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Humans are good at the perception of biological motion, i.e. the motion of living things. 

The human perceptual system can tolerate not only variations in lighting conditions, dis-

tance, etc., but it can also perceive such motion and categorise it as walking, running, 

jumping etc. from minimal information systems such as moving light displays (MLDs). 

In these displays only specific points (e.g. joints in the case of a human being) are visible. 

Although a static display looks like a random configuration of dots, a dynamic display 

is perceptually organised into a moving figure. Some kind of temporal integration of the 

spatial contents seems to be a part of the perception mechanism; as manifested from 

the minimum presentation time required for biological motion to become apparent. One 

possible way to understand human perception may be to build an equivalent machine 

model. An analysis of the workings of this machine may lend us an insight into hu-

man perception. In this work, we considered a closed set of 12 different categories of 

MLD sequences. These sequences were shown to 93 participants and their responses are 

used as the basis of comparison of human and machine perception. Human responses 

were compared with the performance of A:-nearest neighbour and neural network detec-

tors. Machine perception is found to differ from human perception in some important 

respects. We also examined the related aspect of person identification on the basis of 

gait. This has important applications in the fields of surveillance and biometrics. In 

recent years, gait has been investigated as a potential biometric; as this may be the only 

information available to identify a distant and/or otherwise masked person. Humans 

can learn to recognise different subjects in MLDs. In our experiments with a dataset of 

21 subjects, an accuracy of nearly 90% and 100% was achieved with neural network and 

support vector machine classifiers respectively. Also the machines were able to make 

this recognition in a fraction of a gait cycle. 
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Nomenclat ure 

MLD Moving light display. 

Detection Detection of human motion. 

Classification Person identification. 

Absolute mode 
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Translatory component present. 

Translatory component removed. 
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/j-nearest neighbour. 

Artificial neural network. 

Support vector machine. 

Frames per sequence. 

Dots per frame. 
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Fronto-parallel view. 

Change of direction. 
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View from top at an angle. 
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Dots are slightly perturbed. 

Dots are largely perturbed. 

Spatially scrambled dots. 

Inter-dot phase scrambled. 

Random configuration of dots. 
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C h a p t e r 1 

Introduction 

It is a well-known fact that we, human beings, are capable of recognising biological 

motion i.e. the motion of living things, be it human or animal. This capability remains 

unaffected by distance variations or poor visibility conditions. Even in poor quality 

videos or blurred images, human beings not only perceive the motion but also the kind 

of motion, e.g. jumping, dancing, hopping, running or walking (Cedras and Shah 1995; 

Bobick and Davis 1996a). Often we can recognise a friend walking at a distance. Any 

familiarity clues such as clothes, appearance, hair-style are obliterated at large distances. 

So it must be the motion which is responsible for this identification. 

The term "biological motion" encompasses the motion of all living beings. In this 

thesis, however, we will use this term synonymously with human gait. Human walking 

is a complex motion and comprises of many simpler motions which are translatory 

and/or rotational, more specifically pendular, in nature. A good understanding of gait 

perception may give an insight into the visual perception mechanism. This has led 

psychologists to use human motion as a basis for perception-related studies. Johansson 

(1973) was the first to apply moving light displays to such studies. These display only 

a set of moving dots located on the body with no other pointers to the shape of the 

moving object. With the help of such studies it was concluded that motion perception is 

possible even from moving light displays. As these displays are found to be useful tools 

in human perception, they remain central to this thesis. A brief discussion about these 

displays is presented next. 

1.1 Moving Light Displays 

Moving light displays, also known as MLDs, are obtained by affixing small lights to the 

specific points of the object under consideration and filming it in nearly dark conditions 

such that the resulting displays do not carry explicit information about the shape, struc-

ture or contours of the object. Another alternative is to attach reflector patches to the 

10 
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Head 

Shoulder 

Elbow 

Wrist 

Pelvis 
Hip (left) 

Knee 

Heel 

Foot 

F I G U R E 1 . 1 : Major joints of a human body. Only the joints referenced in this study 
have been shown. 

F I G U R E 1 . 2 : Snap-shots from a moving light display sequence of a human subject walk-
ing from right to left. 

object and filming it in minimal lighting conditions. In either case, the recorded film 

displays only the points. In perception studies related to human motion, these markers 

are attached to the major joints e.g. head, shoulder, elbow, hip, knee, ankle, etc., as 

shown in Figure 1.1. MLDs are used as they do not provide explicit information about 

the human shape; the motion and relative location of dots are the only available cues. 

The only information available is a set of moving points or dots. This mimics the min-

imal data input sequence for the motion perception experiments. In spite of this, the 

perception of the human motion displayed remains vivid. Ever since Johansson (1973) 

used such displays to demonstrate the capability of the human perceptual systems, re-

searchers have extensively used them, or their computerised adaptations, to determine 
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the processes or mechanisms underlying visual motion perception. Figure 1.2 shows 

some snapshots from a moving light display for a human walking motion. 

1.2 Motivat ion 

The work presented in this thesis is inspired by the ease with which human beings can de-

tect biological motion even in MLDs. Although person identification from MLDs appears 

to be much harder task (Cutting and Kozlowski 1977), humans can, nevertheless, learn 

to achieve 100% accuracy for a set of 6 walkers (Stevenage, Nixon, and Vince 1999). 

This suggests that MLD data are rich in information for perception. If humans can 

detect a moving subject, probably machines can detect it as well. 

1.2.1 P r i m a r y Mot ivat ion 

A biologically-inspired system, which is based on how humans deal with the visual 

input, is likely to be more robust, noise-tolerant and view invariant, as the human 

perceptual system also possesses all these characteristics. Development of such a sys-

tem, however, needs a better understanding of the perception mechanism. It needs to 

be ascertained what factor(s) are responsible for the human perception. From the point 

of view of machine learning, an insight into how humans perceive biological motion may 

greatly aid machine vision especially in the fields of surveillance, tracking and security 

applications. This is the primary motivation for the work presented in this thesis. 

1.2.2 Secondary Mot iva t ion 

Another motivating factor is the need for personal identification systems and the sig-

nificant role a biometric can play in such systems (Jain, Bolle, and Pankanti 1999). 

Personal identification or determination of the identity of a person is critical in today's 

complex, geographically mobile and vastly interconnected information society. The need 

is further augmented with the rise in global terrorism. The task of ascertaining the cor-

rect identity of an individual trying to access a system or enter a country becomes 

critically important especially for security and military applications. Ever-increasing 

use of machines and availability of massive volumes of data deemed it necessary to im-

plement automated personal identification systems. Another application where these 

systems can play a significant role would be the prevention of crime. 

In this thesis, the term detection will be used for biological motion detection i.e. recog-

nition of human-like motion in an MLD sequence. The term classification will be used 

synonymously with person identification. 



Chapter 1 Introduction 13 

1.3 H u m a n Mot ion Studies — A n Overview 

Human motion studies can be broadly divided into three categories. The first category is 

concerned with detection of the presence of human motion in an image sequence. Major 

areas for the first category would be tracking applications and detection of pedestrians 

in an automated traffic system. The second category involves the detection and cate-

gorisation of various human activities in an image sequence. The third category is a 

classification problem and is solely concerned with person identification. 

The approaches to human motion detection are based on determining a generic model 

or template of a moving human shape. Baumberg and Hogg (1993) described a flexible 

shape vector derived from the cubic B-spline description of the body contours. Niyogi 

and Adelson (1994a) used the braided pattern in XT-slice of an image sequence to 

signal the presence of human motion; an active contour of the body was then used 

to determine the identity of the walker. Niyogi and Adelson (1994b) also described 

another method based on spatiotemporal surfaces, the surface being a combination of 

standard parametrised surface - the canonical walk - and a deviation surface specific to 

the individual walk. Yacoob and Davis (1998) used learnt parameterised temporal-flow 

models with spatial constraints, models being sets of orthogonal principal components, to 

track rigid and articulated motions. Bregler and Malik (1998) described a mathematical 

tracking technique, the product of exponential maps and twist motions. 

Bobick and Davis (1996a, 1996b) and Davis and Bobick (1997) employed an optical flow 

based technique to categorise the various human motions. Advantages of the technique 

include no adverse effect of blurred image, view-based categorisation and localisation 

of areas where motion takes place. Yacoob and Black (1998) described parameterised 

modelling and recognition of activities using principal components of motion parameters. 

Bregler (1997) used a hierarchical approach to human motion categorisation. The image 

sequence was first segmented into blobs and motion parameters of these blobs were 

estimated using an expectation maximisation algorithm. These blob parameters were 

used to determine the dynamical category of the image sequence. Complex gestures of 

the image were then determined using learnt hidden Markov models. Takahashi and 

Ohya (1999) discussed application of neural networks to human motion recognition and 

categorisation. 

1.4 Methodo logy 

The previous section summarised computational approaches previously reported in the 

literature for motion detection. However, work presented in this thesis differs in the 

sense that here emphasis is not on the detection of the moving subject but on identi-

fying the factors which allow this. The main objective is to gain understanding into 
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how humans are able to do this detection. A better understanding of human perception 

may be achieved by analysing perception of an equivalent machine. The work presented 

in this thesis investigates if it is possible for a machine to detect biological motion in a 

similar manner. And if the answer is 'yes', does this lead us any closer to the understand-

ing of human perception? As humans can detect motion even from MLDs, where only 

information of dot positions is used as the input, the machine is also fed with this infor-

mation only. The underlying assumption is that MLD data has sufficient information 

for equivalent perception. It needs to be seen if the machine can use this information in 

an equivalent manner or not. As only a dynamic sequence invokes the perception, some 

kind of mechanism needs to be established to impart temporal information to the ma-

chine. Human responses were collected through an experimental design. Framework and 

responses of which appear in Chapter 5. These responses formed the basis of comparison 

of human and machine perception. 

This thesis also investigates the applicability of this approach to identification of people 

on the basis of their walking. As human beings can perform this task even from MLDs 

that lack any information about the shape of the object, labelled data that contains 

information only about the coordinates of body joints are used as the input for the 

classification problem. 

For both detection and classification, three machine learning models - k nearest neigh-

bour (A:-NN), artificial neural network (ANN) and support vector machines (SVM) -

have been considered. Neural networks were used as they are good exploratory tools to 

investigate the feasibility of our problem. For the simplification of analysis of machine 

learning, only simple feed-forward neural architectures with back-propagation learning 

were employed. Initially a Python (van Rossum 1999) program was developed. Python 

was used as it is an interpreted, object-oriented, dynamic language suitable for rapid 

application development. Later a more efficient C + + version of the same algorithm was 

used. Both programs were tested on parity problem and benchmarked Iris data (Fisher 

1936) to ensure a good implementation. However, neural architectures suffer from prob-

lems of non-convergence and local minima traps. SVMs, on the other hand, can produce 

stable results and are good for two-class problems. For the purpose of detection, this is 

justified as the problem is inherently two class. A practical limitation of the inability of 

SVM implementations (Gunn 1997; Joachims 1999; Rifkin 2000) to handle large amount 

of data, however, meant that these could not be used for biological motion detection as 

intended. 

For classification problems, the SVM approach needs to be modified. Two different 

multi-class implementations based on one-against-one and one-against-rest criteria were 

developed to extend the two-class MATLAB toolbox by Gunn (1997). Both of these 

implementations were tested on Iris data (Fisher 1936). A A;-NN approach was used as 

it is simpler to analyse and more informative for inherent clustering, if any, in data. It 

also provides a bound on what is the best a machine learning system can achieve. In 



Chapter 1 Introduction 15 

theory, as the number of points in feature space n oo, the error rate of fc-NN is never 

twice that of the Bayesian classifier and monotonically approaches the Bayesian error 

as k increases (Devijver and Kittler 1982; Chen, Damper, and Nixon 1997). All these 

learning models are detailed in Appendix C. 

1.5 Contributions of this Thesis 

A biologically-inspired approach to motion detection and classification is presented in 

this work. We are motivated by the fact that humans can recognise a moving subject 

in an MLD within 0.2 s from a small number of lights attached to the body (Johansson 

1973). Humans can also infer something about the personal characteristics or identity 

of a walker from MLDs (Cutting and Kozlowski 1977; Stevenage, Nixon, and Vince 

1999). Motivated by these findings, we have trained computational models to discrimi-

nate natural human motion sequences from "near miss" sequences (e.g. random, scram-

bled, perturbed, etc.) using information about the dots only. Initially only three difi'erent 

categories of sequences were considered (Laxmi, Carter, and Damper 2002b). Later the 

total number of categories was increased to 12. Extensive psychophysical experiments 

were undertaken in which 93 participants were shown various MLD sequences and were 

asked to indicate the presence/absence of natural human motion. The results act as the 

training and validation data for the machine model, which uses the same categories as in-

puts (Laxmi, Carter, and Damper 2003). Since humans can infer identity from MLDs, we 

have also tested ANN and SVM machine models for MLD based classification. A correct 

identification rate of 95-100% for a set of 4 manually labelled subjects (Laxmi, Carter, 

and Damper 2002a; Laxmi, Carter, and Damper 2002c), and 85-90% for a set of precisely 

labelled dataset of 21 subjects (Laxmi, Carter, and Damper 2003) were achieved. 

An underlying assumption for the work presented is that the MLD data have enough 

information for the purposes of both detection and classification. Unlike other related 

works, which use image-processing techniques, the work presented here is motivated by 

data and not by any specific methodology. Hence, no pre-processing was done for the 

input data. The main aim is to test if a machine can learn discriminatory features of the 

data as humans do. To the best of our knowledge, this is the first attempt to evaluate 

machine perception in context of human perception. 

1.6 Thesis Organisation 

The thesis is structured as follows. Chapter 2 is a summary of abilities of human percep-

tual system in context of MLDs. It also summarises various theories of visual perception, 

which form the basis of the experiments conducted to evaluate human responses for dif-

ferent kinds of MLD sequences. Chapter 3 is a detailed description of the methodology 
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adopted for machine perception. What constitutes a human or non-human motion in 

the context of this thesis is presented in this chapter. Chapter 4 reports results of an in-

vestigative study to test if machines can detect biological motion or not. As the present 

work uses some MLDs with no reported literature on the human responses they elicit, an 

experiment was performed to collect such responses. The experimental framework and 

the human responses are discussed in Chapter 5. Chapter 6 is a summary of results of 

biological motion detection by machines - A;-NN and ANN. This chapter attempts to 

determine factors responsible for the machine perception. A comparison of the machine 

perception with the human perception is also presented. Chapter 7 discusses suitability 

of gait as a biometric; the number and complexity of motions constituting human gait 

lends credibility for using this as a biometric. This chapter also presents results obtained 

by different classifiers with reference to the gait based person identification. Chapter 8 

concludes the work presented in this thesis with some pointers to future work. 



C h a p t e r 2 

Human Perception of Motion 

Our primary aim is to gain knowledge of the human perception of biological motion. 

To this end, it is necessary to know the capabilities of the human perceptual system. 

This chapter summarises outcomes of the perception related studies. It is structured as 

follows. Sections 2.1 and 2.2 present structure-based hierarchical theories of perception. 

A coding theory of perception is presented in Section 2.3. Section 2.4 reviews the 

perception of upside-down or inverted displays. Processing constraints which may be 

responsible for a stable perception of otherwise mathematically ambiguous displays are 

discussed in Section 2.5. A review of possible minimal sub-configurations sufficient for 

biological motion perception is presented in Section 2.6. Human performance in the 

context of person identification from MLDs is discussed in Section 2.7. A summary of 

the chapter and its implications for this thesis is discussed in Section 2.8. 

2.1 Johansson's Mode l of Visual Percept ion 

Johansson (1973, 1975, 1976) was the first researcher to use MLDs for studies on biolog-

ical motion perception. In his experimental setup, he showed MLD sequences displaying 

humans carrying out the various activities like walking, running, hopping, dancing, cy-

cling, etc. In his studies, 12 light elements, as illustrated in Figure 2.1, were used. The 

following responses were the outcome of these studies: 

• Observers were able to recognise a human figure and categorise the types of motion. 

Spontaneous and correct identification of various activities, e.g. running in different 

directions, cycling, climbing, dancing in couples, etc. was made without exception. 

• Recognition was possible only in a dynamic display of lights. Static configuration 

of lights was not recognised. 

17 
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F I G U R E 2 . 1 ; Johansson used 12 hght elements, as depicted here, in his displays. The 
actual display showed no body contour. It has been drawn to clarify the 
actual joints. 

For MLDs containing a human walk, a display of 0.2 s, about five frames of Jo-

hansson display, was enough for the perceptual organisation of the pattern to a 

meaningful unit. 

Direction of the subject relative to camera (45°-80°) did not affect recognition. 

Human walking was still recognised when the number of recorded elements in the 

MLD was reduced. Five elements representing hip-and-legs part were sufficient, 

though some subjects described these patterns as moving arms of a walking person. 

Subtraction of semi-translational motion at hips did not affect recognition. Adding 

common components to the element motions, too, did not have an adverse effect 

on the identification of walking patterns. 

Observers were able to identify walking left, walking right, walking backward 

right, walking backward left, running right, running left, puppet walking left and 

puppet walking right from a series of display sequences (Johansson 1976). An 

exposure time of 0.4 s was required to correctly identify all patterns, "artificial" 

patterns with puppet-like motions were found to be the hardest to recognise. 

2.1.1 Perceptua l U n i t s 

Johansson concluded that the definite grouping of light points was determined by some 

general principles but the vividness of the percept was due to prior learning. These 

general principles, as described below, determined the perceptually connected units: 
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Perceived motion 

J J 
-

- O -

Percept 

(a) 

Stimulus Percept 

(b) 

M o t i o n i n Dep th 

Percept 

Percept A 

Stimulus Percept B 

(c) (d) 

F I G U R E 2 . 2 : (a) Four corner points of a shrinking/expanding square and moving diago-
nally are perceived as an advancing/retreating square, (b) Dots traversing 
an ellipse are perceived as a rigid rod rotating in depth, (c) Four corner 
points of a shrinking/expanding square and moving diagonally are per-
ceived as an advancing/retreating square, (d) Four points of a square 
changing to rectangle and then back to square has two possible percep-
tions. 

• Dots in an MLD, as projected on the picture plane of the eye, are always percep-

tually related to each other. 

• Equal and simultaneous motions in a series of proximal dots automatically connect 

these elements to rigid perceptual units. 

• When equal simultaneous motion vectors can be mathematically abstracted from 

the motions of a set of proximal dots according to some simple rules, these dots 

are perceptually isolated and perceived as one unitary motion. 

The term equal used here includes all motions that follow tracks converging to a common 

point at infinity on the picture plane and whose velocities are mutually proportional rela-

tive to this point. For fronto-parallel projections, this reduces to equal motion directions 

and velocities. 

2.1.2 Visual Vector Analys is 

To determine the principles governing the visual perception, Johansson (1975) did some 

simple experiments (see Figure 2.2). Four points of a contracting/expanding square 

were perceived as advancing or retreating square. Two points traversing an ellipse were 
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perceived as a rod rotating in a slanted plane. Four points of a square undergoing 

transformation to a rectangle resulted in two different perceptions. In one percept, the 

square was perceived as advancing/retreating and simultaneously undergoing shrink-

ing/expanding and in the other percept, these points were perceived as a rotating square. 

Four points of a square in which only one corner point was moving along the diagonal 

path evoked the perception of a surface undergoing bending. 

On the basis of these observations, Johansson concluded that the visual perception 

system follows the principles of central perspective and not Euclidean space and prefers 

maintaining figural constancy. Any change in the figure/shape is perceived as a central 

perspective transformation, rather than the actual change happening in Euclidean space. 

Thus the visual system prefers invariance of figure size by inferring motion in 3D space. 

He formulated a geometric framework, termed visual vector analysis, to explain the 

perception mechanism. This analysis is based upon the following principles: 

1. Sets of spatially invariant relations in the stimulus pattern are spontaneously iso-

lated. 

2. For the moving elements of the stimulus pattern, the perceptually lower speed 

generally forms a reference frame for the higher one. 

3. The eye fixation can play an important role for the perceived structure. What is 

fixated tends to act as a primary reference for other motion components. Therefore, 

principle (2) is fully valid only under fixation on the background. 

For complex motion patterns such as biological motion pattern, the visual system ab-

stracts a hierarchical series of moving frames of reference and motions relative to each of 

them. Equal vectors or vector components form a perceptual unit that acts as a moving 

frame of reference in relation to which secondary components seem to move. As the 

hip-shoulder unit has the lowest speed relative to the background and it connects the 

four pendulum subsystems to a unified system of higher order, the hip element is taken 

as a starting point in the stimulus-percept analysis. 

In visual vector analysis, the motion vectors of the hip in any fixed frame of reference, de-

fine the frame of reference in which motion of the knee is abstracted. The motion vectors 

of the knee, then, define the frame of reference in which the ankle motion is analysed. 

