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This paper considers the problem of positive real control for two-dimensional (2-D) discrete systems described by the
Roesser model and also discrete linear repetitive processes, which are another distinct sub-class of 2-D linear systems of
both systems theoretic and applications interest. The purpose of this paper is to design a dynamic output feedback
controller such that the resulting closed-loop system is asymptotically stable and the closed-loop system transfer function
from the disturbance to the controlled output is extended strictly positive real. We first establish a version of positive
realness for 2-D discrete systems described by the Roesser state space model, then a sufficient condition for the existence
of the desired output feedback controllers is obtained in terms of four LMIs. When these LMIs are feasible, an explicit
parameterization of the desired output feedback controllers is given. We then apply a similar approach to discrete linear
repetitive processes represented in their equivalent 1-D state-space form. Finally, we provide numerical examples to
demonstrate the applicability of the approach.

1. Introduction

Since the concept of positive realness was intro-

duced, it has played an important role in control and

system theory (Anderson and Vongpanitlerd 1973,

Haddad and Bernstein 1991, Vidyasagar 1993).

Applications of positive realness in stability analysis

and robust stabilization of linear systems have been

reported in, for example, Wen (1988), Haddad and

Bernstein (1991, 1994) and references therein. In

Agathoklis et al. (1991) an interesting application of

positive realness for one-dimensional (1-D) systems to

the stability analysis for two-dimensional (2-D) discrete

systems has been reported. Recently, the positive real

control problem has received considerable attention

(Sun et al. 1994, Xie and Soh 1995). The study of this

problem is motivated by robust and non-linear control

in which a well-known fact is that the positive realness

of a certain loop transfer function will guarantee the

overall stability of a feedback system if uncertainty or

non-linearity can be characterized by a positive real

system (Vidyasagar 1993). It was shown in (Sun et al.

1994) that a solution to the positive real control problem
for linear continuous systems involves solving a pair of
Riccati inequalities. When parameter uncertainty is
present, the problem was also solved by dynamic output
feedback controllers in, for example, Xie and Soh (1995)
and Mahmoud et al. (1999), respectively. The corre-
sponding results for discrete time systems can be
found in Haddad and Bernstein (1994) and Mahmoud
and Xie (2000).

The systems related analysis of 2-D discrete sys-
tems has received much attention during the past years
due to their theoretical importance as well as the ex-
tensive applications of these systems in many areas
such as image processing, seismographic data proces-
sing, thermal processes, water stream heating, and so
on (Kaczorek 1985). Different 2-D state-space models
have been proposed and a great number of fundamental
concepts and results based on 1-D discrete systems have
been extended to 2-D systems (Roesser 1975, Fornasini
and Marchesini 1978, Kaczorek 1985, Hinamoto 1993).
Note also that 2-D (and, more generally, n-D ðn � 3))
linear systems can pose systems theoretic questions
which have no 1-D counterparts. Also in some cases
there is a much weaker link between important concepts
that are strongly related in the 1-D case. As an example
in the latter case, the Smith form of an n-D linear system
fails to provide much information about the system
which it does supply in the 1-D case. To date, the con-
cept of positive realness for 2-D systems has received
much less attention than its 1-D counterpart and, to
the best of our knowledge, no results on the problem
of positive real control for 2-D systems have been
reported. In this paper, we deal first with the positive
real control problem for 2-D discrete systems described
by the Roesser model. Attention is focused on the design
of a dynamic output feedback controller such that the
resulting closed-loop system is asymptotically stable and
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the closed-loop transfer function matrix from the dis-
turbance to the controlled output has the so-called
extended strictly positive real (ESPR) property. We
first present a version of positive realness for 2-D dis-
crete systems in terms of an LMI. It is shown that this
result is an extension of the existing results of positive
realness for 1-D discrete systems. Based on this, a suffi-
cient condition for the existence of the desired output
feedback controllers is given in terms of four LMIs,
which define a convex set of solutions and can be solved
easily. In addition, when these LMIs are feasible, an
explicit parameterization of the desired output feedback
controller is also given.

