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Abstract: In this paper, we describe a method for the extraction of distinguishable features from crack patterns, par-
ticularly those in paintings. First, we filter the selected crack image using 8 differently oriented Gabor filters. Then we
thin the image to 1 pixel wide using a morphological thinning algorithm. Next we implement a crack following algo-
rithm and generate statistical structure of global and local features from a chain code based representation. We describe
an orientation-based feature extraction method to represent a crack network from sets of local orientation features. The
resultant features are used as a guide towards classifying crack network patterns into several predefined classes, i.e circu-
lar, rectangular, spider-web, unidirectional and random. A simple classification experiment is presented to describe the
significance of those extracted features towards classifying craquelure patterns.

1. INTRODUCTION

The Artiste project aims to provide access across
museum collections using metadata as well as content-
based retrieval of image data. One of the image-based
requirements, which came from the Uffizi Gallery in Flo-
rence, is to automatically classify the craquelure (cracks)
in paintings to aid in damage assessment. Craquelure in
paintings can also be used for other research [1]. It can
be a very important element in judging authenticity, use
of material or environmental and physical impact because
these can lead to different craquelure patterns. Although
most conservation of fine artwork relies on manual in-
spection of deterioration signs, the ability to screen the
whole collection semi-automatically is believed to be a
useful contribution to preservation. Crack formations are
influenced by factors including aging and physical im-
pacts which also relate to the wooden framework of the
paintings. It is hoped that the mass screening of craque-
lure patterns will help to establish a better platform for
conservators to identify the cause of damage.

In this paper, we present the detection and statistical
feature extraction of simple crack networks as a basis to
a more efficient algorithm in the future. The algorithm
consists of: (1) detection of a crack structure, (2) extrac-
tion of global and local features, and (3) an experiment
demonstrating the potential use of the features for suc-
cessful classification.

To fulfill the purpose of this research, we are using X-
radiographs of paintings taken by the research labs of the
Louvre Museum in Paris and the Hamilton Kerr Institute,
Cambridge. These tend to show cracks very well, as they
change the transmission of X-rays and suppress details in
the paint layer. They provide clearer information com-
pared to visible images of paintings as far as detecting
cracks is concern and they are also a common documen-
tation medium in museums.

2. CRACK NETWORK DETECTION

In most cases, cracks can be considered as being lo-
cal minima with a rather elongated structure [2]. In [3],
cracks are identified by taking into account the fact that
they have considerably darker grey levels compared to
the background and are characterized by a uniform grey
level. From a local point of view they also have a strong
orientation tendency.

Gabor filters are band-pass filters which have both
orientation-selective and frequency-selective properties as
well as optimal joint-resolution in both spatial and fre-
quency domains [4]. A two dimensional Gabor filter can
be viewed as a sinusoidal plane with a particular frequency
and orientation modulated by a Gaussian envelope (Fig.
1). The equation below represents a Gabor filter in spatial
domain:�������	��
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where
# $ and

# ( represent the space constants of the
Gaussian envelope along the

�
and

�
axes respectively,

�
denotes the frequency of the sinusoidal plane wave along
the x-axis and

�
is the orientation. The orientation ten-

dency of the Gabor filter (Fig. 1) serves as a great tool
for the detection of crack patterns.

The method we used is adopted from the method used
by Jain et al. [4] for fingerprint detection. We convolve
the input image with 8 differently oriented Gabor filters
using angles ;8< , ���>=@? < , A ? < , B8C =@? < , DE;8< , �E� �>=@? < , �GF ? < and� ? C = ? < . However, the filter parameters, namely
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Fig. 1. Gabor filter with dimension = 33 H 33,
# $ =

# ( =
4.0, f = 0.1 and

�
= D�;8< .

and
�

have to be properly selected in order to obtain a
reasonably good output image. In scanned X-ray films
the cracks vary in size between around 30 to 1 pixels, so
one size of detector is not optimal and two or three sets
of filters may eventually be used.

The maximum of the outputs of the filters are then
combined into a result shown in Fig. 2(b). To extract the
statistical features of a particular crack network, it is more
convenient and less time consuming to work with 1 pixel
wide cracks rather than variable sized ones. In order to do
that, we apply a morphological thinning algorithm with
10 iterations to produce a thinned version of the detected
cracks. Fig. 2 illustrates the results of the process. The
output is used as a source for a statistical analysis of the
crack network in order to create the higher level features.