The motion vectors of any joint are, in effect, vector differentials. Thus motion ab-

straction is akin to spatio-temporal differentiation. For the grouping of these perceptual 

elements, the visual memory needs to perform a continuous integration of these differ-

entials. So, mathematically speaking, the visual perception is a process involving an 

integration of spatio-temporal differentials (Johansson 1976), which can be abstracted 

as visual vector differentials. 
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2.2 Centre of M o m e n t and Mot ion Percept ion 

Further studies (Cutting and Kozlowski 1977; Kozlowski and Cutting 1977; Barclay, 

Cutting, and Kozlowski 1978) were directed toward the identification of the sex of a 

walker. These studies revealed some interesting points about the visual perception of 

motion: 

• Gender determination rate was very high when the observer was maximally confi-

dent, but no better than the chance rate when minimally confident. 

• Arm-swing and walking speed are correlated in natural gait, the faster the gait, the 

more is the arm-swing. 

• Men have larger shoulder swing and women have larger hip swing. In gen-

eral, women swing arms more, walk faster but take smaller steps than men. But 

none of these features is necessary for identification of the gender as increasing arm-

swing did not make walkers appear more feminine; nor did decreasing arm-swing 

make them appear more masculine. 

• Any deviation from normal arm-swing or change in subject's speed adversely af-

fected the gender determination. 

• Upper-body and full-body conditions were significantly more identifiable than the 

lower body conditions. Arm-swing information appeared to be helpful in recognis-

ing the sex of a walker. 

• Any joint is sufficient, and no joint is necessary, for identification. Ankles alone 

resulted in a better determination rate than chance. Although the hip, by itself, did 

not seem particularly important, but in conjunction with information from the 

upper body it enhanced perception. 

• Gender determination required about 2.7 s or roughly two step cycles. This is 

significantly larger than the time required for recognition of a human shape. 

• Inversion of the stimulus display produced the unexpected effect of reversing the 

apparent sex of most walkers. When presented upside down, the male walkers 

appeared female and female walkers appeared male. 

• Although participants did not depend on particular joints for accurate judgement 

of gender, some aspects of joints might have been a cue. Blurring of the point-lights 

attached to the joints lowered the perceived accuracy to the chance rate. 

• When faced with the upside down displays, viewers were significantly more confi-

dent when incorrect. 

• Although on-joint displays have better detectability, off-joint displays were also 

found adequate for representing human motion (Cutting 1981). 
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Shoulders 

Center of moment 

F I G U R E 2 . 3 : Analytic way to determine the approximate location of centre of moment 
as suggested by Cutting, ProfRtt, and Kozlowski (1978). 

On the basis of the above observations, Cutting, ProfRtt, and Kozlowski (1978) con-

cluded that some structural and transformational invariants play a significant role in 

the gender perception in motion. According to them, centre of moment (Figure 2.3) 

has the requisite characteristics of a structural invariant. Each body has two centres. 

The first is the centre of moment about which all the movements occur and the second 

is the centre of gravity about which the mass is distributed. Since arms and legs are 

pendular, they rotate about their pivots namely the shoulders and hips. As these pivots 

undergo torsion, these have a higher order of moment. The centre of moment is slightly 

lower for males than females due to wider shoulders and narrower hips. Also the centre 

of gravity is lower for females due to heavy thighs. Cutting, Proffitt, and Kozlowski 

(1978) suggested that these differences might account for the gender determination with 

the centre of moment acting as a structural invariant and the pendular and torsional 

moments acting as transformational invariants. For accurate gait perception, both of 

these invariants need to be considered. 

Cutting and Proffitt (1981) suggested that, while perceiving biological motion from the 

MLD displays, we extract information in logical steps and perceive the parts of the body 

as a system of dynamic nested dependencies. The motions and locations of the hip and 

shoulder are extracted first as they are close to the body's deepest centre of moment 

within the torso. These points now serve as the static centres of moment for the analysis 

of the lower and upper body respectively. For example, for the lower body, the hip acts 

as the centre of moment for the knee, which moves in pendulum fashion about it. One 

perceives the knee motion only by its motion relative to the hip. Therefore, "the motions 

of a whole are perceived as the movements of parts about a point that is analytic to 

the whole, whereas the observer-relative displacement of the whole is perceived as the 

dynamics of that point". 

Minimum Principle: Given a choice between two perceivable patterns of an ambigu-

ous stimulus, the perceptual system seems to choose the simplest (Cutting and Proffitt 

1982). This simplicity heuristic in perception is called the minimum principle. Motion 

of a moving body consists of: 

• Absolute motion of each element in the display. 

• Common motion of the whole configuration relative to the observer. 
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• Relative motion of each element to other elements within the configuration. 

These three components are related through the following equation for all elements 

perceived as a single unit. 

common motion + relative motion = absolute motion (2.1) 

Only relative and common motions are usually perceived when viewing an event. Ac-

cording to Cutting and Proffitt (1982), the minimum principle is operative in two pro-

cesses, one involving common motions and the other relative motions. Thus, common 

and relative motion abstraction processes are concurrent. If one of the processes reaches 

the solution first, the solution for the other process is determined residually. If the rel-

ative motions are first to be minimised, the common motions fall out as residuals and 

vice versa. 

Cutting and Profiitt (1982) applied this principle to biological motion perception also. 

In terms of the minimum principle, the perception within the torso is determined first by 

minimising the motions of the shoulders and the hips along the stress lines of the twisting 

torso. The component structures of the upper and lower body are perceived through a 

minimisation of the common motions. Once the shoulder motion is extracted, this point 

becomes a static pivot for obtaining the pendular movement of the elbow. Similarly, the 

elbow becomes the static pivot for the wrist movement. In perceiving the nested compo-

nent structures of the upper and lower body, each step in information processing causes 

one point to become static. The common motion within the subsystem is achieved rela-

tive to this point. The common motion of the whole body is seen in the moment within 

the torso. Thus "motion of a whole is perceived as the movement of parts, motion and 

location of hip and shoulders being extracted first, as these are the deepest of moments 

within the torso". 

2.3 Coding Theory for Mot ion Percept ion 

Restle (1979) proposed a coding theory for motion perception. According to this the-

ory, of all possible interpretations for a moving light display, the perceptual system 

chooses the one having minimum information load. If two or more interpretations have 

the same information load, the perception is not stable. Some participants would per-

ceive one interpretation while the others would perceive another. Information load is 

the set of parameters necessary to specify the interpretation. The set of parameters can 

be classified as follows: 

• Structural: Describe the organisation of dots. This parameter may come into 

existence only when the dots are perceptually grouped and are regularly placed. 
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F I G U R E 2 . 4 : Static illustration of inverted Johansson display. 

• Positional: Describe the location of dots. One location parameter per perceptual 

group is sufficient. 

• Motion: Describe the motion of dots. Pendulum-like oscillatory and elliptical 

motions, encountered in biological motions, are projections of the circular motions. 

Five motion parameters - amplitude (a), phase {<p), wavelength (A) and two angle 

parameters (/3, r ) to describe the orientation of motion plane with respect to image 

plane - are sufficient for the purpose. 

Restle's model is restricted to the motions generated on a circle. Parameters used by 

him - phase, amplitude, rate, axis of movement and tilt - could apply both to the 

circular and pendular motion but there is no mechanism in the model to distinguish 

between these two. Also there is no simple way to code non-repeating movements like 

translation. Cutting (1981) overcame these limitations. By application of the coding 

theory adapted to moving dots display obtained by on-joint and off-joint stimuli for a 

canonical walker and on-joint stimulus for a spatially anomalous walker, he suggested 

that both movements and the spatial relations are necessary for an event perception. 

The major limitation of the coding theory is that it does not explain how to obtain a 

perceptual group. This theory can be used to explain the perception of an event only 

after the perceptual grouping is known. 

2.4 Percept ion of Inverted Moving Light Displays 

Sunn (1984) found that when the Johansson displays were inverted, and run back-

ward, some sort of human movement could still be perceived. However, it was perceived 
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(a) (b) (c) 

F I G U R E 2 . 5 ; Minimal sub-configurations for biological motion perception. In (a) ex-
tremities (wrists and ankles), (b) mid-limb elements (elbows and knees) 
and (c) central elements (shoulders and hips) are missing. 

more frequently as an upright image of a person moving forvyard in a very strange man-

ner rather than as an inverted image of a person moving backward. The moving-dot 

pattern of the Johansson's film was hardly ever recognised as being upside down or as 

an inverted image of a moving person. Instead, it invoked perception of very unfamiliar 

motions of a biological type. Very few participants perceived the moving spots as a 

person walking or running in an inverted position. A static illustration of an inverted 

display is presented in Figure 2.4. 

Pavlova and Sokolov (2000) reported that the spontaneous recognition of an MLD walker 

improves abruptly when the image-plane is rotated from the inverted to upright orienta-

tion. Despite prior familiarisation with an MLD figure at all orientations, its detectability 

within a mask decreased with a change in orientation from the upright to a range of 

90°-180°. 

The information inherent in Johansson patterns is retained even in the upside-down 

temporally reversed condition. In the light of these findings, any theory of perception 

based on the structural information as suggested by Johansson's visual vector analysis 

and Cutting's centre of moment oriented perception needs to be modified, if not totally 

abandoned as invalid. 
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2.5 Process ing Constraints in Percept ion 

From a mathematical point of view, MLDs are ambiguous and do not represent any 

unique three-dimensional object. Bertenthal and Pinto (1993) maintain that some pro-

cessing constraints are essential to the perception of visual information, because the 

structure of the projected image, being a 2D projection of the 3D world on the retina, 

is undetermined. From a mathematical perspective, this image is consistent with an 

in-determinant number of different interpretations. Yet, the human perceptual system 

perceives only one stable interpretation. This suggests that certain constraints, which 

reduce infinite number of possible interpretations to only one, are part of the percep-

tual process. According to Bertenthal and Pinto (1993), these constraints are dynamic 

symmetry, frequency entrainment and a periodic attractor. Dynamic symmetry means 

that opposite limbs connected at shoulder and hip joints move in alternation. Frequency 

entrainment implies that all limbs of human body undergo pendular motion, having the 

same frequency but differing in the phase. Periodic attractor means that each joint angle 

displays its own characteristic pattern during the gait cycle. Significant findings of their 

work are: 

• Relative inter-limb phase relationships were perceptually more influential than 

constancy of length of limbs. Violation of local rigidity constraints by varying 

limb lengths, as suggested in computational models (Webb and Aggarwal 1982; 

Hoffman and Flinchbaugh 1982), did not degrade the perception but alteration of 

these phase relations did. 

• Single point masks were less effective than the triad masks consisting of 3 elements 

undergoing motion similar to that of a limb. This suggested that the participants 

were sensitive to the relative motion, and masks having the same relative motion 

were more effective. 

2.6 Minimal Sub-configurations for Visual Percept ion 

To determine the minimal conditions for perceiving a unique impression of biological 

motion in MLD stimuli, researchers have used masked, scrambled or partial MLDs. 

These studies have failed to identify a set of factors sufficient for biological motion 

perception. But many interesting features concerning the capabilities and flexibility of 

the human perceptual system are revealed. Some of the interesting findings are reported 

here. In their studies, Ahlstrom, Blake, and Ahlostrom (1997) reported the following: 

• Perception of MLDs is immune to variations in dot contrast polarity. 

• Regular biological motion sequences can be easily discriminated from phase scram-

bled sequences. Like regular sequences, phase scrambled sequences contain the 
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F I G U R E 2 . 6 : Minimal sub-configurations for (a) randomly-located limbs, (b) inverted 
figure and (c) upright figure. 

same local dot motions but the starting point for the motion cycle of each dot is 

chosen randomly e.g. a dot associated with the wrist may start in frame 6 whereas 

the dot associated with the elbow may start with frame 14. 

» Dots specifying only ankles were perceived as non-biological motion but addition 

of dots representing knees resulted in an impression of biological motion. This 

impression grew stronger as more dots were added. 

Superimposition of an inverted figure on otherwise normal biological-motion se-

quence resulted in a multi-stable perceptual grouping of dots. However, this per-

ceptual multi-stability was absent when the dots describing an inverted figure were 

of different colours. 

According to Pinto and Shiffrar (1999), the perception of human movement appears to be 

an integration of form and motion. The two principal components - dynamic symmetry 

among the limbs (equal and opposite motions of adjacent limbs) and the principal axis 

of organisation (primary structure about which the limbs are organised, i.e. torso) - play 

a fundamental role in production of human walking. Pinto and Shiffrar (1999) reported 

the following observations. 

1. Detection of the figure missing elements on the extremities, i.e. ankles and 

wrists, did not differ significantly from the detection of the whole figure (see Fig-

ure 2.6(c)). Omission of the central elements - hips and shoulders - did signifi-

cantly diminish performance. Omission of the mid-limb joints - knees and elbows 

- also impaired the performance. Figure 2.5 illustrates these sub-configurations 

with missing elements. 
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F I G U R E 2 . 7 : Minimal sub-configurations for biological motion perception. Of the ma-
jor joints of four limbs, two arms and two legs, joints of any two limbs are 
shown. In (a) ipsilateral limbs, (b) contralateral limbs (arms), (c) diagonal 
limbs and (d) contralateral hmbs (legs) sub-configurations are presented. 

2. Detection of the upright figure even with missing elements was significantly better 

than that of the inverted figure (see Figure 2.6(b)). 

3. The whole figure was detected with greater frequency and accuracy than the set 

of randomly-organised limbs (see Figure 2.6(a)). 

4. Detection of ipsilateral (arm and leg on same side), contralateral limbs (both arms 

or both legs) did not significantly differ from that of diagonal limbs (arm and leg 

on opposite sides). All these sub-configurations are depicted in Figure 2.7. 

5. Figures in which the light elements were positionally scrambled were not identified 

as human forms. It suggested that the spatial structure of the figure is essential 

for detection. 

On the basis of observation 1, Pinto and Shiffrar (1999) concluded that a hierarchi-

cal vector analysis (Johansson 1973; Cutting 1981) by itself does not give a complete 

description of the visual perception. The three body configurations missing extremi-

ties, mid-elements and central elements maintained a hierarchical structure amenable to 

these analyses. However, the differences in human performance to these configurations 

cannot be explained by a simple hierarchical model. Rigid relations (Webb and Aggarwal 

1982; Hoffman and Flinchbaugh 1982) alone cannot account for different performances 

as all these configurations have same number of rigid relations. 
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On the basis of observation 4, Pinto and Shiffrar (1999) concluded that while neither dy-

namic symmetry nor principal axis appeared necessary for human detection, the absence 

of both, as in the case of randomly organised limbs, reduced the detection to chance. 

If dynamic symmetry were necessary to human form detection, diagonal limbs would 

not be detected as these move in synchrony and no anti-phase information to indicate 

dynamic symmetry is available. If the elongated structure of principal axis were nec-

essary, contralateral limb conditions would not be detected, as only legs or arms were 

shown. 

Pinto and Shiffrar (1999) argued that the visual system responds equivalently to figures 

exhibiting any organisation of limbs consistent with the human form. Not only this, the 

visual system is capable of exploiting the conhgural information specifically indicative 

of the human form in the perception of MLDs. However, the figural coherence is not 

sufficient to explain the detection of human movement. If it were so, the inverted figure 

detection would not significantly differ from the upright one. In fact, this difference 

cannot be explained by models based on hierarchical vector analysis and rigid relations. 

2.7 Biological Mot ion and Person Identif ication 

Cutting and Kozlowski (1977) conducted MLD based experiments to assess the capa-

bility of the perceptual system for human identification. They reported that viewers 

could recognise themselves and others from the MLD sequences. Seven participants 

were shown six walking sequences of six subjects. The interesting features revealed in 

these studies can be summarised as follows: 

• Although none of the participants could achieve 100% performance, the perfor-

mance was above the chance rate for all particpants. 

• The performance improved with time. The performance for the last three view-

ings (of all subjects) was better than the first three. 

• The average performance was 27% for the first three presentations, actual perfor-

mance ranging from 17%-39%. For the last three presentations, these figures were 

59% and 22%-95%. The chance rate recognition was 16.7%. 

• The poorest performance was exhibited by the participant who used the height as 

a clue. 

• Successful identification rate was high (75%) when the observer was maximally 

confident and marginally better than the chance rate when the observer was min-

imally confident. 
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• Successful identification rate was better for the participants who used dynamic 

clues, such as speed, bounciness, rhythm, amount of arm swing, length of steps, for 

identification. 

According to Stevenage, Nixon, and Vince (1999), the human visual system can learn to 

identify individuals on the basis of their gait signature under varying lighting conditions. 

In their experiments, 30 participants (15 male, 15 female) were shown image sequences 

of 6 subjects (3 male, 3 female) walking in simulated daylight, simulated dusk, as well 

as MLDs. The major findings are as follows: 

• Participants learnt to identify the subjects correctly in average 8.3 trials. As all 

subjects were of about the same build, the participants had to depend upon gait. 

• Adverse lighting conditions did not affect the learning rate to achieve 100% accu-

rate identification. 

• Learning was faster when the participants used dynamic features for identification. 

• Even under adverse viewing conditions involving a single brief exposure of 2 s, hu-

mans could identify a target from a 'walking identity parade' at greater than the 

chance levels. 

• Participants' confidence in the identification were correlated with their classifica-

tion accuracy. 

2.8 Implications for the Thesis 

The human perceptual system is capable of perceiving human figures and their actions 

from MLD stimuli even in the presence of masks and random perturbations of the dots. 

Although the exact mechanism of this perception is not known, the dots undergoing 

some common motion appear to be perceived as a single unit. Relative and common 

motions seem more dominant than the absolute motion. As no single dot seems to 

be crucial to the perception process, it is difficult to determine which point or set of 

points plays a major role. The minimum presentation time required for the motion to 

be perceived indicates a possibility of some form of neural integration. However, as this 

duration is very small, it can be presumed that the perceptual process abstracts a small 

set of invariants from the moving-dot displays. 

For the complex patterns like biological motion, it is likely that the abstraction of in-

formation is done in hierarchical manner. However, the exact point about which this 

abstraction starts is not very clear. According to Johansson, the abstraction process 

begins from a point with minimum perceptual speed. However, the actual point may 

still be affected by the eye fixation. According to Cutting, the first point to be extracted 
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is the centre of moment, which lies somewhere in the middle of the torso. Pinto and 

Shiffrar (1999), however, contradict the structure-based hierarchical theories. Hence, a 

model-free approach (i.e. no data pre-processing) to the problem may be the requisite 

solution. This approach is discussed in the next chapter. 



C h a p t e r 3 

Experimental Data and 

Methodology 

As discussed ear Her, one of the objectives of the presented work is to determine if a 

machine can detect a biological motion sequence in an MLD display in a manner similar 

to humans. Another objective is to see if the machine can also classify people on the basis 

of MLD information only. Figure 3.1 summarises the objectives of the work presented 

in this thesis. 

Our approach to biological motion detection is model-free in the sense it is driven entirely 

by the input data without any pre-processing (i.e. data are not modelled). It is inspired 

by the fact that humans can detect such motion even in MLDs. It differs from other 

approaches as we have not employed any image processing techniques on the input data. 

It is assumed that the data contains all information necessary for the detection. It is 

anticipated that any structure, if it exists in data, will be learnt by the machine. The 

purpose of this preliminary study is to verify our assumption. 

Three different types of machine learning models, explained in Appendix C, were used. 

Multi-layer neural networks with back-propagation learning have been used to solve 

temporal problems (Sejnowski and Rosenberg 1987). The advantage with this learning 

method is that analysis is not as complicated. As the complexity of problem from the 

machine perspective is unknown and these networks are suitable as good exploratory 

tools, neural networks with back-propagation learning were used. One of the most 

common problems with neural architectures is it may get stuck in one of the many local 

minima and may not converge converge to a global optimum. Support vector machines, 

however, provide an elegant solution to this problem. The obtained solution is unique 

and stable. Another advantage of this method is that use of kernels mean that the data 

modelling can be part of the learning model; the modelling can be varied by choice of 

the kernel. A:-NN model is used to evaluate the performance of other models. 

32 
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F I G U R E 3 . 1 : Flow-chart for illustration of the aims and objectives of our work. 

Although the problem is temporal in nature, machine models like Hidden Markov Mod-

els or recurrent neural networks have not been used as these are difficult to train and 

analyse. In fact, for the detection problem, a recurrent neural network using Elman 

topology (MATLAB function newelm) was tried with no success. In view of slow con-

vergence and large computation time, it is difficult to say if the network would converge 

or not. 

Input to all the machine models is MLD sequences as both tasks (i.e. detection and clas-

sification) are inspired by the fact that humans can do these on this limited information. 

Section 3.1 discusses the various datasets used. For machine modelling of human motion 

perception, it is necessary to determine which of the MLD sequences invoke perception 

of biological motion and which do not. Although the real world can present a multitude 

of different types of MLD sequences, we have restricted these categories to a set of 12. 

