
Transparent Fault Tolerance for Web Services
based Architectures

Vijay Dialani, Simon Miles, Luc Moreau, David De Roure, and Michael Luck
{vkd00r,sm,L.Moreau,dder,mml}@ecs.soton.ac.uk

Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK

Abstract. Service-based architectures enable the development of new
classes of Grid and distributed applications. One of the main capabilities
provided by such systems is the dynamic and flexible integration of ser-
vices, according to which services are allowed to be a part of more than
one distributed system and simultaneously serve different applications.
This increased flexibility in system composition makes it difficult to ad-
dress classical distributed system issues such as fault-tolerance. While it
is relatively easy to make an individual service fault-tolerant, improving
fault-tolerance of services collaborating in multiple application scenarios
is a challenging task. In this paper, we look at the issue of developing
fault-tolerant service-based distributed systems, and propose an infras-
tructure to implement fault tolerance capabilities transparent to services.

1 Introduction

The Grid problem is defined as flexible, secure, coordinated resource sharing,
among dynamic collections of individuals, institutions and resources [10]. Grid
Computing and eBusiness share a large number of requirements, such as inter-
operability, platform independence, dynamic discovery, etc. In the eBusiness
community, Web Services have emerged as a set of open standards, defined by the
World Wide Web consortium, and ubiquitously supported by IT suppliers and
users. They rely on the syntactic framework XML, the transport layer SOAP
[3], the XML-based language WSDL [2] to describe services, and the service
directory UDDI [1].

The benefit of open standards has recently been acknowledged by the Grid
Community, as illustrated by three projects embracing Web Services in various
ways. Geodise (www.geodise.org) is a Grid project for engineering optimisation,
which makes Grid services such as Condor available as Web Services [7]. myGrid
(www.mygrid.org.uk) is a Grid middleware project in a biological setting, which
addresses the integration of Web Services with agent technologies [16]. More
recently, the Open Grid Service Architecture (OGSA) [9] extends Web Services
with support for the dynamic creation of transient Grid Services.

Grid computing is characterised by applications that may be long-lived and
involve a very large number of computing resources. Hence, applications need

2

to be designed with fault tolerance in order to be robust. As a result, the Grid
community, and more generally, the distributed computing community have de-
vised multiple algorithms for fault tolerance. However, the Web community has
not focused on this aspect, and therefore, there is no standard way to develop
fault-tolerant Web Services.

It is this specific problem that we address in this paper. Our approach may
be summarised as follows: implementors of a Web Service have to implement
an interface (e.g. checkpoint and rollback); the architecture dynamically extends
the service interface (published as a WSDL document) with methods for fault
tolerance; applications making use of different Web Services have to declare
their inter-dependencies, which are used by a fault-manager to control fault
recovery; an extension of the SOAP communication layer is able to log and
replay messages.

The specific contributions of this paper are: (i) The design of an archi-
tecture for fault-tolerance of Web Services which supports multiple algorithms
for fault-tolerance. (ii) The specification of the interfaces between the different
architecture components. (iii) An overview of our implementation. The pa-
per is organised as follows. In Section 2, we summarise some of the techniques
for fault tolerance which we support in our architecture, while in Section 3, we
present the Web Services stack. We describe our architecture in Section 4, and
its implementation in Section 5 and we conclude the paper in Section 6.

2 Fault Tolerance Background

Before expanding on our design, we present a brief introduction to fault tolerance
for distributed systems. This is intended as an aid to understanding terms used
later in the paper, and not as an extensive survey.

Fault tolerance is the ability of an application to continue valid operation
after the application, or part of it, fails in some way. Such failure may be due to,
for example, a processor crashing. In order for an application suffering a failure
to continue, the state of processes, and the data they use, must be returned to
a previous consistent state. For example, object data may return (rollback) to
previous values if the current values are lost, and processes may return to a state
in which a message is re-sent, if the previous attempt apparently failed.

In order to return to a previous consistent state, an application must record
a replica of its previous state. The entire state of a process can be copied using a
checkpointing mechanism, or only the incremental changes to the process state
using a logging mechanism. Both methods can be used to rollback to a previous
valid state [8].

Fault tolerance becomes considerably more difficult in distributed applica-
tions, made up of several processes that communicate by passing messages be-
tween themselves. One process may fail without the other processes being aware
of the failure. This can lead to the state of the application as a whole (the global
state) being inconsistent. An application is in a globally consistent state if when-
ever the receipt operation of a message has been recorded in the state of some

3

process, then the send operation of that message must have been recorded also
[15]. It is the aim of a fault tolerance mechanism for distributed applications
to keep an application to a consistent global state, or return to the last known
consistent state (also known as maximal state) in case of failure.

