll of the EAs are sensitive, by varying degrees, to repro-
gorithms and circuits. duction parameters, such as the mutation rate, population size,
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recombination strategies, etc. The success of DE is partly due t¢s]
its self-adaptive nature, and although DE uses mutation as a pri-
mary operator, it also contains a recombination operator so as t
not neglect the benefits of sexual reproduction. Another excel-
lent feature of the DE algorithms is that the population size is au-
tomatically scaled in proportion to the size of the given problem, Y
which can help avoid over- and under-sized populations. These
features and the way they are implemented in DE have been th&l
major contribution to DE’s good performance.

All of the EAs here are slow compared with NR, even though [9]
the Jacobian matrix is not constructed. This can be attributed
to two factors. First, a significant amount of sorting of popula-
tions has to be done. This accounts for the majority of the CPULo]
time taken. For example, in(& + A)-ES, with typical values of
@ = 100 and\ = 200, we will have it so the parent pool is or-
dered fittest first and the offspring pool is in no particular order.[11]
Hence, we will need to reorder a population that may not b
close to being correctly ordered and with 300 members, as wit
the example above; this is not a trivial task. The sorting algof13]
rithm used, in this version of EACS, is simple and based on the
insertion sort. A better choice of algorithm, such as one based gf,
the quick sort algorithm, would produce a significant speed up.
Secondly, because the device models have been inherited from
an earlier simulator, they evaluate both the current (as requir
for EC) and the partial derivatives, which are not required. If{16]
the models were modified to remove these unnecessary calcy-

. : : . 17]
lations, we would expect the time taken for device evaluation t
be approximately halved. Therefore, overall we can reasonablys]
expect that the EAs can be speeded up by at least an order of
magnitude. This would make them very competitive with NR.[19]
Having demonstrated the computational effectiveness of using
evolutionary computation for circuit analysis, the next phase 0{20]
this research will seek to increase the speed of the algorithms:

As well as increasing the speed, we will also endeavor to
improve the accuracy. It is felt that the best way to approach
this is by way of a hybrid method with the NR algorithm. |
other words, a population can be searched in a fairly coarse
using an EA, perhaps DE1, and then the solution can be refi
using NR. This will provide accuracy almostidentical to NR an
should also reduce the number of generations needed to re
convergence. Much larger benchmark circuits, up to 100 nod
will be constructed and used to test the performance of the
when simulating such large circuits.

12]
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