This set is determined from the works reported in Chapter 2. These categories are dis-

cussed in Section 3.2. A pre-requisite for machine training is labels (positive or negative) 

of all categories in the context of biological motion. This labelling is also discussed here. 

These categories were presented in two different modes described in Section 3.3. 

As the only available information from the MLDs is about the position of moving dots. 

The dot coordinates are used as input to the machine detectors. But humans can perceive 

a moving shape only when the display is dynamic, so this necessitates that the detectors 

be provided with temporally integrated MLD information. Hence a common framework 

which enables all the machine learning systems to deal with the temporal sequences 

needs to be established. This is explained in Section 3.4. Approaches to detection and 

classification problems are presented in Sections 3.5 and 3.6 respectively. 
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F I G U R E 3 . 2 : Walking sequence of a synthetic subject. 

3.1 Experimental Datasets 

Three different datasets were employed. Initial feasibility studies were done on a syn-

thetic dataset. Later, manually labelled dataset was used. Both of these datasets were 

used only for the classification problem. For the biological motion detection problem, a 

precisely labelled dataset was used. The following sub-section gives a brief description 

of each of the datasets. 

3.1.1 Synthe t i c D a t a 

Ten walking sequences of four synthetic figures (refer to Appendix A) were generated. 

Figure 3.2 shows such a sequence. Each sequence consisted of one gait cycle and a 

gait cycle is made up of 20 frames. As all synthetic figures start their walking cycle 

with the same phase, no phase synchronisation was needed. However, data-points were 

normalised so that they lie inside a unit hypercube in an ^-dimensional space, n being 

the dimensionality of the input. Of the ten sequences per synthetic subject, five were 

used for generation of training data-points and the rest were used for generation of 

testing data-points. Synthetic subjects were tested for leg joints only as the arm motion 

was not properly modelled. This dataset was employed only for classification (Laxmi, 

Carter, and Damper 2002b). 

3.1.2 Manual ly Labelled D a t a ( M a L D ) 

The initial studies were conducted with video recorded image sequences of four subjects. 

There are 4 image sequences for each subject, 2 walking left-to-right and 2 walking right-

to-left. Only right-to-left walking sequences were used. Segmentation of the gait cycle 

was done manually. Each segmented sequence consists of a 3 step cycle or 1^ gait cycles. 

These were manually labelled. Only seven joints - shoulder, elbow, wrist, hip, knee, ankle 
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F I G U R E 3.3: Manual labelling of an image sequence. 

and toe - were labelled. As normal human gait is symmetrical, only one leg and one 

arm were labelled. Another reason for labelling limbs on only one side was the difficulty 

in labelling due to the self-occluding nature of walking in humans. This dataset was 

employed for classification problem only. Figure 3.3 shows the manual labels for a frame 

in the image sequence. 

All the frames in all the sequences were labelled manually. Seven joints - shoulder, el-

bow, wrist, hip, knee, heel and foot - were labelled for each frame. The hip joint was 

more or less an approximate position as it was obscured through clothing. Poor quality 

of video, coupled with the self-occlusion characteristic of human walk, made the process 

prone to noise. To keep the process unbiased, no information of previously labelled 

frame was displayed. To maintain labelling consistency, all frames were labelled in one 

go-

Only two walking sequences, each consisting of 3 to 4 step cycles were available for 

labelling. Start and end frames for each subject were synchronised so that all sub-

jects enter the start frame with same walking phase. To make the number of frames 

equal in each walking sequence, each sequence was re-sampled. Re-sampling was done 

by MATLAB function resample. A fully connected back propagation network was em-

ployed. Of the two available sequences, one was used for training and another for testing. 

Training and testing were done by considering: a) all the seven joints - shoulder, el-

bow, wrist, hip, knee, ankle, toe, and b) only leg joints (hip, knee, ankle, toe). The 

results of these experiments are presented in Laxmi, Carter, and Damper (2002a). 

3.1.3 Infrared-marker Label led D a t a ( G T R I D a t a ) 

The GTRI dataset, courtesy Georgia Tech Research Institute, USA, contains accurate 

3D labelling with the help of infra-red markers. The dataset consists of labelled sequences 
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of 21 subjects. For each subject, there are four sequences a) with no shoes, b) with no 

shoes and a five pound shoulder backpack, c) with street shoes and d) with street shoes 

and five pound shoulder backpack. There is only one sequence for each walking mode, 

i.e. with or without shoes or shoulder backpack. In all there are 84 sequences. This 

dataset has been employed in both classification and detection studies. 

3.2 M L D Categories for Detec t ion 

For biological motion detection, 12 categories of MLD sequences were considered. From 

the perception studies as discussed in Chapter 2, MLDs of a walking or running human 

are perceived as 'biological motion', whereas a random configuration of dots is not. To 

determine if a machine detector is capable of learning the presence/absence of biological 

motion in an image sequence, the machine is presented with positive and negative exam-

ples of such motion. In all, 12 different categories of image sequences were considered. 

For every category, a snapshot of some frames from one of the corresponding image 

sequences is also shown. These categories are discussed in detail now; 

NOR This image sequence is the fronto-parallel view of a walking person. All the motion-

perception studies discussed in Chapter 2 used sequences of this type. The image 

sequence was labelled positive as, in all the perception studies, discussed in Chap-

ter 2, the participants recognised such displays as a human figure walking. 

DIR In all image sequences, a person walks from right to left. This category was 

generated by a refiection in the vertical plane. As a result, the person walks from 

left to right. It was added to make biological motion detection independent of the 

direction of motion. The image sequence was labelled positive as biological motion 

detection is independent of direction of motion (Johansson 1976). 
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WBK This was obtained from fronto-parallel view by reversing the sequence. Hence, the 

last frame becomes the first frame and so on. This category preserves human 

shape, the human motion, although natural, is not commonly observed. The 

image sequence was labelled positive as it is reported to be identified as natural 

human motion (Johansson 1976). 

INV This is essentially a reflection of the fronto-parallel view with respect to the ground 

plane. Although inverted displays have relative spatial and motion relationships 

similar to normal ones, most of the structure based perception theories cannot 

explain the negative response of human perceptual system. Inverted display may, 

therefore, be a good negative example. The image sequence was labelled nega-

tive (see Section 2.4). 

TOP This is the view obtained from the top. The image sequence is labelled negative. 

As there is no reported literature studies on this, this was assumed to be negative, 

as human shape and motion are different from the fronto-parallel view. 

OBQ This is similar to the top view but viewing is done at an angle. Although not 

reported in the literature, both TOP and OBQ categories are included, as views 

from different angles are more likely to be available as input to a computer vision 

system. The image sequence was labelled negative as this is closely related to TOP 

category. 
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SPT A small perturbation was added to all the joint positions. The amount of perturba-

tion retains the human figure, although inter-joint spatial relations get perturbed. 

Human perceptual system is capable of tolerating variations in spatial relations. 

A slight perturbation should have no adverse effect on biological motion percep-

tion. The image sequence was labelled positive as human shape is still visible and 

human motion is only slightly affected. 

LPT A large perturbation was added to all the joint positions. No human shape is 

retained. There is only a certain range in which perceptual system can tolerate 

variations. A large perturbation is, therefore, likely to be a negative instance. 

SPT and LPT categories were included to determine the effect of degree of pertur-

bation. The image sequence was labelled negative as both the human shape and 

motion are disturbed massively. 

PER The frames in a sequence were selected in a random order. Thus the view retains 

the human shape but the natural order of walking is missing. It is expected that 

the machine learning models will be able to learn temporal associations better by 

the inclusion of this category. The image sequence was labelled negative as the 

sequence of human motion is permuted and not in a natural order. 



Chapter 3 Experimental Data and Methodology 39 

SSR This was derived by spatially scrambling the limbs - arms and legs. Only the 

positions of the limbs are randomised, relative motion is not disturbed at all. The 

image sequence was labelled negative (Pinto and Shiffrar 1999). 

PSR This was also derived from the normal sequence. Relative phase relations of dif-

ferent joints are disturbed. Phase of each joint in the first frame corresponds to 

a randomly selected frame. For example, the knee joint may begin with a phase 

corresponding to frame 27, and elbow may start with frame 3 and so on. Con-

sistency of human form and motion play a major role in motion perception. A 

random change in inter-limb spatial and/or phase relations is likely to affect the 

perceptual system adversely. Hence, SSR and PSR categories were included. The 

image sequence was labelled negative (Ahlstrom, Blake, and Ahlostrom 1997). 

RAN This represents a random configuration of dots. It was obtained by putting random 

dots in the bounding rectangle of each frame of the fronto-parallel (NOR) sequence. 

As this configuration has neither shape nor motion consistent with humans, it is a 

good negative exemplar. The image sequence was labelled negative as it contains 

no aspect of human shape and human motion. 
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Category Label 
NOR + 
DIR + 

WBK 4-
INV — 

TOP — 

OBQ -

SPT + 
LPT — 

PER — 

SSR — 

PSR — 

RAN -

TABLE 3 . 1 ; Labelling of various M L D categories. 

Initially a label (positive or negative) for each category was determined from the lit-

erature or personal experience. Table 3.1 shows this labelling. A positive label means 

that the category is identified as natural human motion. A negative label is indicative 

of non-human motion. 

3.3 M L D Presentat ion Modes 

For both human and the machine, the input MLD data were presented in two different 

modes as discussed below. 

Absolute: Translatory motion is retained. On a screen, the configuration of the dots moved 

from one end to another. The image sequence contained both absolute and relative 

motions of the dots. 

Spot: No translatory motion is retained. The centroid of every frame was translated to 

the origin. On a screen, the configuration of dots appeared to be moving on a 

treadmill. The image sequence consisted of the relative motion only. 

3.4 Spatio-Temporal Integration for Machine Input 

For any frame in an MLD sequence, the joint positions describe the body configuration 

at time t, where t is the time index or the position of the frame, in the sequence. As 

for the detection problem, the joints are scanned in a top-down, left-right manner, the 

correspondence of joints from frame to frame is not preserved. In fact, the term joints 

does not make any sense in a random configuration of dots. Hence the term frame 

parameters will be more appropriate. Number of parameters per frame is twice the 
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number of dots as each dot is represented by two coordinates - x and y. Thus for a given 

frame, its parameters will be represented by a 2M tuple ,XM,yM), where M is 

the number of dots per frame and {xi,yi) is the position of z-th dot. For this discussion, 

we will assume that the sequence consists of F frames, each frame containing M dots 

and hence 2M parameters. 

The body configuration vector c{t) corresponding to a single frame with index t is given 

by 

where Xi{t), yi{t) are the coordinates of the ?-th dot in the frame. 

The vector c{t) has temporal information of one frame only and dimensionality of 2M, 

as each dot is represented by (z, y) coordinates. Integration of temporal information 

of N frames can be done by constructing a tuple (c(i), c{t + 1), . . . , c(i + iV — 1)) 

by concatenating the configuration vectors of N consecutive frames. We will refer to 

this concatenated vector as a data-point in this work. For a given value of TV, all 

possible data-points, each with temporal information spanning N frames, are generated. 

So, for # = 5, the first data-point was generated by concatenating configuration vectors 

for frames 1 to 5, the second data-point by concatenating these vectors for frames 2 to 6 

and so on. In other words, each data-point is a snapshot of a fraction of a gait cycle. 

This provides temporal information to the classifier, and is a classical way to handle data 

sequences (Sejnowski and Rosenberg 1987). Thus each walking sequence is presented to a 

classifier as a collection of data-points or overlapping snap-shots of the sequences, where 

each snap-shot lasts for a given temporal span. 

For a sequence consisting of F frames and M dots per frame, number of data-points 

with grouping of N frames \s F — N +1 and dimensionality of each data-point is 2MN. 

With an increasing value of N, the number of data-points per sequence decreases but 

the temporal information available per data-point increases. Figure 3.4 illustrates the 

process of generating data-points from a given image sequence. 

3.5 Generation of Data-points for D e t e c t i o n 

For every sequence in the dataset, 12 sequences, one for each category, are generated. 

Data-points are generated for each sequence by combining frame parameters of N frames 

as discussed in previous sections. Frame parameters are dot positions scanned in a raster 

manner (top-down, left-right) as shown in Figure 3.5. The number against each dot 

specifies its position in the scan order. 

For practical considerations, the data-points were normalised to unit hypercube and then 

were subjected to mean removal for the neural network detectors. The normalisation 
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MLD sequence 

Frame 1 

Data-points 

Frame 2 

Frame 3 

Frame 4 

Frame 5 

• ## 

F I G U R E 3.4: Temporal integration of frames across an MLD sequence to generate data-
points. 

2 3 

7 

11 
10 

t5--4 
14 

• 13 

F I G U R E 3 . 5 : Dots in an MLD sequence are scanned in a top-down, left-right ('raster') 
manner. 
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was done to avoid network saturation and mean removal helped faster convergence. 

3.6 Generation of Data-points for Classification 

For the classification problem, data-points are generated in a similar way to that for 

the detection. The only difference is that only the NOR category is used and the dots 

are not scanned in raster-scan order. In fact, a frame-to-frame dot correspondence is 

maintained. As all MLD sequences depict a human figure in motion, the term joint 

is more appropriate and will be used instead of dot in the following discussion. In 

other words, joints are always considered in the same order. As no other variations 

should contribute to the classification, walking sequences of all subjects are manually 

synchronised. This implies that all the subjects enter the first frame of the sequence at 

the same phase. This process can be easily automated by computing angles of rotation 

for the hip and determining minima (maxima) to mark the beginning and end of a 

gait cycle. Once gait cycles for all the walking sequences were identified, they are 

translated such that the respective x coordinates of the hip joint are aligned and the 

ground specification is same for all the sequences. Then data-points for different values 

of N are generated. Training and test data-points are generated from different walking 

sequences. A time tag is added to the configuration vector of each frame. As a result, the 

dimensionality of each data-point becomes (2M 4- l)jV. The addition of the time tag 

rendered the model dependent on the natural order of walking. Thus the modified 

configuration vector is given by 

In the earlier experiments (Laxmi, Carter, and Damper 2002a), the walking sequences 

were re-sampled, using the MATLAB function resample, so as to keep the same num-

ber of frames per gait cycle for each subject in the dataset. However, as each walking 

sequence contains about 2-3 gait cycles, re-sampling introduces oscillations at the end 

positions. In the ensuing experiments, as discussed in Chapter 7, no re-sampling was 

performed and the number of data-points generated from different sequences were dif-

ferent. Although each data-point has the same temporal span in terms of the number of 

frames and hence time, the temporal information with respect to gait cycle is not iden-

tical. Therefore, the time tag indicates the fraction of gait cycle, wherein a complete 

gait cycle has a value of 1. The body configuration vector, in this case, can be defined 

as follows. 

For both training and testing of the machine model, data-points were normalised to 
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<x,y> coordinates of joints in a frame. 

Add time tag to each frame 

Frame data = time tag + <x,y> coordinate/joint 

Extract data points by grouping frames 

&-NN classifier Scale data to unity hypercube 

c 
0 

1 
2 
3 
CO 
0) 

c 
_o 

I 

I 
o 

Remove mean from data 

i 
Neural network classifier SVM classifier 

F I G U R E 3.6; Steps involved in the classification process of a labelled image sequence. 

the unit hypercube. In case of neural network classifiers, they were subjected to mean 

removal. Then, they were applied to the neural network classifier (see Figure 3.6). For 

the classification problem, it is assumed that the scene contains only one person walking 

fronto-parallel to the camera. Availability of joint coordinates was assured so as to avoid 

occlusion and missing data related situations. 

In the next chapter, we test if the machine can learn to detect human motion or not. 

For the purpose of this initial investigative study, we assign a category for human or 

non-human motion as discussed earlier. 



C h a p t e r 4 

Can A Machine Detect Human 

Motion? 

One of the main objectives of our work is to ascertain if a machine is capable of dis-

criminating a human motion sequence from a non-human one as humans do. Machine 

modelling of any aspect of human behaviour is a difficult and tricky problem. One 

of the major challenges is how to feed information about human experience and prior 

learning. Unlike humans, the machine is working in a closed world. As main aim of 

the machine learning is to identify aspects of motion responsible for human perception, 

isolation of a proper subset of prior learning is a difficult task in itself. In this work, 

we are trying to determine if machine learning can lead to identification of factor(s) 

triggering detection of biological motion by humans. At present, this detection will be 

restricted to the categories discussed earlier. Although human perceptual system needs 

no training for detection, the machine, nevertheless, is fed with raw data, i.e. data with 

no pre-processing, as this data is sufficient to invoke vivid perception in humans. 

Chapter 2 summarises what constitutes a human/non-human motion from human per-

spective. Assignment of labels to the various categories has already been discussed 

in Section 3.2. A positive label means that the category is perceived as human mo-

tion, whereas a negative label implies a non-human motion. Data-points for both train-

ing and testing sets, discussed in Section 4.1, were generated as described in previous 

chapter. Section 4.2 presents results obtained with A:-NN and ANN detectors followed 

by a discussion of these in Section 4.3. Different implementations of SVMs (Gunn 1997; 

Joachims 1999; Rifkin 2000) were not able to handle large amount of data. Therefore, 

only ANN and A;-NN were used for the detection problem. 

45 
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4.1 Training and Testing Sets 

Only the GTRI dataset as discussed in Section 3.1.3 was used. Twelve categorised 

sequences (one sequence per category as discussed in Section 3.2) were generated 

for each sequence. For different values of N, data-points were generated from 

these 12 X 84 = 1008 sequences. Of 21 subjects, only categorised sequences of 9 sub-

jects were used for generating data-points for training, the rest were used for generating 

testing data-points. Training and test datasets were mutually exclusive. 

4.2 Prel iminary Resul ts 

For a given detector, the capability of detecting biological motion was investigated in 

two different modes - (a) absolute and (b) on the spot. In the first case, the translatory 

motion was retained as such and no data modification was done. In the second case, the 

centroid of each frame was moved to origin. Thus frame-to-frame translatory motion was 

absent. The moving figure now appeared to be walking on a treadmill. This was added 

as humans can recognise the motion even in such circumstances. Translatory component 

can also bias the detection, especially in A:-NN which uses a Euclidean distance based 

metric. 

4.2.1 A:-Nearest Ne ighbour Detec tor 

In the A:-NN detector, for each data-point, its k nearest data-points were determined. 

One of these data-points was randomly selected and designated as the nearest neighbour. 

If the labels of the data-point and its nearest neighbour match, it was assumed to be 

correctly classified, otherwise not. The process was repeated for different values of 

N, frames to be combined for temporal integration in data-point generation (as described 

in Section 3.4). Figure 4.1 displays the number of correctly classified data-points for each 

category having different values of N. For categories labelled positive, the classification 

accuracy is represented in the region 0 to 100; for others the —100 to 0 region is used. 

Any value near zero means that the machine model is not able to learn the respective 

category. 

For lower values of N, especially TV = 1, we observe that A;-NN detector confuses the 

samples from NOR, WBK and PER categories, indicated by near 50% response for NOR 

and WBK and none for PER. This is an expected result, as when only one frame is 

considered, there is no difference between these categories. Another interesting feature of 

A-NN detector is that for higher values of iV (15 in this case), RAN category is perceived 

as less negative. Figure 4.2 indicates how well the samples of a given category match 

with other categories in terms of nearest neighbour criterion. A bright square means 
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NOR DIR WBK INV TOP OBQ SPT LPT PER SSR PSR RAN 

(a) Absolute 

rn N rn N.17 

NOR DIR WBK INV TOP OBQ SPT LPT PER SSR PSR RAN 

(b) Spot 

F I G U R E 4 . 1 : Inter-category performance of A - N N as a biological motion detector for 
(a) absolute and (b) spot modes in the preliminary study. 

near 100% match and a dark square means no match. The matrix reveals that, except 

for RAN category, every sample of a category is nearest to another sample of the same 

category. RAN category interacts with INV, TOP, SSR and PSR categories. Any 

assignment which labels any of these categories positive is likely to affect the classification 

accuracy adversely. The performance of A;-NN detector in absolute and spot modes is 

the same except for PER category. 

4.2.2 Artificial Neural Network D e t e c t o r 

A neural architecture with two hidden units and a single output unit was trained as per 

the labelling in Table 3.1. For each value of TV, five randomly initialised, neural architec-

tures were trained and tested. For each program run, the number of correctly classified 

data-points for each category and different values of N were computed. Figure 4.3 shows 

the average category-wise performance on these five runs. For the ANN detector, the 

average performance in the spot mode is worse than that in the absolute mode. This 

is because the network did not always converge, especially at the higher values of N. 

Whenever the convergence took place, each category was detected with > 90% accuracy. 