Fault tolerance mechanisms should have transparency, low overhead, porta-
bility and scalability [19]. Transparency implies that there exists a mechanism
such that applications implemented using it can largely ignore processes failing
or recovering, as this will all be dealt with by the mechanism. It is important
that transparency exists so that both the developers’ burden is eased and the
fault tolerance mechanism can be replaced by another without the rest of the ap-
plication requiring modification. The requirement for low overhead, portability
and scalability can lead to a choice in the fault tolerance mechanisms to apply.
Fault tolerance can also be achieved by using fault tolerance Object Replication
techniques, e.g. [13].

Checkpointing can also be performed in a variety of ways in distributed ap-
plications. Consistent or synchronous checkpointing involves all processes being
forced to globally synchronise before the state of all the processes is recorded [12].
Global synchronisation means that all processes are in a state in which they have
processed all received messages and are blocked from sending any messages [12].
As blocking processes may reduce the speed of the application, consistent check-
pointing may not always be the preferred means of fault tolerance. On failure,
all processes using consistent checkpointing rollback to the last global check-
point. A quasi-synchronous approach is suggested by Manivannan and Singh
[15], where, rather than requiring global synchronisation, processes force each
other to checkpoint at almost the same time through sending messages.

An alternative to consistent checkpointing is independent or asynchronous
checkpointing. In this case, each process records its own state without attempting
to coordinate with other processes, so potentially avoiding the overhead of global
synchronisation. However, communicating processes may depend on each other,
i.e. require that they are in certain states. The rollback of one process, on failure,
may require that other processes also rollback to previous checkpoints. It is then
possible that these rollbacks will require the original process to rollback even
futher to attempt to reach a consistent global state. This repetition of rollbacks
can lead to a domino effect where each process must rollback many times to reach
a consistent global state, losing a lot of processing that has occurred without
failure [20].

If the state of one process becomes invalid by the rollback of another, we
consider there to be a dependency of the former process on the latter. When a
rollback (or checkpoint) should take place on multiple processes, a fault tolerance
mechanism should ensure that it does not create extra dependencies. In order to
achieve this, the mechanism can employ a two-phase commit, in which processes
are first put into a blocking state to prevent messages being sent and new de-
pendencies forming, and then later rolled back (or requested to checkpoint) at
an appropriate moment.

4

Independent checkpointing mechanisms deal with process dependency in two
ways. Pessimistic independent checkpointing [19], requires that each process logs
the changes since the last checkpoint after sending or receiving any message. As
dependencies between processes are only due to messages passed between them,
this ensures that rollback of one process to the previous checkpoint will not affect
dependent processes. Optimistic independent checkpointing requires that depen-
dencies are explicitly recorded somewhere in the system, so that on rollback of
a process, dependent processes will be informed appropriately and possibly also
rolled back [6, 11, 20]. The pessimistic approach places more restrictions on a
process’ autonomy in checkpointing and may require more checkpointing than
optimistic approaches. Optimistic mechanisms will have more overhead in roll-
back, on the other hand. However, it should be noted that no single mechanism
is universally applicable. The suitability of algorithms differ for each application
type, namely that there exists a different set of algorithms for batch processing,
shared memory and MPI based applications. In this paper we restrict ourselves
to discussions on fault tolerance requirement of Web Services architecture.

3 Web Services

Service Negotiation (Trading Partner Agreement)

XML-Based Messaging (SOAP)

Service Discovery (UDDI,WSIL,WSFL)

Service Flow (WSFL)

Network Layer (HTTP, FTP, IIOP, MQ, E-Mail)

S
ec

ui
rt

y

M
an

ag
em

en
t

Q
oS

Fig. 1. A generalized Conceptual Web Services Stack

The World Wide Web is more and more used for application to applica-
tion communication. The programmatic interfaces made available are referred
to as Web Services.[http://www.w3c.org/2002/ws/]. To ensure interoperability
between different architectures, the Web Services architecture describes stan-
dards for definition, discovery, binding and communication between services. A
service provides a set of application functionality through a bound and advertised
interface. This architecture provides an abstraction over the implementation of
services.

Service discovery mechanisms such as Universal Description, Discovery and
Integration (UDDI), aid in discovering services, statically or dynamically bound.
To facilitate binding, services describe their behaviour by using a description lan-
guage, such as WSDL[17]. However, there exists no explicit information about

5

its lifetime and instance creation, management policy differs across implemen-
tations.