(a)
 (b)


(c)
 (d)


Fig. 2. Results of the crack detection process. (a) Origi-
nal. (b) Filtered. (c) Binarized. (d) Thinned.

3. FEATURE EXTRACTION

The feature extraction stage takes into account the
fact that cracks are made up of line segments. A com-
bination of line segments produces a network which in
this paper we call the crack network. Crack networks
vary in multiple ways, so it is very important that the fea-
tures that best distinguish them are identified. For our
algorithm, we have predefined several types of crack pat-
tern classes which have obvious distinctive features and
they are circular, rectangular, spider-web, unidirectional
and random. It is worth stressing that some of the rel-
evant features may overlap with each other in terms of
their unique representation of a particular crack pattern
thus, revealing the importance of multiple feature combi-
nations to classify a particular crack pattern.

3.1. Statistical feature structure

A crack following algorithm is applied on a crack
network and features are collected as it ’runs’ along the
lines. This feature extraction approach collates statisti-
cal information from the lines as a global representation
and a separate process is implemented later to extract
local features from the crack network structural repre-
sentation. Junctions are also detected during the crack
following process where their location and number of
branches are stored. A junction is defined here as a point
where line segments meet. A Freeman chain code based
representation [5] is generated for 2 main reasons: (1)
post-detection filtering and reconstruction such as thin-
line code filtering [6] and (2) post-detection feature ex-
traction. For the remaining sections, we address local
features as notations with a subscript I and global features
with notations with a subscript J .

3.2. Local and global directionality measure

Through observation, one of the most discriminating
features in a crack network is its orientation spread. Obvi-
ously, circular cracks and rectangular cracks differ signif-
icantly in terms of their orientation spread. Our approach
takes this factor into account by extracting local orienta-
tion features which are then combined to produce a global
feature representing a particular crack network. The al-
gorithm explained below is used to compute a feature we
call directionality:

1. Generate orientation histograms for each line seg-
ment in a single crack network and normalize the
histograms such that the values are within the in-
terval [0,1] as shown by the equations below:KML � N KPO =6=Q=6=Q= KMRPS �UTV� C (4)W � X ROQY[Z KPO (5)K  L O � KMOW \ ] � ; =Q=Q= T (6)

where
KPO

is the initial orientation histogram,
W

is
the total accumulation for a single line and

K  L
is

the normalized orientation histogram.



2. We define 4 simple directionality histogram mod-
els where each bin represents a chain code index of
0 to 7 respectively:^`_ �

0.125[ 1 1 1 1 1 1 1 1 ] (7)^ " �
0.25[ 1 1 1 1 0 0 0 0 ] (8)^ba �
0.5[ 1 1 0 0 0 0 0 0 ] (9)^dc �
[ 1 0 0 0 0 0 0 0 ] (10)^ _ , ^ " , ^ a and ^ c represent ideal histograms as

far as orientation spread is concerned where they
roughly indicate circular, semicircular, bidirectional
and unidirectional spread respectively.

3. Measure dissimilarity between each normalized his-
togram and all 4 ideal histograms using Euclidean
distance measure. Dissimilarity corresponding to^ _ is as shown below:� _ �fe XhgO6Y[Z � K  O � ^ _O �i" (11)

where � _ represents error for a single histogram
dissimilarity measure. A somewhat different ap-
proach is taken to compute dissimilarity for ^ " ,^ a and ^ c where each of them are rotated and
dissimilarity, �kj is calculated for each rotation. The
minimum dissimilarity after a complete rotation is
chosen as the dissimilarity corresponding to ^dj
where l � � � F � A .

4. Construct a similarity histogram, m L = [( � � � _ )
( � � � " ) ( � � � a ) ( � � � c )]. Let m L = [

� _ � " � a� c ], the histogram indicates the score obtained by a
particular line corresponding to each class defined
in step 2.

5. Compute the directionality value by using the fol-
lowing equation:

n L �poqqr qqs
; =@�E? �ft�uc if ^bv ��� m Lw���x� _; =@? � t	yc if ^bv ��� m L ���x� "; =@? % t	zc if ^bv ��� m Lw���x� a; = C ? % t|{c if ^bv ��� m L ���x� c (12)

where
n L

is used as one of the orientation-based local
features and its significance in our classification approach
will be described later. Each line in a particular network
has now been assigned a directionality measure which is
normalized to the interval [0,1].