The network was assumed to be converged when the classification accuracy remained 

> 95% for 5 successive epochs. 
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NOR DIR WBK INV TOP 0 8 0 SPT LPT PER SSR PSA RAN 

(a) Inter-category matrix (success) K=3 
NOR DIR WBK INV TOP OBQ SPT LPT PER SSR PSR RAN 

(b) Inter-category matrix (failure) K=3 

CO SPT (/) SPr 

NOR DIR WBK MV TOP 0 8 0 SPT LPT PEA SSR P * RAN 

(c) Inter-category matrix (success) K=3 
NOR OR WBK INV TOPOBOSPT LPT PEA SSR PSA RAN 

(d) Inter-category matrix (failure) K=3 

F I G U R E 4 . 2 : The figure illustrates inter-category confusion matrix for & - N N detector. 
The intensity of a square is an indication of the number of data-points 
of a category along the row classified as a category along the column. A 
bright square means near 100% match and a dark square means no match. 
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NOR DIR WBK INV TOP OBQ SPT LPT PER SSR PSR RAN 

(a) A b s o l u t e 

r j N = i 7 2 50 

NOR DIR WBK INV TOP OBO SPT LPT PER SSR PSR RAN 

(b) Spo t 

F I G U R E 4.3: Average category-wise performance of ANN, 2 hidden units, as a biologi-
cal motion detector in (a) absolute and (b) spot modes in the preliminary 
study. Five, randomly initialised, neural architectures were used to deter-
mine the average. 
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4.3 Discussion 

An overall high accuracy within each category for absolute mode suggests that ANN 

might be a suitable model for biological motion detection, at-least for the set of 12 cate-

gories considered in this work. A simple neural architecture as used in this study cannot, 

however, compare with the capability of a human brain. The aim of this study was to 

show that the data has sufficient information for even a simpler machine to learn the bi-

ological motion labelling of a limited set of categories. It needs to be seen if the features 

learnt by the machine lead to any understanding of human perception or not. To test 

if the machine performance compares with the human one or not, we need to ascertain 

human responses for the same MLD data. Reported literature studies cannot be used 

as a basis for determining human responses mainly because an MLD walker in our case 

has more joints. Also no account of TOP and OBQ categories are available. Hence 

an experiment to obtain the human responses on these MLD categories was conducted. 

The experimental set-up and its outcomes are discussed in the following chapter. 



C h a p t e r 5 

Biological Motion Detection: 

Human Perception 

In the earher reported results with ANN detectors (Laxmi, Carter, and Damper 

2002b), fronto-parallel view (Johansson 1973) and upside-down view (Sumi 1984; Pinto 

and Shiffrar 1999; Pavlova and Sokolov 2000) were labelled positive and negative re-

spectively. In addition to upside-down, the top view was also labelled as a negative 

instance. Although the studies on biological motion perception give a fairly good ac-

count of capabilities of human perception, there is still an ambiguity regarding inverted 

displays. Sumi (1984) reported that most of the participants failed to report a back-

ward upside-down biological motion when Johansson displays were played upside down. 

Instead an upright walker moving in a strange way was perceived. Pinto and Shiffrar 

(1999) has reported the results in the presence of a mask. According to Pavlova and 

Sokolov (2000), upside-down or inverted displays are multi-stable. Thus it is not clear 

if the humans consider inverted displays as natural human motion or not in the context 

of "biological motion". Also there is no account available on how human beings respond 

to views from the top. We conducted an experiment to determine what constitutes a 

"natural human motion" from the perspective of humans. The experiment also provides 

a fair comparison between human and machine performance as the identical dataset has 

been used for both. However, it needs to be said that any comparison between respective 

performance of machine and human can be considered fair only within a closed world. 

Even then, in a stricter sense, comparison is not exactly fair as humans do have prior 

experience. 

This chapter is structured as follows. Section 5.1 describes the experimental set-up in 

detail. Responses of 93 participants and an inference based analysis of these results is 

presented in Section 5.2. In Section 5.3, labelling of various categories in the context of 

biological motion is reviewed. An overall summary of results is presented in Section 5.4. 
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5.1 Experimental Set-up 

For each of four sequences of 21 subjects in the GTRI data (see Section 3.1.3), all 

12 categories, as discussed in Section 3.2, were generated. As a result, the total number 

of sequences were 1008. Each sequence lasted 150 frames or 2.55 s. Each frame was 

displayed for 17 ms or inter-frame time as recorded in the GTRI data. In other words, 

video display was run at the same rate at which the data was filmed. The main aim was 

to determine what constituted human motion from a participant's point of view without 

revealing much about the experiment. Participants were shown a given sequence in one 

of the four different modes as explained below. 

(a) Absolute: Image sequences were shown without any pre-processing. The transla-

tory motion was retained. All 15 joints - head, shoulders, elbows, wrists, hips, 

knees, ankles and toes - were displayed. 

(b) Spot: Translatory motion was removed by aligning centroid of each frame to origin. 

This mode was used as A;-NN classifier exhibited slightly better performance in this 

mode. 

(c) Partial: Only half the joints (in fact the exact number is 7) were displayed. These 

joints were selected randomly. 

(d) Centroid: Only one point representing the centroid of the body configuration was 

displayed. 

As it was intended that the human responses should be obtained without revealing the 

actual categories being shown, it was necessary to introduce some sort of distraction. 

One possible solution is not to show the same number of dots each time. Hence only 

half the joints (randomly selected) were shown. As another extreme, only one dot per 

frame was shown. This dot corresponded to the centroid. 

Within each mode, twelve instances of each category in a randomly selected order 

were presented. In fact, three instances of each kind of walk, i.e. with or without 

footwear, with or without shoulder backpack, were shown. This was to ensure that 

variations in walking due to these factors remained consistent for all the participants. 

In all, the participants viewed 576 sequences (4 modes, 12 categories/mode and 12 se-

quences /category). These were displayed in six sessions. Within each session, sequences 

were shown one after another with an inter-sequence blanking period of 300 ms. A par-

ticipant could take a short break after each session. This was to prevent fatigue. For 

each sequence, the participants were required to press a key in response if the motion 

being displayed was natural human motion. If no key was pressed for the entire duration 

of a sequence, a time-out was recorded. For every participant, response time interval in 

terms of number of frames and the response were recorded for each displayed sequence. 

Figure 5.1 shows snapshots of an experimental run. 
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If you think it is natural human motion, press the key <Q>. 

If you think it is NOT natural human motion, press the key <P>. 

Please try to respond as quickly as possible. 

Your identity is S_711.out 

Press any key to continue . 

f X S _ 7 1 1 . o u l 

I jgi rooM%icalhogr/lKim%fv#ay e:*N 

F I G U R E 5.1: A snapshot of the experiment to collect human responses. 

Category Number of participants identifying the category 
NOR 86 
DIR 9 

WBK 51 
INV 41 
TOP 38 
OBQ 1 
SPT 9 
PER 6 
RAN 18 
Spot 6 

Partial 13 
Other human motion 68 
Non-human motion 41 

TABLE 5 . 1 : Number of participants identifying a given category are tabulated against 
the respective row. Categories LPT, SSR and PSR are not recognised as 
such. 

To prevent any biasing, participants were not given any prior knowledge of the exper-

imental set-up and were requested not to discuss it with any other participant. Of 

93 participants, 37 were students or research staff from the University of Southamp-

ton, UK, and the rest were the undergraduate engineering students from Malaviya Na-

tional Institute of Technology, India. After the experiment, each participant was asked 

to write down the perceived categories of the sequences on an information sheet (Ap-

pendix F). Table 5.1 summarises these responses. Against each category, the number 

of persons identifying the category is displayed. A detailed account of participant-wise 

responses is presented in Appendix G. Participants also filled in a questionnaire (Ap-
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pendix E). The purpose of this was to assess the technical background of the participant. 

A self-written code in Python (van Rossum 1999) was used to display the sequences 

and record the response with relevant information, such as actual sequences shown, the 

category and mode of each sequence, time to respond, set of joints displayed in partial 

mode. 

5.2 Analysis of H u m a n Responses 

For the purpose of analysis, a time out, i.e. participant failing to respond, was considered 

as a negative response. As each category was shown 12 number of times, a value of 6 

positive responses was equal to the chance rate as the only permissible responses were 

'yes' or 'no'. Figures 5.2(a)-5.2(d) summarise the number of 'yes' keys pressed by all 

the participants for all four modes. Here the sample mean is shown as an asterisk and 

the vertical bar about this mean is the range of estimated population mean. Population 

mean estimates were calculated at a significance level of 0.05 (95% confidence interval) 

from sample means by a two-tailed t-test (refer Appendix D). 

As seen from the plot, population mean estimates are always below the chance rate 

for the centroid mode irrespective of the category. This indicates that humans cannot 

make confident judgement about human motion on the basis of information of only one 

moving dot. Building a machine model for the partial mode has limitation of not enough 

information. For 15 dots, as in the present case, 7 dots can be chosen in (^) = 6435 

ways. However, as 93 participants have been shown only 93 x 12 = 1116 cases, there is 

not enough information. Therefore, for the subsequent work and results only absolute 

and spot modes are relevant. Hence partial and centroid modes will not be discussed 

any more. These have been presented only for the sake of completeness in the context 

of the conducted experiment. 

As some of the participants had sufficiently good knowledge about computer vision 

and image processing techniques and probably MLDs, these were classified as 'experts'. 

Figures 5.3(a)-5.3(d) summarise the mean responses of the experts and the rest of the 

participants for the absolute and spot modes. Mean response time for various categories 

is shown in Figures 5.4(a) and 5.4(b). The response time is in number of frames and 

actual time can be obtained by multiplying with inter-frame time or 17 ms. These 

response times, however, are not used for any subsequent analysis. 

5.3 Relabell ing of Biological Mot ion Categories 

From the machine learning point of view, it needs to be inferred whether a given category 

is perceived as biological motion or not. A simple one-tailed Z-test (Appendix D) is done 
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F I G U R E 5 . 2 : Human responses for (a) absolute, (b) spot, (c) partial and (d) centroid 
modes. Asterisk denotes sample mean; vertical bar about this mean is 
inferred population mean at a significance level of 0.05 (95% confidence 
interval). 
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F IGURE 5 . 3 : Responses of experts for (a) absolute and (b) spot modes. The asterisk is 
the sample mean and the vertical bar about this point is inferred popula-
tion mean at 0.05 significance level. Responses of non-expert participants 
for absolute and spot modes are shown in (c) and (d) respectively. 



Chapter 5 Biological Motion Detection: Human Perception 56 

§ 7 0 

c o 
0 . 5 0 

i 

* Expert 
• Non-expert O AX 

— Standard error 

NOR DIR WBK MV TOP 08Q SPT LPT PER SSR PSR RAN 

(a) Absolute 

• Non-expert 
O AX 

—— Standard error 

NOR DIR WBK INV TOP 08Q SPT LPT PER SSR PSR RAN 

(b) Spot 

F IGURE 5 . 4 : Mean response times of participants for (a) absolute and (b) spot modes. 
The asterisk is the sample mean and the vertical bar about this point is 
inferred population mean at 0.05 significance level. 

Null hypothesis: = 6. 
Category Alternative hypothesis; 

/U < 6 fj, > 6 
Expert Non-Expert Overall Expert Non-Expert Overall 

NOR - - - Reject Reject Reject 
DIR - - - Reject Reject Reject 

WBK - - - Reject Reject Reject 
INV 
TOP 

- - - Reject Reject Reject 

OBQ - - - Reject Reject Reject 
SPT - - - Reject Reject Reject 
LPT Reject Reject Reject - - -

PER Reject - Reject - - -

SSR Reject Reject Reject - - -

PSR Reject Reject Reject - - -

RAN Reject Reject Reject - - -

TABLE 5.2: Summary of the results for testing if the population mean lies above or 
below the chance rate at 0.05% level of significance in absolute mode. 
'Reject' means that the null hypothesis is rejected with 95% confidence; 

means that the null hypothesis is not rejected. 
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Null hypothesis: jj, = 6. 
Category Alternative hypothesis: 

fj. < 6 /u > 6 
Expert Non-Expert Overall Expert Non-Expert Overall 

NOR - - - Reject Reject Reject 
DIR - - - Reject Reject Reject 

WBK - - - Reject Reject Reject 
INV - - - Reject - Reject 
TOP - - - - - -

OBQ - - - Reject - Reject 
SPT - - - - Reject Reject 
LPT Reject Reject Reject - - -

PER Reject - Reject - - -

SSR Reject Reject Reject - - -

PSR Reject Reject Reject - - -

RAN Reject Reject Reject - - -

T A B L E 5 . 3 : Summary of the results for testing if the population mean lies above or 
below the chance rate at 0.05% level of significance in spot mode. 'Reject' 
means that the null hypothesis is rejected with 95% confidence; means 
that the null hypothesis is not rejected. 

to determine if the population mean is above or below the chance rate (6 in the present 

case). If for a given category, the perceived population mean is above (below) the chance 

rate, most of the participants have detected (failed to detect) biological motion and the 

category represents a positive (negative) instance. Tables 5.2 and 5.3 represent the 

results of hypothesis testing for absolute and spot modes respectively. The results have 

been obtained for expert, non-expert and all participants. Any 'Reject' entry in these 

tables means that the population mean is not equal to the chance rate. In this case, the 

population mean is either above or below the chance rate. The former implies that the 

category was detected as biological motion and the latter is indicative of a non-human 

motion. Hence a directional alternative hypothesis, /i > 6 (// < 6) was formulated to 

determine with 95% confidence if the category represents human(non-human) motion. 

Considering an entry of PER category in Table 5.2, we find that the null hypothesis 

is rejected by experts but not by non-experts. This implies that the experts consider 

this category as non-human motion. Although the fact that the null hypothesis is not 

rejected by non-experts indicates that the mean response is not above chance. This is 

indicative of the fact that the non-experts do not cateorise P E R as human motion, but 

the level of rejection of PER as positive biological motion is not as high as in the case 

of experts. Results of these tables can be expressed in terms of positive or negative 

biological motion for absolute and spot modes as shown in Table 5.4. Once it has been 

ascertained (with 95% confidence) if the population mean lies above or below the chance 

rate, a two-tailed i-test (Appendix D) has been used to obtain this biological motion 

labelling. Any empty entry in this table is indicative of a population mean near the 

chance rate. Hence the labelling of the category remains inconclusive in such cases. 
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Category Absolute Spot Category 
Expert Non-Expert Overall Expert Non-Expert Overall 

NOR + + + + + + 
DIR + + + + + + 

WBK + + + + + -f 
INV + + + + + 
TOP 
OBQ + + + + + 
SPT + + + + + 
LPT - — — - - -

PER — - — -

SSR — — — — — — 

PSR — — — — — — 

RAN - - - - - -

TABLE 5 . 4 ; Positive and negative instances of biological motion. 

5.4 Discussion on Human Percept ion 

The main findings of the human responses can be summarised as follows. 

As the distribution plots of absolute and spot modes are similar, it is suggestive of 

the fact that human perceptual system is sensitive to relative rather than absolute 

motions. 

Response for upside down display is not as negative as expected. In the feasibility 

studies, it was assumed to be a negative instance. However, the results tend to be 

indicative of a positive instance. This is significantly different from Sunn (1984), 

Pinto and Shiffrar (1999) and Pavlova and Sokolov (2000). This may be due to 

the fact that, unlike Johansson's displays, feet joints are displayed. Or the very 

fact that participants were asked whether the motion was human or not may have 

biased the results. 

Top view is not detected as human motion by majority of participants except for 

the experts. However, on the basis of the available results, it remains inconclusive 

if the category should be labelled positive or negative. Oblique view fares well as 

compared to the top one. As for different presentations, a random oblique angle is 

chosen. For values approaching 90°, oblique view approaches fronto-parallel view. 

Asymmetry in this view as compared to the top one may invoke a much better 

perception of human form. 

Human structure, as seen from the side, seems to play a major role in deciding if 

a given sequence displays biological motion or not. This appears to be true from 

the observation that oblique view is more detectable than the top one. Another 
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point in favour of this observation is that non-expert participants do not greatly 

reject the permuted category either in absolute or in spot mode. 

• Even for fronto-parallel view (NOR category), the response is not 100% positive 

as reported by Johansson (1973). 

• A wide variation in response indicates that the non-expert participants are less 

assertive. In spot mode, their mean responses are more or less centred around the 

chance rate except for NOR, DIR, WBK and RAN categories. 

• Responses of experts and non-experts differ. This is also substantiated by analysis 

of variance (ANOVA), which shows that the responses for experts are different from 

those of non-expert ones at 0.05 level of significance. A category-wise ANOVA 

indicates that responses for these two sets of participants vary in 

— INV, PER and PSR categories for absolute mode. 

- NOR, INV, OBQ, PER and RAN categories for spot mode. 

The labelling of the different categories, as determined on the basis of the human re-

sponses, is significantly different from the one in Table 3.1. It is evident from these 

findings that the machine models, presented in Chapter 4 need to be re-checked against 

these results. Chapter 6 discusses these results on machine perception and contrasts it 

with human perception. As both human and machine responses are evaluated for the 

same dataset, this provides an unbiased basis for the comparison. 



C h a p t e r 6 

Biological Motion Detection: 

Machine Perception 

As discussed in last chapter, the human responses for biological motion for the 12 cat-

egories considered in this work, differ substantially from those presented in Table 3.1. 

This necessitates verifying that the machine models can indeed learn to emulate the 

human behaviour on these new results presented in Table 5.4. This chapter presents the 

results of the machine perception in context of the human responses, as discussed in the 

last chapter. The main aim is to check if the machine perception is close to the human 

perception in the closed world of 12 categories. Although the humans can not only 

detect motion but categorise it, e.g. walking, running, hopping, jumping, etc. Johansson 

(1973). It is also reported that humans can also perceive the emotional state of the 

subject in an MLD sequence. The aim is not to model the human perceptual system in 

its entirety, but to determine what triggers the detection of human motion in an MLD 

sequence. To this end, the human responses, discussed in the previous chapter, form the 

basis of the machine learning. The aim is to obtain a machine performing equivalently 

to humans only from the motion identification point of view. 

A brief structure of the chapter is as follows. Two different types of training sets used are 

described in Section 6.1. Sections 6.2 and 6.3 present machine perception of biological 

motion for 12 categories discussed earlier for /z-NN and ANN detectors. A discussion on 

these results is presented in Section 6.4. 

6.1 Training and Testing Sets 

The 12 categories considered for this problem range from a well structured NOR cat-

egory (well-structured in terms of shape and motion) to completely random RAN cat-

egory. Human responses for these two categories are most positive and most negative 

60 
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F I G U R E 6 . 1 : Motion detection: fc-NN performance on training sets A and B. Perfor-
mance for all 12 categories for both absolute and spot modes, described 
in Section 3.3, are shown by bars. For each category, the performance is 
displayed for different values of frames per data-point. 

respectively. For all other categories the responses vary. If the data has all the infor-

mation about the motion itself, the machine should be able to partition data at these 

two extremes. An equivalent machine should also be able to generalise to human per-

formance (i.e. perform as humans even on limited training sets). If the response of 

the machine matches with the human performance, its decision criterion may be the 

one used by humans. This is the approach adopted for training machine. Along with 

NOR, DIR and WBK categories are also voted positive by humans. Here two different 

types of training sets have been considered. 

Training set A; Of 12 categories discussed in Section 3.2, only 2 categories for 

all the sequences of 9 subjects were used to generate training set A. The chosen 

categories were - NOR as positive instance and RAN as negative instance. 

Training set B: Of 12 categories discussed earlier, only 4 categories for all the 

sequences of 9 subjects were used to generate training set B. The chosen categories 

were - NOR, DIR, WBK as positive instances and RAN as negative instance. 

Test set consisted of rest of the data-points. In either case, A or B, the training 

and test sets were mutually exclusive. 
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6.2 A;-Nearest Neighbour Detector 

For A:-NN detector, each data-point is assigned the label of the nearest category in the 

respective training set. Results of A;-NN detector are presented in Figures 6.1 (a)-6.1(d) 

for training sets A and B respectively. Each bar represents the fraction of data-points 

of the respective category voted as positive biological motion. Responses for INV, SSR 

and PSR categories are in gross error when compared with the human response (see 

Figure 5.2). As human response for TOP category remains indeterminant in the context 

of biological motion, the machine response to this category is of no practical significance. 

For a fixed dataset (as in present case), the performance of fc-NN is invariant for a given 

metric (Euclidean in this case). Hence the responses are more categorical than the 

human responses. Interestingly, the machine was not able to discriminate between NOR 

and PER categories in the spot mode. 