The Web Services Stack : A number of Web Services implementations exist,
each with a proprietary Web Services stack. Such stacks vary in the way that they
gel or interact with legacy systems and proprietary technologies. A generalized
conceptual Web Service stack is represented in figure 1.

The network layer, messaging layer and the service description layer have
been standardized to ensure interoperability. SOAP is supported as the de-facto
XML-messaging protocol for most of the Web Service implementations. Detailed
discussions on SOAP protocol and WSDL are described in [4], [2] respectively.
The ”vertical layers” describe attributes of the framework and must be addressed
at each level. At present, security, management and QoS are the widely accepted
system attributes.

Error Handling in Web Services : Different layers in the conceptual stack
employ different types of error handling. At the description layer, WSDL pro-
vides a mechanism by the way of <wsdl:fault> for applications to specify the
error characteristics. This is similar to the way we define exceptions raised by
the methods in a Java interface. Similarly the underlying SOAP messaging layer,
provides a <soap:fault> for applications to communicate the error informa-
tion. The error mechanisms of SOAP and WSDL help support errors raised by
an application, but no mechanism exists for handling framework failures and
system errors.

Service Lifetime Management : Web Services differ from usual message-
based distributed systems. SOAP omits features often found in messaging sys-
tems and distributed object systems [4], such as: (i) distributed garbage collec-
tion; (ii) boxcarring or batching of messages; (iii) objects-by-reference (which
requires distributed garbage collection); (iv) activation (which requires objects-
by-reference). As Web Services do not support explicit activation or deactivation
of services, it becomes difficult to have any lifetime management control. Most
common implementations [5] use time-based expiry mechanism for controlling
the underlying resources.

Fault Tolerance for Web Services : In service-based infrastructures, a sin-
gle process may be part of multiple applications. Therefore, rollback cannot be
initiated using the standard fault tolerance mechanisms mentioned earlier. We
propose fault-tolerance as one of the vertical layers of the Web Services stack. In
our earlier discussion, we described the need of fault-tolerance for service-based
infrastructure. In the rest of the paper, we discuss the special requirements of
each layer.

4 Architecture

In figure 2, we present an overview of the fault tolerant system, as applied to the
Web Services architecture. The top of the figure shows various components of

6

Service
Provider -1

Application Service Composition

Fault Manager Fault Detectors

Web Services Hosting Environment

Web
Service -1

Modified SOAP Layer(with Message Log)

WSDL (Dynamic) Stub

Service Implementation

Dynamically bound services

Dynamically bound Fault
Tolerance Library

Service
Provider -2

Web
Service -2

Web
Service -3

Application
Domain

Fig. 2. Architecture for Fault Tolerant Web Services

the fault tolerance infrastructure that are specific to an application instance and
are location independent. The lower half represents modifications to the existing
hosting environment for services. The modifications in the latter case can be
classified into a set of changes to the messaging layer (refer to next section for
a detailed description) and a set of interfaces supported by individual services.
Henceforth, we refer to the upper half as the application layer and to the lower
half as the service layer. In general, the overall framework provides the capability
to:

1. Detect a fault or failure,
2. Estimate the damage caused and decide on the strategy for recovery,
3. Repair a fault, and
4. Restore the application state.

The framework differs from traditional frameworks, such as CORBA [18] as it
employs a two-pronged strategy to recover from a fault, namely the local recovery
mechanism and the global recovery mechanism. The context of a local recovery
is restricted to recovery of an individual service instance, while global recovery
applies to the entire application. The local recovery mechanism tries to revive
the service instance with minimal or no intervention by the global recovery
mechanism. A local recovery mechanism escalates the failure notification to the
global recovery mechanism in case of its failure to recover the fault locally. The
architecture imitates an hour glass model to restrict the dependency between
the two layers to a minimal set of interfaces, for co-ordination between the two
layers.

The application layer assumes that an application instance aggregates a set
of service instances to provide the overall capability for the application. The

7

concept of service aggregation, also known as service composition, is central to
the definition of a Virtual Organisation (VO)[10].

However, our definition of service composition is not restricted to VOs and
can be extended to service composition expressed by the way of workflow spec-
ification, e.g. WSFL [14] or X-LANG [21] . The composition of a service may
be created statically at design time or can be created dynamically by using ne-
gotiation techniques, enactment description of WSFL, or any other technique.
A detailed discussion on negotiations and composition of services is outside the
scope of this paper. The application layer assumes that there exists a description
of service composition that it can refer to for obtaining a list of collaborating
services. The application layer can be initialized by the application instance
or by enactment of a composition. The instantiation data can be held within
the composition definition or it can be provided explicitly during creation. The
application layer implements a set of key components, namely:

1. Application: It uses the services in a composition to provide the overall
capability. An application can directly interact with the global fault man-
ager(refer to the definition below) or allow the application framework to
interact on its behalf.