The global directionality histogram is then generated
taking into account the significance of each line in the
crack network. Significance measure, } is computed by
taking the ratio between a line segment length and total
crack network length. Computation of the line length is
explained in further detail in section 3.3. The ratio is used
as a weighting to indicate how much local directionality
contributes to the global directionality.

Global directionality is computed using the algorithm
below:

1. For all existing lines in the crack network, find the
index, ] ( ]�~ [1,4]) of the maximum similarity, m L .

2. Multiply ^dv ��� m L � with the significance measure,} .
3. Accumulate the resultant values in a global direc-

tionality histogram, m�� by matching it with the cor-
responding index, ] .

4. Compute the directionality value,
n � similar to the

one explained in equation (12)

Fig. 3 illustrates three examples of crack detected im-
ages and their respective directionality histograms. The
algorithm is tested on real X-ray images of paintings with
size 128x128. Note that the Gabor filter parameters are
not automatically determined, but instead they are tuned
separately for each image.
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Fig. 3. Algorithm tested on 3 sample crack images. Fig-
ure shows original crack images, detected cracks and
their corresponding directionality histograms, mP� . (a)n � � ; = D F A�; . (b)

n � � ; = B�A8��A . (c)
n � � ; = ��� A8B .

3.3. Straight line to actual length ratio

Another feature which we find useful in distinguish-
ing different type of cracks is the straight line to actual
length ratio. Straight line length is defined as the di-
rect distance between 2 connected junctions while actual
length is given as the distance through the crack path.
Let us denote this particular feature as � . We employ a
method used by Vossepoel and Smeulders [7] to calculate
the length of the actual line by using the formula��� ; = DE�E;E��� % � = A�;�B�� < � ; = ;�D � ��� (13)

where ��� and � < is the number of even and odd chain
elements respectively while ��� is defined as the number
of occurrences of consecutive unequal chain elements in



the Freeman chain code string. The length of the straight
line representation is approximated by the equation� � e ��� � _ �:� " � � " % ��� � _ �:� " � � " (14)

where
� � _ �x� " � represents the horizontal distance and� � _ �&� " � represents the vertical distance. We compute� L for each line segment in a crack network and calculate

the global value, � � by using the formula� � � X��O } O � L O (15)

where � is the total number of line segments in a crack
network, } O is ratio between the length of a line segment
and the overall length of a crack network.

4. EXPERIMENT

An experiment was conducted in order to test the po-
tential use of the features extracted to classify crack pat-
terns. We used 19 test images for this purpose. Each of
them were initially manually classified based on our per-
ception of its type. Features were extracted from each of
the crack patterns and each of them represented by 2 fea-
tures with values between the interval [0,1]. The features
used were directionality measure,

n � and straight line to
actual length ratio, � � . We constructed a 2-dimensional
plot representing each crack network in order to show
their position in the feature space(Fig. 4). It can be seen

directionality measure, 
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Fig. 4. Figure shows location of different crack types in
feature space where 2 clusters are clearly visible as shown
by the circles.

that there are two main groups clearly separating the cir-
cular from the other types, so the first classification stage
has been successful.

5. CONCLUSION AND FUTURE WORK

In this paper, we have discussed the detection of crack
patterns as well as the extraction of useful features that
might be very useful to classify cracks into different classes.
Experimentally it is shown that multi-oriented Gabor fil-
ters can be used to extract suspected crack patterns. Al-
though there are various other methods to detect ridge

and valley structures, Gabor filter has a good potential as
far as detecting cracks are concerned since it provides the
ability for scale-specific and multi-orientation detection.

Extraction of features corresponding to orientation has
also been discussed. The Freeman chain code represen-
tation serves two main purposes: 1) post-detection filter-
ing and reconstruction 2) post-detection feature extrac-
tion. We have also experimented on the effectiveness of
features corresponding to orientation especially in its ca-
pability to separate circular cracks with the rest of the
crack classes in the feature space.

As for future direction, we believe that successful clas-
sification of cracks really depends on inter-relation be-
tween features of different nature and that is what we are
trying to achieve.
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