6.3 Artificial Neural Network Detec tor 

A non-recurrent feed-forward network with back-propagation learning and two hidden 

units is used. The network is trained with one of the training sets and then its response 

is obtained for the entire dataset. As an MLD sequence consists of a moving shape, the 

shape and/or its motion pattern are probably most influential on the perception. Initially 

ANN detector is tested with the absolute coordinates of dots. No pre-processing of data 

is done, as data have enough information for the perceived human responses. However, if 

machine performance departs from the human performance, humans may not be using 

the same decision criterion. In the following discussion, the performance of the detector 

is averaged over five program runs; the neural architecture is randomly initialised for 

each run. The neural architecture is assumed to have converged if the classification 

accuracy remains high (i.e. > 95%) for 5 successive epochs. 

6.3.1 A b s o l u t e Coordinates 

First of all tests are done on raw data with no preprocessing. Results for different 

values of N, frames per data-point and two training sets as discussed above are shown 

in Figure 6.2. 

Even if we consider that such a simple machine may not have the capacity to rotate 

and may yield incorrect results for INV category, the machine performance still differs 

from the human one mainly in OBQ, PER and PSR categories. Machine learning seems 

to be insensitive to phase or temporal ordering. When trained only on the extreme 

categories, PER and PSR are perceived closer to NOR than to RAN. A possible expla-

nation could be simplicity of the machine. However, an increase in hidden units does 
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FIGURE 6 . 2 ; Motion detection: A N N performance, using absolute coordinates, on 
training sets A and B. 

not improve the performance. Rapid convergence does indicate that the machine can 

find discriminating features within the training set quite quickly. A possible hypothesis, 

which explains the machine behaviour, is that it is learning the range of y-positions oc-

cupied by the dots and, is insensitive to the change in x-positions. This may be because 

the machine has to learn almost the same x-range for all the categories. 

If the hypothesis were true, INV, TOP and OBQ merit no positive responses as these 

are structurally different from NOR category and the scanned dots occupy altogether 

different positions and hence different ranges. As PER category has same structure as 

NOR but different temporal ordering, the hypothesis holds good. Also for PSR cat-

egory, although different dots have different initial phase, the range of positions over 

the entire gait cycle remains same. Another point favouring the hypothesis is that for 

SPT category, the response builds up as temporal information per data-point increases. 

Almost 100% response of the trained machine, with the data in which the dots lie within 

the range, also confirms the hypothesis. However, expected near zero response is not 

obtained when the machine is tested on the data in which dots never occupy the same 

range as the positive data. 



Chapter 6 Biological Motion Detection: Machine Perception 64 

TOP OBO SPT LPT 

Spot mode 
PSA PAN 

(a) Absolute (Training set A) (b) Spot (Training set A) 

NOn DIH WGK oeo #PT LPT PER MR PM AAN 
Spot mode 

(c) Absolute (Training set B) (d) Spot (Training set B) 

F I G U R E 6 . 3 : Motion detection: ANN performance, using relative coordinates, entrain-
ing sets A and B. 

6.3.2 Re la t ive Coordinates 

To test if the smoothness of the motion was the criterion used by the humans, absolute 

differences between the coordinates of the two nearest dots in successive frames were used 

instead of the absolute value. Here j t h frame parameter is given by — -^(tj)! 

where j = I, ..., 2M and t = 1 , , F. Here Z is x or y coordinate of the respective 

dot and t is the frame index. The results are shown in Figure 6.3. 

If the machine is learning the ranges only, any smoothly varying shape, irrespective of 

the pattern, should get a high response. This does happen for all categories undergoing 

smooth transitions such as NOR, DIR, WBK, INV, TOP, OBQ and PSR. As PER 

category also receives a high response, this gives credence to the hypothesis that the 

machine is learning only the ranges of Y coordinates. A high response for the SPT 

category indicates that the machine can tolerate small violations in the smoothness of 

the motion. As the response for this category increases with the increase in temporal 

information per data-point (N), it indicates that the range of variations for the tolerance 

increases with N. This may explain the high response for the LPT category. 
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#15 

F I G U R E 6 . 4 : Shape vector: Concatenation of positional vectors of dots in each frame 
in the data-point. Positional vector is (r, 9) relative to the top-most point 
of the same frame. The angle 0 is computed relative to the vertical. 

6.3.3 Shape Vector 

Figure 6.5 represents the results when the machine is presented with the shape infor-

mation. Instead of using Cartesian {x, y) coordinates, polar (r, 9) coordinates, with 

respect to the top-most dot of the same frame, were obtained for each point as illus-

trated in Figure 6.4. Top-most dot of every frame in the data-point is still retained in 

its rectangular coordinates. Interestingly when trained with set A, the responses be-

come directional. As angles are computed as tan~^ changing direction also means 

reversing the signs of the angles. As PSR and PER still retain the human contours, the 

responses are predictably high. 

6.3.4 Re la t ive Shape Vector 

This is similar to the shape vector. The only difference is that, for each dot, the positional 

vector is computed relative to the top-most point of the first frame in the sub-sequence 

constituting the data-point. It is illustrated in Figure 6.6. The top-most point of the 

first frame is still retained in Cartesian coordinates. Machine response is similar to that 

obtained for the shape vector in absolute mode. The only difference is a slight fall in 

response for PER category at higher values of N. In spot mode, the performance is 

worse. 

6.3.5 R a n d o m l y Scaled D a t a 

Another way to test if the hypothesis is true is to train a machine on data in which the 

height of the MLD sequences vary randomly. This will prevent the machine from latch-

ing onto any quick shortcuts such as ranges. The response, as illustrated in Figure 6.8 
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F IGURE 6 . 5 : Motion detection: A N N performance, using shape vector, on training 
sets A and B. 
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FIGURE 6 . 6 : Relative shape vector: Concatenation of positional vectors of dots in each 
frame in the data-point. Positional vector of each dot is relative to the 
top-most point of the first frame in the data-point. 

is similar to that shown in Figure 6.2 except for larger response for LPT category. It 

still supports the hypothesis, as randomly scaling the data has a the effect on widen-

ing the ranges. Another possibility is that this machine is learning something afresh. 

However, as both machines rapidly converged, it suggests that the data may have some 

inherent partition which is exploited by the machines. The insensitivity of the ma-

chine to temporal ordering may be due to the fact that all the training examples have 

sequenced temporal ordering, i.e. the pattern of dots move from one side to another 

without any spatial discontinuation in X axis. There are no jumps as would be seen in a 

permuted sequence. So unless explicitly trained on a sequence with permuted temporal 

ordering, the machine is unable to use temporal ordering as a decision criteria. In the 
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FIGURE 6 . 7 : Motion detection; A N N performance, using relative shape vector, on 
training sets A and B. 
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FIGURE 6 . 8 : Motion detection: A N N performance, using randomly scaled data, on 
training sets A and B. Each MLD sequence is scaled by a random factor 
to prevent machine from learning only {/-ranges. 
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spot mode, all the frames of the sequence occupy almost the same position and hence 

temporal ordering has no spatial discontinuity. 

6.4 Discussion on Machine Perception 

Machine performance differs from human perception. Hence at this stage, it is difficult to 

say if an equivalent machine model will yield useful information about human perception 

of biological motion. The main findings of the machine perception can be summarised 

as follow. 

• For any category, a high response indicates that the machine detects this as human 

motion. A low response, on the other hand, indicates that the category is nearer 

to negative instance (i.e. RAN category) in the machine space. 

• Machine perception deviates from human perception in INV (upside down), TOP, 

OBQ, PER (permuted) and PSR (phase scrambled) categories. As machines may 

not have the capacity of rotation as humans do, a low response for INV category 

was understandable. A near-zero response for TOP category may be due to an 

altogether different structure. 

• A high response for the PSR category is indicative that the machine is insensi-

tive to the phase. As the fc-NN detector also considers this category closer to 

NOR (i.e. positive category) than RAN (i.e. negative category), it is suggestive 

that the decision boundary only on the basis of training sets A or B does not 

have enough information for the machine to respond in a manner equivalent to the 

human response. Alternatively an equivalent machine would have classified these 

categories as negative. 

• A high response for the PER category in the spot mode even by the fc-NN detector 

also suggests a strong interaction of the various categories in this mode. This may 

explain the worse performance of the machine in the spot mode. Interestingly this 

trend is also observed in the human response. 

• For the ANN detector, a high response for the PER category even in the absolute 

mode indicates that the machine is not able to learn the temporal associations and 

instead is making decisions probably on y-ranges of various dots. This argument is 

further strengthened by the high response in the PSR category. Most probably, the 

machine is learning the range of heights occupied by various dots. Presentation of 

the data in different ways seems to support this argument. In short, the machine 

seems to pick short-cuts. 

• When the data is randomly scaled so as to alter the y positions of the dots and, 

hence, prevent the machine from learning 'short-cuts', the responses for PER and 
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PSR categories are slightly decreased but are still sufficiently high. This indicates 

that the machine does not learn the temporal/phase associations as the requisite 

information may be missing from the training set. The fact that there is no 

temporally permuted negative category and that all the categories in the training 

set have the same temporal ordering of frames suggests that there is not enough 

discriminatory information available in the data. 

• Although the inclusion of the temporally permuted RAN category may help ma-

chine learn the temporal association, the exemplar category (which can let the 

machine discriminate between the NOR and the PSR categories) for the phase 

learning still needs to be determined. In short, presently the training set is too 

restrictive. 

• Machine perception is more categorical and less variable. A wide variation in 

human responses may be because of different participants using different criteria, 

which cannot be modelled by a single neural architecture. 



C h a p t e r 7 

Motion Classification: A Good 

Biometric? 

A secondary aim of the work presented is to ascertain if MLD data can be used to 

establish gait as a biometric or not. As discussed in Section 2.7, humans do have ability 

to learn to recognise people, albeit in a small set of subjects. Human gait involves 

translatory and/or rotational movements of the various parts of the body. This has 

motivated the researchers to explore the potential of human gait as a biometric. This 

chapter highlights human gait as a biometric from the computational and bio-mechanical 

perspective. 

This chapter is structured as follows. First a brief discussion on biometrics in general 

is presented in Section 7.1. Gait as a biometric is discussed next in Section 7.2. This is 

followed by a brief review of various gait-based person identification techniques presented 

in Section 7.5. A brief account of gait cycle and various components of gait is presented 

in Section 7.3. Similarities and dissimilarities in gait patterns of different individuals 

are highlighted in Section 7.4. Section 7.6.2 discusses the training and test sets used. 

Sections 7.6.3, 7.6.4 and 7.6.5 present classification results using ^-NN, ANN and SVM 

classifiers. A discussion on these results is presented in Section 7.7. 

7.1 Biometrics 

Determining the correct identity of an individual is important, especially in security 

applications. Conventional approaches to personal identification are provided by means 

of passwords, keys, identity cards or similar possessions. The problem with these ap-

proaches is that the possessions can be lost, stolen, copied, forgotten or misplaced. 

Except for passwords, other possessions mentioned here are physical objects and can 

be faked. As these possessions do not incorporate any personal attributes of an in-

70 



Chapter 7 Motion Classification: A Good Biometric? 71 

dividual, anyone, after acquiring the control of these, can abuse the privileges of the 

authorised user. Another approach, which is gaining popularity, is to use biometrics or 

the physical characteristics of an individual for identification. The main advantage of 

this approach is that a biometric cannot be stolen, misplaced or forgotten. Also it is 

more difficult to copy or fake a biometric. In fact, copying is nearly impossible in the 

case of some biometrics like DNA, fingerprint and iris patterns. The main limitation 

of this approach is public acceptance. The limitation arises due to the fear from lack 

of knowledge of how much personal information is revealed by a given biometric and 

consequent infringement of privacy. Any human physiological or behavioural character-

istic can be a biometric (Jain, Bolle, and Pankanti 1999) provided it has the following 

desirable properties: 

• Universality: Every person has this characteristic. 

• Uniqueness: No two persons are same in terms of the characteristic. 

• Permanence: The characteristic remains invariant with time. 

• Collectibility: It is easy to measure the characteristic quantitatively. 

• Performance: The characteristic can be employed to achieve a satisfactory iden-

tification accuracy level. 

• Acceptability: This refers to the extent people are willing to accept the biomet-

ric. 

From implementation point of view, the list of desirable characteristics can be extended 

to 

• Availability: How high is the possibility that the requisite characteristic is avail-

able? 

• Computational cost: The computational cost associated with the identification 

system will determine the applications where the underlying biometric can be used. 

For implementing security at ports, an on-line system which can return a decision 

in real-time is essential. For a crime investigation, however, an off-line system 

would suffice and does not impose too much restriction on computation time. 

• Circumvention: How easy it is to fool the system by fraudulent techniques? 

Many biometrics are in use. Most notable among these are high performance biometrics 

like DNA, fingerprints and iris patterns. These biometrics satisfy the criteria of univer-

sality, uniqueness, permanence and performance. DNA and iris patterns have low public 

acceptability because of the fear that these may reveal unintended personal information. 

DNA also suffers from invasive collection methods. Although not invasive, collectibility 
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of iris patterns is, nevertheless, constrained. Automated systems employing iris patterns 

are easier to implement and are in use with military applications. Fingerprints have long 

association with forensic applications, which has resulted in reduced social acceptance. 

In recent years many biometrics have been suggested and investigated. These include 

hand geometry, retina, signature, voice, infrared print of body/face, ear, etc. Successful 

automated identification systems based on voice have been reported and are being used. 

The major limitation of these systems is high computational cost. 

In security and surveillance applications, the only information available may be a small 

amount of footage of video obtained from CCTV cameras. The only biometrics available 

may be face, if not masked, and gait. Strictly speaking, face and gait are not invariant 

with time as these undergo slight changes with ageing. High public acceptability, high 

universality, easy collectibility and often being the only means of availability has di-

rected many research efforts to explore means for establishing these methods as reliable 

biometric parameters for personal identification systems. 

7.2 Gait as a Biometric 

Many biometrics (Jain, Bolle, and Pankanti 1999) have been investigated and used in 

different applications. Most notable of these are DNA, fingerprints and iris. Although 

any of these identifies an individual with a very low probability of error, their use in 

general is restricted due to lack of public acceptability. Using human gait as a biometric 

is appealing because of its universality and easy collectibility. After all we all need to 

walk. In surveillance applications, images from CCTV camera(s) may be too blurred to 

make a correct identification. Under such circumstances the motion is the only clue to 

the identity of a person. Using gait as biometric (Nixon, Carter, Cunado, Huang, and 

Stevenage 1999) offers the following advantages. 

• Human gait data can be collected by non-invasive means. Equipment for acquiring 

these characteristics is not too expensive anymore. Video cameras, installed at 

locations under surveillance, will suffice. As most of the gait studies are based on 

the assumption of availability of fronto-parallel image sequences, the positioning 

of camera may need careful adjustment. 

• Human gait can be acquired by non-contact means. No touching of equipment is 

required. This may be a deciding factor in public acceptability as personal hygiene 

issues may override a system involving contact with the equipment. 

• Acquiring gait data is not restrictive as some of other biometrics like retina, face 

require the person to look into the camera. 
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• Gait data can be acquired from a distance. This factor may play a crucial role in 

surveillance applications. 

• Cooperation of an individual is not a pre-requisite for acquiring gait data. This 

may be an important factor in crime prevention, as it will reduce the probability 

of making conscious efforts to alter one's gait to fool the system. 

• Public acceptability may be higher. Although DNA, fingerprint, iris and retina 

patterns are well established biometrics, they may not be good for implementing 

identification systems acceptable to a large population. 

• It may be difficult to copy or mimic the gait of other people. Also an individual 

may not always remember to change his gait especially when his efforts are more 

toward quickly getting away from the scene of a crime or untoward incident. 

• This may be the only information available to identify a person. 

Gait biometric also has some limitations. A few are listed below. 

• An image sequence of a few gait cycles may need to be processed to determine the 

gait signature of an individual. Presently it is computationally expensive. 

• Gait is affected by footwear. 

• Gait can be obscured by clothing. 

• Affliction of feet or leg, pregnancy and drunkenness affect gait. 

• Any deviation from normal gait, e.g. running, hopping, etc. can affect the gait 

signature. 

• Gait is also affected by the emotional state of a subject. 

7.3 Components of H u m a n Gait 

Human gait is a complex periodic phenomenon. It involves synchronous and coordi-

nated movements of almost all parts of the body. This entails the ability to support 

the upright body, maintain balance in the upright position and execute the stepping 

movement, which results in a forward motion in the plane of progression. The funda-

mental unit of human gait is the basic walking cycle, also referred to as the gait cycle. 

This cycle is defined as the walking sequence between two consecutive occurrences of the 

same body configuration. Conventionally, a walking cycle is the time interval between 

the successive instances of initial floor-to-floor contact of the same foot. As in normal 

walking, the heel of the foot/shoe is the first to contact the floor, heel-strike marks the 

beginning and end of a gait cycle. 
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F I G U R E 7.1: A complete gait cycle highlighting step cycle and various phases of the 
gait cycle. Redrawn from Murray (1967) with permission from The Lip-
pincott, Williams & Wilkins Co. 

In the entire process of walking, the moving body is supported by first one leg and then 

the other. To provide this support and maintain the body in the upright position, one of 

the feet is always on the ground or the walking surface, and the other leg swings forward 

to create the next step. When the swinging leg touches the ground, the body weight is 

shifted to this leg. For a brief amount of time, both feet are on the ground and the body 

weight is transferred from one foot to another. Two legs alternately switch these roles of 

weight support and forward movement. The result of these coordinated but anti-phase 

movements of the two legs is that the trunk is continuously translated forward over two 

alternating bases of support at a remarkably constant linear horizontal velocity. 

A complete gait cycle can be divided into three phases distinctly (see Figure 7.1). The 

period of contact with the ground in which the leg acts as a supporting base to the rest of 

the body is called 'stance phase'. This phase is followed by a brief period of 'double-limb 

support' when both feet touch the ground and the weight transfer takes place. In this 

phase, one leg is beginning the stance phase and the other is ending a stance phase. The 

next phase is the 'swing phase' when the forward movement takes place. When one leg 

is in stance phase, another is in swing phase except for the double-limb support phase. 

Within each walking cycle there are two periods of single-limb support and two periods 

of double-limb support. As the heel and toe are the first and the last points of contact 

respectively, events of heel-strike and toe-off define the beginning and end of the stance 

phase respectively. If the gait is symmetrical, the two double support periods will be 

equal in duration. 
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F I G U R E 7 . 2 : Angles to describe angular displacements of arms and legs. 

In the course of walking, the entire body, including legs, undergoes various three dimen-

sional movements. The body moves forward in the plane of progression, moves slightly 

from side to side in the lateral plane as weight is shifted from one leg to another, rises 

and falls in the vertical plane. Lateral plane is the horizontal plane and vertical plane is 

mutually perpendicular to both plane of progression and lateral plane. The translatory 

displacement of the entire body through the space is achieved by the angular displace-

ments of various segments of the body about the axes that lie in the proximity of joints. 

Murray (1967) identified about 20 simultaneous movements in a normal human walk. 

These can be broadly classified into angular displacements of legs, movements of leg 

extremities namely heel and toe, angular displacements of arms, pelvic and thoracic 

movements, movements of neck and head. All accompanying figures were drawn using 

information from a given sequence of the MLD data. 

7.3.1 Angular Disp lacement of Legs 

Angular displacements of legs (Figure 7.3) bring about forward movement of the body 

and, hence, constitute the most significant and essential part of human gait. Both 

legs move in anti-phase, alternately supporting the body and propelling it forward in 

succession. The pendulum-like angular displacement of legs take place about joints 

- thigh rotating about hip, shank rotating about knee and foot rotating about ankle 

or toe. The following paragraphs describe these displacements for the leg providing 

support at the beginning of the gait cycle. The angles shown are calculated as shown in 

Figure 7.2(a). Although the directions of rotations are constantly shifting, three major 

leg joints rarely rotate simultaneously in the same direction. 

1. Rotation about hip (0): The first half of the cycle is characterised by con-

tinuous hip extension during the stance phase as the trunk moves smoothly over 

the supporting leg. During the swing phase, after the other leg has provided a 

supporting base, the hip begins to flex preparatory to the swing phase. This hip 

flexion directs the swinging leg forward for the next step. 
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F I G U R E 7 . 3 : Angular displacements of the leg beginning the stance phase. Rotation 
of (a) hip with respect to horizontal plane, (b) knee with respect to hip 
and (c) foot with respect to knee are shown. 

2. Rotation about knee (cf)): The pattern of knee rotation is more complex and 

shows two periods of flexion alternated with two of extension within each walking 

cycle. The supporting leg enters stance phase at heel strike with the knee joint in 

nearly full extension. The knee, then, begins to flex and continues to do so until 

the foot is flat on the ground. This flexion decreases the amplitude of the vertical 

trajectory of the trunk as it moves forward over the supporting leg. In the later 

half, the knee rotation pattern exhibits large rapid excursions into flexion and into 

extension. The flexion excursion provides foot-floor clearance early in the swing 

phase, and the extension excursion projects the extremity forward for the next 

step. Effects of this complex rotation pattern is to flatten the arc through which 

the centre of the mass of the body is translated. This results in a smooth motion. 