2. Global Fault Manager : A coordinator that interacts with the applications or
framework and the underlying services to implement a fault tolerant system.
A fault manager is responsible for monitoring, fault diagnosis and checkpoint
and rollback co-ordination; it may be central or distributed.

3. Service: An entity that is bound by its interface definition, usually a WSDL
description, and executes as an independent process or within the process of
Web Services Hosting Environment [5].

4. Fault detector : A fault detector detects a change in the perceived ideal en-
vironment and uses software interrupts to the fault manager to notify of
any failure. In addition to providing the context for the fault, it may also
provide behavioral override, allowing applications to extend the fault notifi-
cation mechanism.

A global fault manager interacts with a set of services specified in the service
composition. Each of the underlying services needs to support a set of interfaces
to enable communication between the local and global fault managers. A local
fault manager coordinates independent checkpointing and rollback of an indi-
vidual service; it monitors the service and supports the fault detector interface
for creating fault notifications. The local fault manager interacts with the mes-
saging layer to initiate a blocking or non-blocking recovery, with or without the
replay of messages. The global fault manager relies on a set of fault detectors to
send a fault notifications. An application can register a custom list of detectors
in addition to those supported by the individual services.

Our modified SOAP layer provides the message logging, message replay and
a capability to acknowledge either the receipt or the processing of a message.
It provides interfaces for interaction with the global fault manager and local
fault managers. Modifications to the layer allow the application framework to
maintain a log of messages and also to selectively suspend the communication

8

between the services. They also enable the framework to isolate a service instance
from the rest of the system during a local recovery. In addition, the ability to
suspend communication helps rollback by providing the ability to isolate the
affected set of services. Modifications to the SOAP messaging layer enable us
to support both fault tolerance by message-based checkpointing and rollback,
and fault tolerance by object replication. In the following section, we describe
interactions between the various components in the framework for implementing
message based checkpointing and rollback. Later in our discussion, we describe
how the framework could support fault tolerance by object replication.

5 Implementation

IBM WSTK-3.0, Apache SOAP, IBM Web-Sphere Application Server, IBM Web
Hosting Environment were used to implement our proposed framework. Our im-
plementation provides a modified SOAP layer, different libraries to initialise the
application framework, and a set of plug-ins for various application types. The
Application framework allows an application to specify a service composition;
we support both design-time and run-time compositions of services. In its cur-
rent implementation, the framework assumes service compositions to be static
and immutable; however, the framework can be modified to allow dynamic com-
positions, to complement UDDI and WSIL support for dynamic discovery and
binding of services. The Application layer can be implemented to be a part of
the application instances execution space or be a Web Service by itself. In either
case, the application framework creates and initializes a global fault manager.
The global fault manager accepts fault tolerance mechanism specific parameters
and the application type as immutable parameters; it uses service composition
to discover and establish contact with the local fault managers; it performs a
two-phase commit checkpoint operation to coordinate the checkpointing activity
across the service instances.

The local fault manager is implemented as a set of libraries that can be
bound dynamically to the service code. The local fault manager interacts with
the modified SOAP layer to control the flow of messages during the recovery
as the mechanism used by it may or may not support non-blocking checkpoint
and/or rollback. In case of a failure, the local fault manager categorizes the fault,
and then tries to recover the fault. In certain cases, it may be possible to recover
the service locally and rollback to the current state by replaying messages. In
case a full recovery is not possible the local fault manager tries recovering to a
maximal state and escalates the fault notification to the global fault manager.

On notification, the global fault manager initiates a roll back by notifying
the affected services. The dependency set for recovery can be provided by the
application. Additionally, the fault detectors can provide a dependency set for
the current fault: the provision is specifically useful in case of compositions that
use different protocols or support different end-points. For example, service com-
position may consist of a set of Intranet and Internet services; services within an
Intranet may use IIOP for inter-service communication and connect to the Inter-

9

net using a SOAP layer. The rollback is also implemented as a two-phase commit
operation. The framework ensures loose coupling, by supporting different fault
mechanisms for local and global fault managers. In addition, to checkpointing
and rollback mechanism for fault tolerance, Object Replication can also be used
to improve fault tolerance of applications. One of the possible ways is to enable
the Web Services hosting environment to create a set of redundant services and
define a mechanism for active or passive replication of services, client redirection.
However, a detailed discussion on replication based fault-tolerance is beyond the
scope of present discussion.