Otherwise, this would result in a jarring efl'ect on the body. 

3. Rotation about ankle (^): Like the knee rotation, the ankle rotation exhibits 

two waves of flexion and two of extension within each walking cycle. Near the 

beginning of the cycle, the ankle of the weight-bearing leg is relatively flexed 

and the heel is projected forward preparatory for floor-contact. Ankle extension 

permits the forefoot a controlled but rapid descent to the floor. Once the entire foot 

has made contact with the floor, the normal ankle abruptly reverses from extension 

to flexion and continues to do so, reaching its greatest amplitude of flexion as the 

body moves over this supporting extremity. After the body has passed over the 
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F I G U R E 7 . 4 : Rotation patterns of the arm ipsilateral to striking leg. (a) Rotation pat-
tern of shoulder with respect to vertical plane, (b) elbow with respect to 
shoulder. 

supporting base, the ankle extends gradually shifting the contact area from the 

entire foot to the forefoot. The ankle, then, abruptly reverses into flexion after the 

toe leaves the floor and remains relatively flexed to provide foot-floor clearance in 

the swing phase. 

7.3.2 Angular D i sp lacements of A r m s 

Although not necessary for normal walking, the arms show definite participation in the 

total pattern of the gait (Figure 7.4). Arms swing forward and backward in phase with 

the contralateral leg and in opposition to the ipsilateral lower limb. 

1. Shoulder (a): The rotation pattern of the shoulder shows one excursion of ex-

tension, when the arm is directed backward from the vertical, and one excursion 

of flexion, when the arm is directed forward. At the time of the heel-strike, the ip-

silateral shoulder is near maximal extension. During the first half of the cycle, the 

shoulder flexes forward. Maximum flexion is reached at the midpoint in the cycle, 

when the contralateral heel strikes. Then the shoulder extends backward as the 

ipsilateral leg swings forward. 

2. Elbow (/3): Elbow pattern is similar to the shoulder in that the first half of the 

cycle is characterised by flexion and the next half by extension. 

7.3.3 Vertical Pathways of Hee l and Toe 

These pathways (Figure 7.5) are essentially the movements of the heel and toe in the 

plane of progression. 
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F I G U R E 7.5: Vertical pathways of (a) heel and (b) toe of the leg touching the ground. 

1. Heel: At the beginning of the cycle, the heel of the supporting leg makes the 

initial floor-contact and remains there for the first half of the stance phase. In the 

later half, the contact-area is transferred to the toe and the heel is lifted off the 

floor. The ascent of the heel becomes more rapid after the contralateral supporting 

base is provided. After this, the heel begins a steady descent as the foot swings 

forward. 

2. Toe: Unlike the heel, the vertical pathway of the toe shows two peaks within 

each cycle. At the time of heel-strike, the toe is still off' the ground and is in a 

phase of controlled descent. Once toe-floor contact is established, the toe remains 

there throughout the entire stance phase. Early in the swing phase before the leg 

assumes a forward direction, the toe reaches a minor wave of elevation and then 

descends a critical low point. The major peak of elevation is attained late in the 

swing. 

7.3.4 Spatial Di sp lacements of t h e B o d y 

The angular movements of the leg joints result in the translation of the trunk. This 

translation consists of a series of left-right and up-down sinusoid movements. These 

movements (Figure 7.6) can be distinctly divided into 

1. Vertical oscillations: The entire body gently oscillates through two vertical 

peaks and two valleys within each walking cycle. The valleys occur during double-

limb support. The peaks occur during the single-limb support when the trunk is 

directly over its single support base. 

2. Lateral oscillations: The lateral pathways of the trunk, measured at the 

head, also show two peak lateral deflections - one to the right and another to 
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F I G U R E 7 . 6 : (a) vertical (b) lateral and (c) forward pathways of the body as viewed at 
light attached to head. 

the left. During the double-limb support, the head is in a more central position. 

3. Forward pathways: The pathway in the forward direction, as measured at the 

neck, is remarkably smooth. Forward movement is not constant but proceeds in 

two gentle waves of increased and decreased velocity. The forward speed decreases 

slightly as the trunk climbs to its highest and most lateral peaks and increases 

slightly as the trunk descends to the lower and more central positions. 

7.3.5 Transverse R o t a t i o n s 

Transverse rotations are constituted by rotations of pelvis and thorax (see Figure 7.7). 

While thorax rotates clockwise, the pelvis rotates counter-clockwise and vice versa. 

1. Pelvic rotation: The pelvis rotates about a vertical axis alternately to its right 

and left relative to the plane of progression. These rotations occur alternately at 

each hip joint. As a leg swings forward, the pelvis on that side pivots forward. The 

pelvis on the other side, however, assumes an increasingly backward direction. 

2. Thoracic rotations: The thorax rotates in clockwise and anti-clockwise direc-

tions opposite to the pelvis. Thoracic rotation occurs alternately at each shoulder 

joint and the total amplitude is less than that of the pelvic rotation. The simul-

taneous but opposing thoracic and pelvic rotation in the lateral plane probably 
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F I G U R E 7 . 7 : Thorax and pelvis rotate in opposite directions. The angles of rotations 
are relative to the plane of progression. Thoracic rotation is obtained by 
line joining shoulders joints and pelvic rotation by joining hip joints as 
shown in (b). 

contributes to the smoothness of forward progression by providing counterbalanc-

ing restraints against excessive motion of the entire torso. 

3. Rotations of thigh and shank (leg): These rotations are not quite obvious. 

In contrast to the thoracic rotations, thigh and shank rotate in phase with the 

pelvis. Rotary displacements progressively increase from pelvis to thigh, and thigh 

to shank. At the beginning of the swing phase, pelvis, thigh and shank rotate 

internally toward the supporting leg. This is continued during the double-limb 

support phase and into mid-stance. At mid-stance there is an abrupt reversal in 

the direction of rotation and this reversal continues until the beginning of the next 

swing phase. 

4. Rotations in the ankle and foot: During the swing phase of walking, the 

segments of the lower limb including foot are free in space and can rotate internally 

without restriction. During the stance phase, the foot is on the floor and external 

rotation of the leg occurs because mechanisms exist in the ankle and foot that 

permit the leg to rotate externally while the foot remains stationary. 

7.4 Characteristics of Walking Pattern 

In the study of walking patterns, Murray, Drought, Kory, and Wisconsin (1964) found 

that for a given subject, gait components such as phase durations (stance, swing and 

double-support), vertical trajectories of heel and toe, etc., did not undergo any significant 

variation in repeated trials. Although patterns of rotation were strikingly similar for 

normal and fast-speed walking of the same subjects, the reversals in the direction of 
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rotation (flexion to extension and extension to flexion) occurred earlier, durations of 

supportive (stance) phases decreased, out-toeing angle (angle the foot makes with the 

line of progression) decreased and the stride width (distance of the foot from the line 

of progression) increased at faster speed walking. From one subject to another, pelvic 

and thoracic rotations and the amplitude of the lateral pathway of the head, unlike 

that of the vertical pathway, were found to be more variable. Upper limb rotation 

patterns were the most variable gait components. According to Inman, Ralston, and 

Todd (1981), rotations of thigh and shank show marked diff'erences and constitute one of 

the factors that provide distinctive characteristics to each individual's appearance when 

walking. 

The above observations indicate that, for a given individual, the gait pattern does not 

vary within the same trial and repeated trials. The speed does afi'ect the gait pattern. 

They also suggest that individuals may have different gait patterns. According to Inman, 

Ralston, and Todd (1981), bipedal walking seems to be a learnt activity and it is not 

surprising that each of us displays certain personal peculiarities superimposed on the 

basic pattern of bipedal locomotion. If all gait movements are considered, gait may 

be unique (Nixon, Carter, Cunado, Huang, and Stevenage 1999). However, from a 

computational perspective, measuring the gait components, which are highly variable 

from person to person, e.g. pelvic and thorax rotations, is difficult even from an overhead 

view of the subject. This is because of the self-occluding nature of human walking. 

Extracting these components from real images poses even more challenge. 

7.5 H u m a n Gait and Person Identif ication 

As discussed earlier, human gait exhibits inter-subject variability and can be used as 

a biometric. This has focused much research in this direction. Recently a number of 

successful techniques to identify people from the way they walk have been reported. 

Niyogi and Adelson (1994a) used the braided pattern in XT-slice of an image sequence 

to signal the presence of human motion; characteristics of this pattern could also be used 

as a gait signature. Niyogi and Adelson (1994b) also described another method based 

on spatiotemporal surfaces, the surface being a combination of standard parametrised 

surface - the canonical walk - and a deviation surface specific to the individual walk. 

Meyer (1997a, 1997b, 1998a, 1998b) discussed the applicability of optical flow and hid-

den Markov models for gait-based identification. Huang (1999) discussed how principal 

component analysis can be used to extract a gait signature. On his pendulum based 

model, Cunado (1999) discussed extraction of gait parameters using a velocity Hough 

transform, an evidence gathering technique suited for temporal sequences. Little and 

Boyd (1998a) reported a moment based approach for gait-based person identification. 

Shuttler, Nixon, and Harris (2000) extended the concept to velocity moments which can 

also handle temporal information. Hayfron-Acquah, Nixon, and Carter (2001) discussed 
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the applicability of symmetry operators. Foster, Nixon, and Prugel-Bennett (2001) 

described how statistical measures, after application of various area masks, could be 

employed as a gait signature. 

Most of the studies extract motion features and use these to identify a moving subject. 

Motion features generally used are optical flow vectors, moments, eigenvectors, etc.. The 

methods employed may be model free (Little and Boyd 1995) or model based (Cunado 

1999; Yam, Nixon, and Carter 2001). Little and Boyd (1997, 1998b) show that model 

free method can also be applied to moving dot displays. 

7.6 Results for Mot ion Classification 

Many image processing techniques, or their adaptations, have been applied to gait-based 

person identification with mixed results. However, our aim is to test if the machines 

can use only MLD information to achieve this. All the datasets described in Section 3.1 

were used for the classification problem. Data-points for both training and testing were 

generated as explained in Section 3.6. Three diff'erent types of classifier - fc-NN, artificial 

neural network and support vector machines - were used. These classifiers are described 

in detail in Appendix C. Results with ANN classifier on synthetic data were presented 

in Laxmi, Carter, and Damper (2002b). The results of ANN and SVM classifiers on 

the manually labelled dataset were discussed in Laxmi, Carter, and Damper (2002a). 

In earlier works, the input data was re-sampled such that all the sequences had same 

number of frames. The re-sampled sequences were, then, used for generating data-points 

for the training and the testing. The sequences for the GTRI data were, however, not re-

sampled as re-sampling results in oscillatory effects. In this section, only results on the 

GTRI data are presented. 

7.6.1 A s s u m p t i o n s 

The current classification method is based on the following assumptions, some of which 

may not hold true in a real-world scenario. 

• The scene contains only one person walking fronto-parallel to camera. 

• Data are not missing. Information about the joint coordinates is available. 

• The walking sequence is in the correct order. 

• Correspondence information about any joint in all frames is available. In other 

words, for each frame, information about 'which' joint is 'which' is available. 
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F I G U R E 7 . 8 : Motion classification: Performance of A:-NN classifier. 

• No normalisation of data except scaling to unit hypercube is required. Thus clas-

sification is based on both static, e.g. height, and dynamic features. However, this 

also makes classification sensitive to distance from camera. 

• Data are free from noise, i.e. no missing or extrapolated data-points. 

7.6.2 Training and Testing Sets 

For the classification problem, individual gait cycles were manually extracted from the 

sequences in the GTRI data. The extraction was done in such a manner that all these 

cycles have the same phase. As each sequence consisted of about 2/3 complete gait 

cycles, the number of gait cycles per subject ranged from 5-8. For each frame, x, y and 

z coordinates of 15 joints - head, shoulders, elbows, wrists, knees, ankles and toes - were 

available. However, as an image is a projection on a 2D plane, only x and y coordinates 

were used. Only one gait cycle was used for the training. Similarly testing was done on 

another gait cycle. Training and testing data-points were obtained from two difi'erent 

gait cycles. 

7.6.3 /c-Nearest Neighbour Classifier 

A:-NN classifier was applied only to the GTRI data. Figure 7.8 displays the performance 

of a A-NN classifier. Number of frames grouped for temporal integration, N, is along the 

aj-axis; the y-axis represents the number of test points correctly classified. Any given 

point on the plot represents the classification accuracy for all test data-points, each point 

spanning only N frames. 



Chapter 7 Motion ClassiGcation: A Good Biometric? 

7.6.4 Artif icial Neura l Network Classifier 

A fully-connected, two-layer, non-recurrent, feed-forward neural network with back prop-

agation learning was used. In the following discussion, a given neural network architec-

ture is represented by m:n where m refers to number of hidden units and n refers to 

output units. Number of input units equals the dimensionality of a data-point (the con-

figuration vector integrated over N frames as discussed in Section 3.4 and is (2M -|- l)jV 

where M is the number of joints. As each subject was given a binary code, the number 

of output units (n) equals number of bits in the binary code. The neural network was 

assumed to be converged if its classification accuracy remains > 95% for 5 successive 

epochs during the training. 

Figure 7.9 displays the performance of the neural network classifier on this dataset 

of 21 subjects. Each subject was assigned a 5-bit binary code. The architec-

ture of neural network was 16:5, i.e. 16 hidden units and 5 output units. Fig-

ures 7.9(a), 7.9(b) and 7.9(c) display the percentage of correctly classified data-points 

when (a) all joints, (b) joints on one side (head joint plus joints of ipsilateral arm and 

leg), and (c) only leg joints are considered. Each frame has 15 joints - head, shoulders, el-

bows, wrists, hips, knees, ankles and toes. The results are from five program runs with 

random initial weights of the neural network. The standard error is mean ± standard 

deviation. Dimensionality of the input for (a), (b) and (c) is respectively 31jV, 17jV 

and 17#, N being the frames being combined. For all 21 subjects, number of frames 

in the gait cycle vary from 58-71, the average gait cycle is about 68. The best per-

formance remains in the range of 85%-90%. The best performance was obtained when 

only ipsilateral joints, one arm and one leg on the same side, were considered. 

7.6.5 Support Vector Machine Classifier 

One-against-one and one-against-rest (Section C.3.4 of Appendix C) multi-class support 

vector machine classifiers were used. Two kernels - linear and polynomial (degree 2) -

were used. 

Figures 7.10 and 7.11 display the performance of one-against-one and one-against-rest 

SVM classifiers. Only 8 joints, head joint plus ipsilateral joints (i.e. joints of one arm 

and leg on the same side) were considered. In either case, a linear kernel and polynomial 

kernels were used. 

7.7 Discussion 

Performance of &-NN classifier is good even when a data-point represents only one-frame. 

This may be due to the fact that different people walk with different speeds and hence 
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F I G U R E 7 . 9 : Motion classification: Performance of the neural network with 16 hidden 
units and 5 output units. In (a), all the joints, in (b) only 7 joints for one 
leg and one arm on same side, and in (c) only leg joints are used. 
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F I G U R E 7 . 1 0 : Motion classification: Performance of one-against-one multi-class SVM 
classifier. In (a) a linear kernel and in (b) a polynomial kernel with 
degree 2 were used. 

cover different distances. The performance of the classifier does improve with increased 

value of N, number of frames grouped per data-point. Performance of ANN classifier is 

best when only ipsilateral limbs (one arm and one leg on the same side) are considered. 

Unlike fc-NN classifier, performance is bad at smaller values of N. Performance of SVM 

classifier improves as N increases. The best performance is achieved using polynomial 

kernel with one-against-rest. Approximately 100% classification accuracy is achieved 

at about half the gait cycle. A smaller dip at the higher values of N may be due to 

insufficiency of the data-points. These results support the idea that the gait can indeed 

be used as a biometric. 

In practical scenario, however, the joint information is not available. Although the data 

may be manually labelled, it is subject to errors. Another possibility could be to apply 

a corner detection algorithm to the sequences and obtain the information about various 
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F I G U R E 7 . 1 1 : Motion classification: Performance of one-against-rest multi-class SVM 
classifier. In (a) a linear kernel and in (b) a polynomial kernel with 
degree 2 were used. 

joints. This can work only in an image with good contrast between the moving subject 

and the background. Even in a well segmented image, the joint information can still be 

affected by the footwear and the clothes. Once the joint information is extracted, the 

correspondence of the joints from one frame to another can be either manually supplied 

or automated using a suitable adaptation of the technique devised by Song, Goncalves, 

Bernardo, and Perona (2001). 



Chapter 8 

Conclusions and Future Work 

This chapter concludes the work presented in this thesis with a framework for future 

work. 

8.1 Conclusions 

Although a machine can learn to detect biological motion, the machine perception differs 

from the human perception. Even though we were able to develop an insight into 

the machine models, attempts to directly relate and elicit an explanation of human 

perception on the basis of machine behaviour remains inconclusive. One of the major 

challenges to human perceptual understanding is the presence of a wide variation in the 

human responses regarding INV, TOP, PER categories. As most of the participants 

do recognise instances of INV category as upside down human figures, structure-based 

hierarchical perception theories put forward by Johansson (1973) and Cutting, ProfRtt, 

and Kozlowski (1978) seem to find some merit in the explanation of this phenomenon. 

In the present case, the machine does not have enough negative categories to learn 

about what precisely constitutes a human-like structure and/or motion. It appears that 

the set of 12 categories taken into consideration does not constitute a mathematically 

closed set from the point of view of machine learning. The training set does not have 

enough information for the machine to generalise to the level of human performance. 

As a result, machine performance is more categorical and less variable. In our experi-

ments, human form seems to play an important role, as even the permuted sequence does 

not get as many negative votes as expected and SPT category gets less than expected 

positive response. This raises the question about the validity of asking each participant 

to respond to the same category as many as 12 times. Probably, a large number of 

responses about different categories, when participants were kept in the dark about the 

categories being shown, made it difficult for the participant to be too assertive about 
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the decisions. Also, when asked to judge human or non-human motion, participants 

assumed that some of the sequences shown were of animals. This explains why the 

participants in our experiment did not respond 100% positive even for NOR category. 

The factor by which this assumption influenced the participants in making decisions 

about other categories remains elusive. Another possible reason for machine perception 

not matching human performance may be due to the fact that, while former works in 

a Euclidean space, humans might be using some other coordinate framework, possibly 

the central perspective framework suggested by Johansson (1973). 

The applicability of fc-NN, ANN and SVM as motion classifiers and person identification 

is supported by the experiments conducted. In earlier works, the input data was re-

sampled such that all the sequences have same number of frames. The re-sampled 

sequences were, then, used for generating data-points for the training and the testing. 

The sequences for the GTRI data were, however, not re-sampled as re-sampling results 

in oscillatory efl'ects. 

As the number of frames per data-point {N) increases, classifier performance improves. 

This is possibly due to the increased availability of better temporal information and util-

isation of dynamic features by the classifiers. A slight dip at the higher values of N may 

be due to an insufficient number of data-points. As datasets were not normalised, except 

for scaling to unit hypercube, static features might have also contributed to the classifi-

cation. However, a noticeable difference in performance at low and high N indicates that 

the static features do not contribute exclusively. Performance of machine classifiers is 

better than that of the untrained humans. But this is when machines have information 

about dot-to-dot correspondence across all the frames in the sequence. 

In the case of support vector machines, scaling of data affects the computation of La-

grangian multipliers. In the absence of scaling, even the largest Lagrangian multiplier 

for the linear kernel case is too small to be afi'ected by any change in trade-off factor 

C. This affects the computation of the support vectors and the bias resulting in poor 

performance. However, it is observed that scaling of the data alleviates these problems. 

The scaling is done so as to fit the data into a unit hypercube. 

Support vector machines, especially one-against-rest with polynomial kernel, perform 

better than the neural classifiers. A significant finding is that the classification is pos-

sible even with a fraction of the cycle provided the training is done on the entire gait 

cycle. Generally this fraction is approximately < 50% of the gait cycle. Our technique 

demonstrates that the gait data has sufficient variability for the person identification 

systems. However, the effect of variations in day-to-day walking, even under similar 

circumstances such as the same terrain, footwear, etc., need to be investigated. 
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8.2 Future Work 

Although the results presented in this work remain largely inconclusive in the context 

of biological motion detection, the approach is definitely not a complete failure. The 

experimental set-up needs to be revised the approach should bring some fruitful results. 

A possible extension may be to include non-biological motion sequences, which are not 

directly derived from human motion such as the animal motion, motion of inanimate 

objects, etc. Permuted sequences of all the categories should be added and, within 

each category, there should be sequences of walks from both directions. This may help 

the machine learning system to be both time and direction sensitive. The main aim 

should be to look for a negative category close enough to the NOR category in euclidean 

space. This will help the machine learning system to achieve a better decision boundary. 