6 Conclusion and Future work

We have successfully conceptualised and implemented a fault tolerant architec-
ture for Web Services, without affecting interoperability of existing services. The
framework demonstrates a method of effectively decoupling the local and global
fault recovery mechanisms. It provides a capability for monitoring the individual
service instances as well the service hosts. The algorithm independence and sup-
port for different application types allow us to provide fault tolerant capabilities
to Web Services that internally employ different programming models. Dynamic
varying composition of services is an issue that needs to be addressed. However,
much depends upon the composition schemes that will evolve from research in
Web Services.

7 Acknowledgement

This research is funded in part by EPSRC myGrid project (reference GR/R67743/01)
and EPSRC combichem project (reference GR/R67729/01)

References

[1] Uddi standards. http://www.uddi.org.
[2] W3c wsdl spec. http://www.w3c.org/TR/wsdl.
[3] Xml protocol working group. http://www.w3c.org/2000/xp/Group/.
[4] W3c soap standards, 2001.
[5] Web services hosting technology. http://www.alphaworks.ibm.com/tech/wsht,

December 2001.
[6] B. Bhargava and S. Lian. Independent checkpointing and concurrent rollback for

recovery in distributed systems–an optimistic approach. In Proceedings of the 7th
IEEE Symposium on Reliable Distributed Systems, pages 3–12, 1988.

[7] S. J. Cox, M. J. Fairman, G. Xue, J. L. Wason, and A. J. Keane. The Grid:
Computational and Data Resource Sharing in Engineering Optimisation and De-
sign Search. In IEEE Proceedings of the 2001 ICPP Workshops, pages 207–212,
Valencia, Spain, September 2001.

[8] E. N. Elnohazy, D. B. Johnson, and Y.M. Wang. A survery of rollback-recovery
protocols in message-passing systems.

10

[9] Ian Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiol-
ogy of the Grid — An Open Grid Services Architecture for Distributed Systems
Integration. Technical report, Argonne National Laboratory, 2002.

[10] Ian Foster, Carl Kesselman, and Steve Tuecke. The anatomy of the grid. enabling
scalable virtual organizations. International Jounral of Supercomputer Applica-
tions, 2001.

[11] David B. Johnson and Willy Zwaenepoel. Recovery in distributed systems using
optimistic message logging and checkpointing. In Proc. 7th Annual ACM Symp.
on Principles of Distributed Computing, pages 171–181, Toronto (Canada), 1988.

[12] M. Frans Kaashoek, Raymond Michiels, Henri E. Bal, and Andrew S. Tanen-
baum. Transparent fault-tolerance in parallel orca programs. In Proceedings of
the Symposium on Experiences with Distributed and Multiprocessor Systems III,
pages 297–312, 1992.

[13] Sean Landis and Silvano Maffeis. Building reliable distributed systems with
CORBA. Theory and Practice of Object Systems, 3(1):31–43, 1997.

[14] Prof. Dr. Frank Leymann. Web services flow language. http://www-
4.ibm.com/software/solutions/webservices/pdf/WSFL.pdf, May 2001. Member
IBM Academy of Technology, IBM Software Group.

[15] Manivannan and Singhal. Comprehensive low-overhead process recovery based on
quasi-synchronous checkpointing.

[16] Luc Moreau. Agents for the Grid: A Comparison for Web Services (Part 1: the
transport layer). In IEEE International Symposium on Cluster Computing and
the Grid, Berlin, Germany, May 2002.

[17] Judith M. Myerson. Web services architectures.
http://www.webservicesarchitect.com/content/articles/myerson01.asp, Jan-
uary 2002.

[18] OMG, http://www.omg.org/docs/formal/01-12-63.pdf. Fault Tolerant CORBA,
December 2001. Version 2.6.

[19] D. J. Scales and M. S. Lam. Transparent fault tolerance for parallel applications on
networks of workstations. In Proceedings of the USENIX 1996 Annual Technical
Conference, pages 329–341, San Diego, CA, USA, 1996.

[20] Robert E. Strom and Shaula Yemini. Optimistic recovery in distributed systems.
ACM Transactions on Computer Systems, 3(3):204–226, 1985.

[21] Satish Thatte. ’xlang’- web services for business process design.
http://www.gotdotnet.com/team/xml wsspecs/xlang-c/default.htm, 2001.