The present work suggest that PSR may be one of the candidates. To ascertain this, 

categories intermediate to NOR and PSR may be generated by varying the degree of 

randomness, and human responses for these may be obtained to determine if this is the 

case. 

In the present work, all the joints were considered. It may be worthwhile to get the 

human response only for reduced number of joints. The aim would be to look for 

the minimal sub-configurations which do not evoke the perception of biological motion. 

However, if the human responses were taken for different number of joints, we need a 

machine learning system which can deal with data of varying dimensions. A possibility 

would be to apply other machine learning models such as hidden Markov models and 

recurrent neural networks. 

Exposure time can also be reduced to force participants to make quick decisions. A 

category should be presented for not more than 4 instances to preserve the decision in-

dependence. In the current work, no masks have been employed for the sake of simplicity 

in machine performance analysis. However, masked data may force the machine to seek 

constructs responsible purely for the motion perception. A random mask applied to 

an organised structure (e.g. fronto-parallel view, upside-down view, etc.), may force the 

machine to learn discrimination between dots undergoing smooth and random motions. 

This may force the machine model to learn the motion trajectories and/or temporal 

inter-dot relationships rather than just the positional ranges of the dot. 

In the classification task, the robustness of machine classifiers needs to be established. 

Also, some mechanism to solve correspondence problem need to be developed and in-

corporated. A possible solution to this can be found in Song, Goncalves, Bernardo, and 

Perona (2001). View-invariance learning capability (the performance when the image 

sequence is not fronto-parallel) of the machine is yet to be verified. 

This work has been done on MLDs where location of each dot is determined by precise 

labelling using infra-red markers. But, in real life applications, this labelling needs to 
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be done by application of corner detection algorithms. The current approaches can be 

extended for experimentation on the data obtained in such a manner. 



Appendix A 

Generation of Synthetic Data 

A stick model (see Figure 1.1) is used to generate walking sequences. Synthetic data 

generations requires: 

• Body dimensions, i.e. length of various limbs (Table A.l) . 

• Angles of rotation of various joints (Figures 7.3). 

• Maximum deviation permissible in angles for same and different persons (Ta-

ble A.2). 

• A method to simulate walking. 

The angles of rotation were taken from Murray (1967). Varying these angles by a 

large amount corresponds to generating data for different people. Once the angles for 

a given person were obtained, changing these randomly by a small amount amounts to 

generating walking sequences of the same person at different time instances. In the data 

Measurement Measurement 
minimum maximum 

(cm) (cm) 
Head 15.875 19.05 
Neck 5.08 6.985 
Shoulder 30.48 3&56 
Arms 48.26 6&96 
Palm 12.70 15.24 
Torso 4&18 5&34 
Pelvis 35.56 44^5 
Legs 8L28 101.6 
Foot 16.51 22.86 

T A B L E A.l: Stick model: Dimensions of various limbs. 
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Deviation parameter Deviation parameter 
different persons same person 

(in degrees) (in degrees) 
Hip 5 1 
Knee 3.5 0.7 
Ankle 2.5 0.5 
Elbow 4 0.8 
Wrist 7 1.2 
Palm 3 0.6 

TABLE A.2: Stick model: Angle deviation. 

Foot 

Ankle Ankle 

Foot 

F I G U R E A.l: Angles of rotations of leg joints are redefined relative to horizontal plane. 

generation, a synthetic person walks along the x-axis from left to right. The lateral and 

vertical movements take place in xz and xy planes. At rest, the pelvis lies in the plane 

z = 0. To simplify computations, of joint coordinates, all angles were redefined relative 

to the horizontal plane (see Figure A.l). All angles are negative as these lie in the fourth 

quadrant. The following equations recalculate angles with respect to horizontal plane. 

^ = - ( t t — 0) 

6 = -(TT- (0 + ^ + 0 ) 

The method is based on the observation that at any time one of the legs is in supporting 

phase while the other is swinging. For the supporting leg, either heel or foot is always 

on the ground. The sequence is : 

Determine which of the legs is in support phase. The following relationship be-
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tween previous, current and next instances of hip rotation angle at any given time 

determines the phase. 

d't+i > Swinging phase 

< d't < Supporting phase 

< d't > d't-i Swing to support changeover 

> 0[ < 9^_i Support to swing changeover 

• For the supporting leg, determine if heel or foot is on ground. This is done by 

determining which of the two is closest to the ground. 

- If heel is on ground, generate coordinates of foot. 

' ( z - 1 ) 

{t - 1) 

M + ( f o o t cos ( ^ ' ( t ) ) 

{t) - koot 

'it) 

If foot is on ground, generate coordinates of heel. 

support / 

c r ' w 
_ .support 
— ^heel 

c r w = yground 

support 
^heel 

support 
~ ^heel 

support 
^foot v ĵ 

_ support 
— -f'heel 

c r ' m 
support 

— 3/heel 
support / , - , 
îbot (/v 

_ support 
— ^heel ' 

yzr'it) = 

<r"(<) = - 'too. (t)) 
= C ° " W + ' f o o . s i n ( { ' ( ( ) ) 

s u p p o r t _ support 
^heel — 4 o o t 

Generate coordinates of knee and hip. 

s u p p o r t _ support 
^knee ~ ^heel 

4T"(t) = 4nr"(')-^coi,{e'(4)) 

ip \ / ^knee \ / • 2 

s u p p o r t _ suppc 
hip y-/ — ^knee 
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Add lateral swing and vertical swing to determine the hip position of the swinging 

leg. 

+ ZpelvisSm(wiateral() 

_ /pg^yjgC08(wiateral() 

+ /pelvis sin(Wvertical<) 

Generate pelvis coordinates 

^pelvis (^) 

ypelvis(^) 

^pelvis (^) 

^hip 

hip 

Generate positions of knee, ankle and foot joints of the swinging leg. 

h swing 
knee 

{t) = 

swing 
knee 

it) 

C ( ^ ) = 
h 

i / h r ' w - f M) 
_ swing Z, hip (0 

a; swing / 
heel 

cr(() 
swing 
heel 

= ! / = » ( ' ) - ¥ s m ( ^ ' ( « ) ) 

( t ) = _ swing 
knee 

(i) 

X swing/ 
foot (^) 

swing 
foot 

+ /foot C08(^' (<)) 

- 4ootsin(('(<)) 

(() = cr(̂ ) 
The advantage of this method is that it adds a vertical swing to the pelvis without 

any need to compute it. Also the pelvis exhibits acceleration and retardation. This 

makes this model more realistic. The limitation is that the double support phase is not 

modelled properly. As a result, some of the sequences result in both feet off the ground 

or one of the feet beneath the ground. Such sequences were not used in the subsequent 

results. An example of synthetic sequence generated by the above method is shown in 

Figure 3.2. 
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The arm motion is modelled the same way. But the angles of rotations are best guesses 

because of non-availability of real data. However, arm motion is not an essential part of 

human motion as people may let both arms swing or swing only one arm, or fold them. 

Hence only leg data is used in the studies done. 



Appendix B 

Optimisation 

A generic optimisation problem is minimisation or maximisation of a function with or 

without constraints. As solution space of maximisation of a function / (x ) is equivalent 

to negative of that of minimisation of —/(x), we will discuss minimisation only. 

B . l Unconstrained Optimisation 

Let us consider determination of minima of a function f{x) without any constraints. 

Suitable conditions can be obtained by considering Taylor series expansion of the func-

tion. 

For a one variable function f{x), Taylor series expansion about the point x* is given by 

1 / 
/(a;* + Ar ) = /(a;*) + ^ (Aa;)': + . . . (B.l) 

x=x* 

As Ax is small, higher order terms can be ignored. Generally first order and second order 

terms are used to ascertain if the point x* is a minimising point, i.e. f{x* + Ax) > f{x) 

and f{x* — Ax) > f{x). This can be true only if first order derivative ^ is zero, its sign 

being dependent on sign of Ax and second order derivative ^ is negative. However, 

if the second order derivative is also zero, higher order terms are used to determine the 

minimising point. Thus the necessary and sufficient conditions for minimising point are 

• The very first non-zero term should be an even order derivative, i.e. ^ 

and it should be negative. 
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For a multi-variable function / (x), it. = [xi, X2,... , Xn]'̂ , Taylor series expansion is 

/ (x'4-Zlx) 

9* 

/(x*) + g*Ax + Ax^g-'Ax + .. , 

df 

dxi 3̂=2 
df 

12=3:2 
/ a\f d^f \ 

dx? dxidx2 ••• dxidx 
a ' / 

Xn=K 

H* = dx2dxi dx^ 

d^f a^f 
\ dx„dxi dxndx2 

_ 
dX2dXn 

/ X=X* 

Sufficient conditions for local minima at x* is 

' V/L;=x. = 0 

• H\y.^y., is positive definite, i.e. Az^ • H • Az > 0 for all Az 

B.2 Constrained Optimisation 

Let us consider an optimisation problem with a single constraint. 

minimise yo = f{xi,X2, • • • ,Xn) 

subject to g{xi,X2T •. ,Xn) = ^ 

As the constraint shows dependency among the input variables, this dependency can be 

removed by expressing Xn in terms of other variables and substituting in the objective 

function. This gives 

Xji — H{x\ , X21 I 2^71— 1) 

yo '— fi^l) ^2i • • • •) ^n—1; H(^X\, X2) . • • ; ^n— 1) ) 

yo is now unconstrained and the minima can be obtained by setting 

d y Q j d x j — 0 J — 1 , 2 , . . . , ? % 1 

However, from ff(xi,x2,..., x„) = j , we get 

= 0 j = 1, 2 , n — 1 

dH 
dx 

a w 89 = 

(13.2) 

(B.3) 
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Substituting the results of equation B.3 in equation B.2, we get 

dyo ^ df 
9a; j 8a;j 

a / ag / ag 
= 0 J = 1 ,2 , . . . ,71 - 1 

= 0 J = 1, 2 , . . . n — 1 (B.4) 
OXj OXj 

where a = is Lagrange multiplier. 

Now consider a new unconstrained problem derived from the constrained one by includ-

ing Lagrange multipliers as follows 

I/O = ... ,a;n) - a [ g ( a ; i , a ; 2 , . . . , Z n ) - ? ] 

Setting the derivative of the new objective function with respect to xj equal to zero (a 

necessary condition to derive minima) 

— = - Of— = 0 
9a;j 9a; j 9a;j 

gives the necessary condition for optimisation of the constrained problem. Also setting 

the derivative with respect to a to zero 

^ 0 _ / \ _ n 

• 1 ^n) T — 0 

results in the original constraint. Thus Lagrangian multipliers give us a way to treat 

constrained problems in the same vein as unconstrained ones. Number of Lagrangian 

multipliers are same as number of constraints. 

B.3 General Constrained Optimisat ion 

In the previous discussion, the constraints were equality constraints. For a general 

nonlinear optimisation problem 

Minimise / (x) 

subject to hj{x) = 0 j = 1, 2 , . . . , m 

5i(x) > 0 j = m + l,...,p 
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Karush-Kuhn-Tucker (KKT) conditions 

hj{x) = 0 J = 1, 2 , . . . , m 

gj(x) > 0 j = m + l,...,p 

Pj • dj (x) = 0 

d f j x ) 

i=i 

dhj (x) E ft 
j=m+l 

% ( x ) 
— 0 k = 1,2,...,N 

are sufficient to determine local minima. 



Appendix C 

Machine Classifiers 

Three different types of machine classifiers were used. These are 

1. k nearest neighbour (A:-NN) 

2. Artificial neural network (ANN) 

3. Support vector machine (SVM) 

Initial classification studies to assess the feasibility of the problem were done using 

non-recurrent feed-forward back propagation neural network. These results were, then, 

checked against SVM formulation. The following paragraphs describe the workings of 

these classifiers in detail. A;-NN classifiers were used to determine the relationship of the 

data-points in the feature space. 

C . l ^-Nearest Neighbour Classifier 

A A:-NN classifier is the simplest to implement and most widely used for pattern clas-

sification. To ascertain the class of a given point xt, its distances from all the points 

constituting input feature space, ip — {xi,X2,..., xg} are calculated. Of the first k points 

in closest to xt in terms of distance parameter, one is randomly chosen. The class 

assigned to the point xt is same as the chosen point. This classifier works well in the 

circumstances where the input space consists of clusters, a different cluster for a different 

class. Therefore, a given point is closer to the one contained in the cluster of its own 

class. The distance parameter to determine the closeness between two points is generally 

Euclidean distance in a multi-dimensional space. 

The complexity of the above Algorithm is 5"̂  x where S is number of points in input 

space and D is dimensionality of each point. The first term (5^) indicates number of 
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Algorithm 1 &-NN Classifier. 
Require: Input data-points, class of each data-point, value for k. 

Number of input data-points: S. Dimensionality of each data-point: D. 

for each data-point p do 
Determine its distances from all other points. 
Sort the distances in ascending order. 
Of first k distances, select one randomly. 
Assign the class of the chosen data-point. 

end for 

Xq = - 1 Zq = - 1 

yi di 

yi di 

VL dh 

F I G U R E C . L : Architecture of a multilayer, fully-connected, feed-forward neural net-
work employing back propagation learning, x, w, y and d represent in-
put, weight, output and target values respectively. Each node also has a 
negative bias at its input. 

distances to be computed and the second term (D^) is the cost of each distance compu-

tation for Euclidean metric, which is the most common distance metric. However, the 

actual computation time (not the computation complexity) can be reduced by main-

taining a list of k shortest distances for (each data-point) and updating this list only 

when a better metric value is obtained. Any value less than the largest value in the list 

will replace the latter. Also a distance computation is discarded in middle if the partial 

metric value exceeds the largest of values in the list. Algorithm 1 describes the basic 

fc-NN algorithm. 

C.2 Neural Network Classifier 

The neural network classifier used in this thesis is a non-recurrent, multilayer, feed-

forward network with back-propagation learning. Such a network is generally fully 

connected and has two/three layers. The architecture of such a network is shown in 
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Figure C.l. The network consists of many nodes. Each node has many incoming and 

outgoing connections, each connection having some weight. These nodes can be divided 

into three categories - input, hidden and output node. Each input node has a single 

incoming connection and is connected to one parameter of the input data. Output node 

has only one outgoing connection. Except for input node, the inputs to a node are 

summed together and squashed by application of a sigmoid or similar function. 

Algorithm 2 Neural network with back-propagation learning. 
Require: Dimensionality of each input (iV), preset threshold. 

Set A = 

Initialise all weights W to small random values within the range [—A, A]. 
Randomly select a training pattern (xP,tP), where and denote pth training 
input and target vectors. 
repeat 

Oj = Xj /* Assign data to input layer */ 
for each hidden layer q = 1,... ,Q ~ 1 do 

for each unit j = 1, . . . , / do 
H j = /* Compute net input */ 

Oj — y /* Compute output */ 

end for 
end for 
for each unit j = 1 , L in the output layer q = Q do 

H j = /* Compute net input */ 

O j = f /* Compute output */ 

Sj — {Oj - ij)f' (H^) /* Compute deltas */ 
end for 
for all hidden layers g = Q — I,-- - ,1 do 

/* back-propagate error */ 
end for 
for all weights do 

A»«. = 
= Wj- + AwJ- /* Adjust weights */ 

end for 
until Classification accuracy for successive five epochs remain above the preset thresh-
old. 

In this discussion, we will refer to the connections as a layer. The first layer of weighted 

connections connects input nodes with hidden nodes and the last layer connects hidden 

nodes to output nodes. The number of hidden node layers is Q — 1, where Q is number 

of layers. There are some connections from output nodes to hidden nodes. These 

connections are used for back propagation of error. 

The network is first trained to learn the classification patterns. Once trained, the net-

work stores the information about these patterns in weights of the connections. The 

entire input data is presented to the network in a random order. This constitutes a 

epoch. For a given input, output is computed and compared with the target value as-
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sociated with this input. This target value is encoding of the class to which this input 

belongs. If the output value does not match the target, the weights of the output nodes 

are adjusted, through application of some gradient-based error criterion function, to 

bring these closer. However, no target values are available for the hidden nodes. The 

error is, then, back-propagated and weights of successive layers are updated. The train-

ing is continued until the classification accuracy remains higher than a certain threshold 

(95%) for five successive epochs. The actual algorithm used is as discussed in Patterson 

(1996) and is detailed in Algorithm 2. 

C.3 Support Vector Machine Classifier 

Support vector machine is a method of separating two classes. This method determines 

an optimal separating plane in feature space. Unlike conventional approaches, this 

method aims at minimising test error rather than training error. A brief introduction 

to structural risk minimisation (Surges 1998; Scholkopf, Burges, and Simola 1999) has 

been presented to contrast this methodology with conventional approaches to machine 

learning. 

C.3.1 Machine Learning 

Learning is a process of building a model from incomplete information so that it can 

be used to predict the outcome of some unknown input as accurately as possible. In all 

learning methods, the underlying assumption is that observations used for training and 

the inputs to be expected in future along with associated outputs are generated from 

same probability distribution P(x, y). If x G is the input, y G M is the output and a 

is a set of parameters of the function / to be estimated, learning is determining solution 

to the equation 

/ ( x , a ) = y (C.l) 

from a finite number of observations or training data (xi, yi) . . . (x;, yi) G x R such 

that / will correctly classify unseen examples or test data. A learning machine must 

choose from a given set of solution functions / i (x, a) , . . . , /g (x, cx) the one which is the 

best approximate. 

C.3.1.1 Empir ical Risk Minimisa t ion 

In conventional approaches as in neural network, learning is achieved through minimisa-

tion of empirical risk or training error. Equation (C.l) has tvyo unknowns, / and a, the 
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approach used is to fix / and then adjust a in such a manner that some objective function 

of training error (mean squared error, sum of squared errors) is minimised. However, as 

the error criterion is an n-dimensional surface, the search for a global minimum may get 

stuck in some local minima or flat region. Also for any finite training data, it is possible 

to find two different functions f i and /g satisfying / i (xj, a i ) = /2 (xj, 02), i = 1 , . . . , / 

and fx (x^+i, a i ) / /2 (x(_|_i, «2). So these two functions agree on the entire training set 

but may not agree on an unknown input. In other words, even when two functions have 

same training error, they may not exhibit same test error. Hence only the minimising 

training error or the empirical risk 

1 ' 
Remp (Q^) = y ^ 1/ (Xi) — yi\ 

i=l 

does not imply a small test error or risk. 

R{a) = | / ( x ) - y | dP (x ,y ) 

P(x,y) is the probability distribution from which (xj,yj) are drawn. 

C.3.1.2 Structural Risk Minimisation (SRM) 

Statistical theory or VC theory put forward by Vapnik (1999) defined the following 

bound on the empirical risk with a probability of (1 — 77) 

R { » ) < (a) + ^ + (C.2) 

where h is the VC dimension of a family of functions {/ (x, a)}. The VC dimension 

(Section C.3.1.3) of a family of functions is the maximum number of points that can be 

separated in all possible ways by one or the other member function. If h is known, the 

best choice of a can be calculated. VC dimension is indicative of learning capacity of a 

family of functions. 

The second term in equation (C.2) is known as the confidence interval. For a given 

training set [l fixed) and given 77, this term monotonically increases as h increases. 

However, large h means large learning capacity and hence low training error. Structural 

risk minimisation (SRM) is then a trade-off between accuracy (first term) and complexity 

of the approximation (second term) (see Figure C.2). As the confidence interval depends 

on the chosen family of functions and the empirical risk depends on a particular member 

function of the class, SRM aims to find the subset of the functions that minimises actual 

bound. VC dimension h being an integer imposes a structure on the class of functions 

by partitioning the class into nested subsets of the functions (Figure C.3). So if-Si, 6*2, 
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1 o 

c 

Bound on the risk 

Confidence interval 

Empirical risk 
(training error) 

VC dimension 

h\ hi-

FIGURE C.2: In structural risk minimisation, learning capacity of a machine can be 
traded for bound on its test error. As the learning capacity increases, so 
does the bound and hence generalising capability decreases. 

hi < h2 < hs < /14 
5"! C ^2 C % C 5'4 

FIGURE C.3: Learning capacity partitioned by VC dimension. 

, define these subsets on a class of functions {/ (x, a)} such that 

gi C % C . . . 5'n C . . . 

hi ^ h2 hji <... 

where /ii, /12 are VC dimensions of structures Si and S2 respectively, SRM chooses 

an appropriate element Sk that minimises the bound. The Figure C.2 illustrates the 

principle. 
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FIGURE C . 4 ; V C dimension of a family of lines. 

C.3.1.3 VC Dimension 

The VC dimension of a family or class of functions is defined as the maximum number of 

points that can be separated in all possible ways by one member function or another. The 

VC dimension of a line is three. As can be seen from Figure C.4, different member lines 

from a set of lines can separate 3 points in all possible ways. However, four points cannot 

be separated using lines alone. This is because these points may not be coplanar. Hence 

a family of 3D planes is needed for separating 4 points. Similarly for a n-dimensional 

input, as in SVM, an n-dimensional hyperplane is required. 

C.3.2 Linear Support Vector Machines — Separable Case 

As stated earlier, SVM essentially solves a bi-class problem. These two classes are given 

labels +1 and —1 respectively. We will refer instances of the first class as positive and 

those of the other class as negative in the following discussion. The class of functions 

considered is a family of hyperplanes described by the following equation, w and b being 

unknowns. 

w - x + 6 = 0, w G M , 6 € M 

As many planes can classify the data correctly (Figure C.5), the problem is recast 

to determining the plane with largest orthogonal distance from nearest positive and 

negative instances. Such a plane is referred to as the optimal hyperplane. If and 

d - denote these distances, all positive and negative instances will satisfy the following 

equations. 

w • Xi + b > d_i_ for Hi = +1 

w - X; + 6 < c?_ for yi = — 1 
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O 

Class 1 
data Q 

o 

Class 2 

Optimal hyperplane 

Separating hyperplanes 

FIGURE C . 5 : Optimal separating hyperplane. 
Although many planes can partition the data correctly, only one plane is optimal in 
terms of distance between nearest instances of two classes. 

The point nearest to the plane will satisfy the following equations. 

w • xi + 6 = (i-f ((3.3) 

w • X2 + 6 = (i_ 

Subtracting equation (C.4) from equation (C.3) gives the margin 

w • (xi - X2) = id+ -
w 

margin 
w I 

(xi - X2) = 
— d—) 
w 

(C.4) 

The optimal plane should not be biased toward any class and should be symmetrical to 

both the classes. This can be true if = d. 

margm 
w 
w 

' (Xl - X2) 
2d 
w 

However, as d is merely a scaling factor, it can be replaced by unity and this gives rise 

to the following canonical form (Figure C.6). 

w • Xi + 6 > +1 for % — 4-1 

w • Xi + 6 < — 1 for yi = — 1 
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FIGURE C . 6 : Support vectors. 

The above two equations can be combined into one as 

yi (w • Xi + 6) - 1 > 0 \fi 

Now determination of the optimal hyperplane is simply an optimisation problem and 

can be stated as 

minimise r (w) = ^| |w|p 

subject to yj (w • Xj + 6) > 1, i = 1 , . . . , / 

As the above is a constrained problem, it can be transformed into an unconstrained 

optimisation problem using Lagrangian multipliers, a in the following equations (refer 

Appendix B.2). 

L{w,b,a) = - | |w |p • (x^ • w + 6) - 1) ((].5) 

1=1 

Now the problem can be solved by equating derivatives with respect to primal variables 

w and b respectively 

A 
5w 

L (w, b,a) = 0 

^ w = ^ OiyiXj 
((3.6) 

2 = 1 
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—Z, (w, 6, a) = 0 

; (CJ) 
^ (XiVi = 0 

i=l 

Substituting the results of equation (C.6) and equation (C.7) in equation (C.5), we 

arrive at the Wolfe dual of the original problem, which can be solved by any quadratic 

programming method. 

I ^ I 
maximise W {a) = (^i ' 

i=i i,j=i 

subject to Q!j > 0,? = 1 , . . . , / (C.8) 
I 

and X aiUi = 0 
2 = 1 

Karush-Kuhn-Tucker (KKT) complementary conditions (Appendix B.5), expressed as 

the following equation, are sufficient and necessary for the solution to be optimal. 

a i [y i{vf -Xi+b)- l ] = Q, 2 = 1 , . . . , / (C.9) 

Referring to equation (C.7), we find that the optimal solution w consists of input vectors 

for which the corresponding Lagrangian multiplier is non-zero. These input vectors are 

also called support vectors. As these satisfy KKT conditions, the following should be 

true for each of them. 

yi (w-aij + 6 ) - 1 = 0, i = 

In short, support vectors lie on the margin. 

Training phase: Training a support vector machine is solving equation (C.8) and 

determining a. Then the bias b can be computed from equation (C.9) for any i for 

which a j ^ 0. But it is numerically safer to take an average. 

Testing phase: Testing is done by determining the class of each test vector by using 

the following decision function. 

/ (x) = sgn yiOi • (x • x j + 6^ 

C.3.3 Support Vector Machines — Non-separable case 

If the input data are not linearly separable, as most practical problems exhibit, the 

above method will fail. In this case, the problem can be solved either by incorporating 

some penalty function or by mapping the input data to a higher dimensional space. 



Appendix C Machine ClassiGers 

C.3.3.1 Penalty Function 

If the input data are not linearly separable, any hyperplane is bound to result in some 

misclassification error. The optimal plane, in this case, is one which tends to maximise 

the margin and minimise misclassification error at the same time. As an increase (de-

crease) in margin means an increase (decrease) in the misclassification rate, the best an 

optimal hyperplane can do is to find the best trade-off between the two. A commonly 

used penalty function is fa (^) = Yll 6/^, cr > 0 where slack variables > 0,i = 1,... ,l 

control the misclassification rate. Generally cr = 1 is set to simplify the numerical 

calculations. The equations that each input data should satisfy now become 

w - X; + 6 > -1-1 — for yi = 4-1 

w-Xi-l-6 < -1 + for yi = -1 

& > 0 V, 

The objective function is modified to 

I 
( w , 0 = Jl |w|P + C ^ 6 -mmimise r 

subject to yi (w • X2 + 6) > 1, i = 1 , . . . , / 

The corresponding Lagrangian is given by 

1 ' 
L(W,6,Q!,/3) = -\\wf + - (X; - w -k 6) - 1 -k ^ A 6 

i 1 = 1 i 

where a and {3 are Lagrangian multipliers. Setting the derivative of the above Lagrangian 

with respect to w, b, ^ equal to zero 

- ^ L { w , b , a , / 3 ) = 0 

I 
^ W = ^ % % X ; 

2=1 

^Z , (w,6 ,a , /3 ) = 0 

I 
^ = 0 
i=l 

-^L{w,b,a,/3) = 0 

^ ai + (3i = C 
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FIGURE C.7: Kernels may transform linearly non-separable input data into linearly 
separable data in a higher dimensional feature space. 

The corresponding Wolfe-dual equation is given by 

I ^ I 
maximise W (a) i = X] ~ ? X] (*: ' Xj) 

2 . . ^ 2 = 1 = 1 
subject to 0 < Qfj 

0% < C 
I 

^ — 0, i — 1 , . . . , / 
2 = 1 

C.3.3.2 Kernels 

If the input space is mapped to a higher dimensional space, also called feature space, 

through a nonlinear mapping the mapped data may be linearly separable (Figure C.7). 

However, as the input data appear as dot products in the equations that need to be 

solved, one may use kernel methods without any explicit mapping. A kernel function 

should satisfy the following 

A;(x,xi) = 9 (̂x) - ^(xi) 

Some of the kernels generally used are 

• Polynomials of degree d 

k{x,x') = {(x • x') -I- 1}'̂  

• Two layer neural networks 

A;(x, x') = tanh {k (X, X') -|- Q), where k and 0 are gain and threshold respectively. 
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• Radial basis functions 

k{x,x.) = e 272 

In the work presented in this thesis, only linear and polynomial kernels have been used. 

C.3.4 Mult i -c lass Support Vector Machines 

Multi-class support vector machines Weston and Watkins(1998 and Weston (1999) can 

be implemented using binary SVM classifiers. The most common techniques to imple-

ment multi-class classification using support vector method are 

1. Error correcting code classifier: Each class is assigned an n-bit code as per 

some error correction coding scheme. A classifier is constructed for each bit. Test-

ing is done by determining the code constructed from the output of each classifier. 

The class whose code is nearest to the computed code is assigned to the test input. 

2. One-against-rest: If A; is the number of classes, k binary class SVM classifiers are 

constructed, one classifier for each class versus the rest. While training a classifier, 

the training data-points for the given class are considered as positive instances 

and the rest as negative instances. During testing, the output of each classifier is 

computed as per decision function /j(x) = Wj • x -|- , i G {1 , . . . , A;}, where k is 

the number of classes. The class assigned is the one corresponding to the classifier 

with maximum output. 

/j(x) = sgn(wj-x + ^i), i G { l , . . . , n } 
n 

2 = 1 

c = arg max[y(A;)], 
k 

where w and b are the weight and bias parameters respectively of the optimal 

separating plane, 5m,n is the Kronecker delta, equal to 1 when m = n and equal 

to 0 otherwise, and V{i) represents the number of votes assigned to class i. In 

case of tie, the class having the greater value of w, - x + bi is assigned to the test 

input. 

3. One-against-one: In this method only two classes are considered at a time re-

sulting mk-{k — l ) /2 classifiers. To determine the class of an unknown input, the 

output of each classifier is computed. If the output of 2-versus-j is 1, the counter 

corresponding to i is incremented. The class with maximum count is assigned to 
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the test input. 

/ i j = sgn (w^J X + j ) j ^ ^ 
[ J 

n 

i=i 

yxj) = E ' ' / , „ ( x ) , - i 
2 = 1 

c = argmax[F(^)], feG{l,...,n} 
k 

In case of a tie, one of the classes is randomly chosen. 
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Statistical Inference 

Statistical inference is the technique of obtaining knowledge about a large population 

from a small sample. A population is any exhaustive finite or infinite set of units about 

which inferences are required. For all practical purposes, the population is assumed 

to be infinite. A sample is a subset of population and should be representative of the 

population. A small representative sample will yield better estimates with less margin 

of error than a large non-representative sample. Random sampling is the most widely 

accepted method of selecting a representative sample. Inferential statistics is based on 

the assumption that the sample was obtained randomly from the populations. Most of 

the discussion in following paragraphs is referenced from (Glass and Hopkins 1996). 

For the following discussion, a sample will be represented by X = X i , X 2 , . . . , Xn where 

n is the size of sample. Size of population will be represented by N. Population mean 

and variance will be represented by ji and respectively. Sample mean and variance 

will be denoted by X and respectively. As variance is square of standard deviation, 

latter for a sample and a population will be described by s x and a. For a sample of 

size n, the degree of freedom or u equals n — 1. The notation Xi will be used to describe 

how a given value Xi differs from the population mean jj.. Therefore, Xi = Xi — fi. 

D . l Statist ics and Parameters 

For a given population, any desired characteristic can be described in terms of the 

descriptive parameters like mean, percentiles, median, variance and standard deviation. 

For a given sample, these parameters are referred to as statistics. A statistic is an 

estimate of the respective parameter in the population. If the statistic is unbiased, its 

expected value is equal to the parameter it estimates. Mean represents the average 

value. The statistics are representative of how the values are distributed in a given 

sample. Mean, median are also called as measures of central tendency as these describe 

115 
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average or representative values. Variance is a measure of variability as it is indicative 

of how the values in a sample depart from the mean. 

Mean of a sample and population are given by 

X = ^'=1 
n 

= 

n 

A p-th percentile is the value below which p% of the sample values lie. Thus a p-th 

perccentile will partition the sample into two sets - the first having values less than the 

statistic and another with values larger than the statistics. The respective size of the 

two sets are roughly ^ and ^ -

Median is the value that divides the respective sample into two partitions of same size, 

all the members of the first partition having value less than the median and all the 

members of the second partition having value larger than the median. A median is also 

equal to 50% percentile and also denoted as P50. 

A sampling error is the difference between a statistic of the sample and respective pa-

rameter of the population. A small sampling error means that sample statistic is a good 

estimator of the population. 

Sampling error = Statistic - Parameter 

For a skewed data distribution, sample median is a better descriptive measure than the 

sample mean. Mean is preferred as an inferential statistic as the sampling error tends 

to be smaller for the sample mean. 

A variance is a measure of to what extent the values in a sample differ from the mean. 

A small variance means that most of the values lie close to the mean value. Variance 

for a sample and a population are computed as 

,2 _ E iL i 
- ^2 

(n - 1)2 

2 _ ~ 

For a sample variance, degree of freedom instead of the sample size is used as in this 

form, sample variance is an unbiased estimator. Although s x is a biased estimator and 

underestimates cr, the bias is about 1% for n = 20 and hence negligible for most practical 

purposes. 
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FIGURE D . L ; A normal distribution curve. 

D.2 Standard Error of the Mean 

The standard deviation of the distribution of the sample means is called the standard 

error of the mean. This will be represented by aj:>. For a given population, the standard 

deviation of its sample means is the deviation from the population mean. Regardless of 

sample size, the sample means are normally distributed. This is from the central limit 

theorem which states that the sampling distribution of means from random samples, of 

size n each, approaches a normal distribution regardless of the shape of the population 

distribution. This normal distribution has mean n and variance jn. The standard 

error of the mean is related to the population variance as 

= 
(1 - n/N)a'^ 

n 

As sample size n is much smaller than population size N, the above equation simplifies 

to the following one. 

^A' 
a 

D.3 Populat ion M e a n from Sample M e a n 

As stated earlier, the distribution of sample means is a normal distribution with mean n 

and variance = o j ^ n . If population mean and variance are known, this distribution 

curve can be obtained for a given value of n. However, in this case, one does not 

need the population mean estimate. In practise, only one sample mean is available 

and population mean needs to be estimated from this. As population mean is only an 

estimate, an associated parameter is the probability that this estimate is in an error. 
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FIGURE D . 2 : A f-distribution curve. 

The latter is called significance level and represents the probability that the population 

mean estimate is incorrect. 

As the distribution of sample means is normal or Gaussian, sample means are distributed 

around the population mean as shown in Figure D.l. For any normal curve with mean 

and variance cr̂ , 68% of the values lie in the interval {/j, — a, /j, + a). This region is 

also called 68% confidence interval. So for any sample mean, say Mi, in this range, 

the population mean is within interval (Mi — cr, Mi + cr). As the probability that a 

given sample mean lies in 68% confidence interval is 68%, for this sample value the 

estimated population mean range of Mi ± a has 32% error probability. In other words 

a 68% confidence interval corresponds to 0.32 level of significance. To reduce the error, 

confidence interval needs to be broadened. Generally a 95% or 99% confidence interval, 

corresponding to ± 2cr or /u ± 2.5a, is used. 

Population Variance Unknown: The above discussion is valid only when the popu-

lation variance or cr̂  is known. In practise, this is an unknown and the standard error 

of mean is approximated by = s x / ^ n . In this scenario, ^-distribution (Figure D.2) 

instead of normal distribution is used to estimate the population mean. Unlike normal 

distribution, the shape of ^-distribution is also affected by degree of freedom, u. As 

u oo, t-distribution approaches the normal one. 



Appendix D Statistical Inference 119 

Accept 
Reject 

I2q — 2a /io /^O + 2(7 
Two tailed test 

FIGURE D . 3 : Acceptance and rejection regions for two-tailed test. Null hypothesis is 
jj, = [jlq. Alternative hypothesis is // / /xq. 

D.4 Hypothes i s Testing 

The purpose of the hypothesis testing is to decide if a statement about a statistic is 

acceptable at a given level of significance. The statistical hypothesis to be tested is also 

called null hypothesis. As only inference used in this work is about population mean, 

the null hypothesis for this section is // = A:, where k is some specified value. There are 

four steps involved in the hypothesis testing. 

1. State the hypothesis to be tested, fj, = k. 

2. Specify the probability of error or significance level, denoted by a. Generally 

a = 0.05 implying that there is 5% probability of incorrectly concluding that the 

hypothesis is false when it is true. 

3. Find the probability, p of obtaining a sample mean {X) that differs from hypothe-

sised population mean by an amount at lease as large as observed sample mean. 

For a normal (a known) or (-distribution (a unknown), this can be obtained by 

determining the area of the sample mean distribution curve satisfying the above 

condition. 

4. If p < a, the hypothesis is rejected, otherwise it is accepted. 

Alternative hypothesis: An alternative hypothesis is associated with a null hypoth-

esis. In case a null hypothesis is rejected, an alternative hypothesis can be accepted 

with the same error. For a null hypothesis n = k, there are three possible alternative 

hypotheses. These are 

1. fj, ^ k. 
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FIGURE D.4 : Acceptance and rejection regions for one-tailed test. Null hypothesis is 
fx = fio- Alternative hypothesis is (a) fJ, > fiQ and (b) fi < hq. 

2. jj, < k. 

3. IJ, > k. 

In the first case, sample values lying toward either tail of the distribution curve will 

contribute toward rejection of null hypothesis. Hypothesis testing with formulation 

of this alternative hypothesis, therefore, requires two-tailed test. For any sample values 

lying within the darker region, null hypothesis will be rejected (see Figure D.3). However, 

for the other alternative hypothesis formulations, one-tailed test would suffice. However, 

the tail of the distribution curve resulting in hypothesis rejection will depend upon if fi 

is less than or greater than k as illustrated in Figure D.4 (a) and (b). 
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Questionnaire 

1. Identity number: 

2. Age: 

3. Gender; MALE / FEMALE 

4. Profession: 

5. Any background in (please tick all applicable) 

(a) Computers 

(b) Computer Vision/Image Processing 

(c) Cognitive Sciences 

(d) Psychology 

(e) Physio-therapy 

(f) Bio-mechanics 

(g) Relevant (please give details) 

6. Participated in similar experiments YES / NO 

If yes, please give details 

121 
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7. Decision based on 

(a) Periodic motion 

(b) Configuration of moving dots (shape) 

(c) Others 
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Information Sheet 

Please categorise the image sequences on the basis of what you perceive these to be. 

You can add more. 

1. 

2. 

3. 

4. 

5. 

9. 

10. 
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Human Responses 

The following table describes the categories identified by each participant in detail. For 

each entry a indicates that the respective participant identified the category. Some 

of the entries may be in slight error as it was difficult to classify some of the responses 

(e.g. does "walking on roof" signify that the participant had identified an upside-down 

MLD walker or not?). 

In this table, each row of the table corresponds to a given participant. The column (1) 

indicates if the respective participant is an expert or not. A participant with a good 

computer vision/psychology background was considered to be an expert. Column (2) 

indicates familiarity with MLDs. The entry can range from 1-5, 5 being good familiarity 

and 1 means almost none. Columns (3) and (4) indicate if the participant has categorised 

spot and partial modes respectively. Columns (5) and (6) indicate if the participant has 

registered the presence of other human or non-human motion. Other human included 

"running", "dancing", "skating", "people walking in groups", etc. Non-human motion 

included "animal motion", "swarm of insects", "robotic motion", "some machine", etc. 

Table G.l: Detailed summary of human responses. 

(1) (2) NOR DIR WBK INV TOP OBQ SPT PER RAN (3) (4) (5) (6) 

2 y y y y y 
1 y V y y y 
1 
1 y y 
1 y y 
2 y 

3 y y y y y y 
1 y y y y y y 
2 V y y y y 
3 ^/ y y y y 
1 y y 
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Detailed summary of human responses (continued). 

(1) (2) N O R D I R W B K I N V T O P O B Q S P T P E R R A N (3) (4) (5) (6) 

1 V V Y V y y y 
1 

1 V 
1 V Y V y y 
1 V Y y y 
1 Y Y y V y y 
1 V y V y 

V V V 
1 V 
1 V y V y 
1 V V V V y y 
1 Y V V V Y y 
1 V V V y 
1 V Y V V 
1 V Y 

V Y V V y 

1 V V y 
1 V y 
1 V V y 
1 V V y 
1 V 

V 1 V y y 
1 V V V y y 
1 V y 

V V V y y Y 

1 V V V y 
1 V V V V y y 

V V V y 
V y 

1 V V V Y y 
V 1 V V V y 

1 V V y y 
1 V V V V V y y 
1 V V y 
1 V V V Y y y 

V V V y y y 
1 V V y y y 

V V V y y y 
V 1 V V Y y 

2 y y 
1 V V V V y 
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Detailed summary of human responses (continued). 

(1) (2) NOR DIR WBK INV TOP OBQ SPT PER RAN (3) (4) (5) (6) 
1 V V y y 
1 V 
1 V V y y y y 
1 V V y 

y 3 V V y y y y 
3 v V V y y 

V 3 V V v V y y 
V 4 V V V V V y 
V 3 V V y y 
V 2 V V V y 

1 V V y 
1 V V V y 
1 V V y y y 

V 1 V V y y y y 
V 2 V V V y y y y 

1 V V y 
1 V V V V y y y 
1 V y 

V 4 V V V y y 
V 1 V V V y 
V 2 V y y y 

1 V V V y 
V 1 V V V y y 

3 V V y 
1 V V V y y 

V 1 y V V V y y y 
V 1 V V V V y y y y 
V 1 V y y 
V 4 y 

3 V y 
1 V V y y y 

V 4 V V V y 
V 3 V V y y y 

1 V y 
1 V y 
3 V V V V y y y y 

V 1 
V 3 V V V V V y y y y y y 

1 V V V V y y y 
v 1 V V V y y y y 
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