The essential unique characteristic of a repetitive, or
multipass, process is a series of sweeps, termed passes,
through a set of dynamics defined over a fixed finite
duration known as the pass length. On each pass an
output, termed the pass profile, is produced which acts
as a forcing function on, and hence contributes to, the
dynamics of the next pass profile. This, in turn, leads to
the unique control problem for these processes in that
the output sequence of pass profiles generated can con-
tain oscillations that increase in amplitude in the pass to
pass direction.

To introduce a formal definition, let � < þ1 denote
the pass length (assumed constant). Then in a repetitive
process the pass profile ykðpÞ, 0 � p � �, generated on
pass k acts as a forcing function on, and hence contri-
butes to, the dynamics of the next pass profile ykþ1ðpÞ,
0 � p � �, k � 0.

Physical examples of repetitive processes include
long-wall coal cutting and metal rolling operations
(Edwards 1974). Also in recent years applications have
arisen where adopting a repetitive process setting for
analysis has distinct advantages over alternatives.
Examples of these so-called algorithmic applications of
repetitive process theory include classes of iterative
learning control schemes (Amann et al. 1998) and itera-
tive algorithms for solving non-linear dynamic optimal
control problems based on the maximum principle
(Roberts 2000).

Attempts to control these processes using standard
(or 1-D) systems theory/algorithms fail (except in a few
very restrictive special cases) precisely because such an
approach ignores their inherent 2-D systems structure,
i.e. information propagation occurs from pass to pass
and along a given pass, and the pass initial conditions
are reset before the start of each new pass. In seeking a
rigorous foundation on which to develop a control
theory for these processes, it is natural to attempt to
exploit structural links which exist between, in particu-
lar, the class of so-called discrete linear repetitive pro-
cesses and 2-D linear systems described by the
extensively studied Roesser (1975) or Fornasini–
Marchesini (1978) state-space models. Discrete linear

repetitive processes are distinct from such 2-D linear
systems in the sense that information propagation in
one of the two independent directions (along the pass)
only occurs over a finite duration. In this paper, we
produce the first significant results on the problem of
positive real control for discrete linear repetitive pro-
cesses.

The organization of the paper is as follows. A ver-
sion of positive realness for 2-D discrete systems
described by the Roesser model is given in } 2. Based
on this, the solution of the positive real control problem
for 2-D discrete systems described by the Roesser model
is obtained in } 3. In } 4, positive realness for a linear
discrete repetitive process is investigated. The positive
real controller synthesis is given in } 5. Numerical ex-
amples are provided in } 6 to demonstrate the applicabil-
ity of the proposed approach.

Notation: Throughout this paper, for symmetric ma-
trices X and Y, the notation X � Y (respectively,
X > Y) means that the matrix X � Y is positive semi-
definite (respectively, positive definite). I is the identity
matrix with appropriate dimensions. The superscripts
‘T’ and ‘*’ denote the transpose and the complex
conjugate transpose respectively. Z+ denotes the set of
non-negative integers. For a matrix M 2 Rn
m with
rank r, the orthogonal complement M? is defined as a
(possibly non-unique) ðn� rÞ 
 n matrix such that
M?M ¼ 0 and M?M?T > 0. Mþ is the Moore–
Penrose inverse of M. Matrices, if not explicitly stated,
are assumed to have compatible dimensions.

2. Positive realness of Roesser models

Consider a 2-D discrete-time system (S) described by
the following Roesser state-space model (Roesser
1975)

ðSÞ :
xhði þ 1; jÞ

xvði; j þ 1Þ

24 35 ¼ A
xhði; jÞ

xvði; jÞ

24 35þ Bwði; jÞ ð1Þ

zði; jÞ ¼ C
xhði; jÞ

xvði; jÞ

24 35þDwði; jÞ ð2Þ

where xhði; jÞ 2 Rnh and xvði; jÞ 2 Rnv are the horizontal
and vertical states, respectively, wði; jÞ 2 Rh is the exo-
genous input, zði; jÞ 2 Rs is the measured output,
i; j 2 Zþ, A, B, C and D are known real constant
matrices with appropriate dimensions. The boundary
conditions of the system are

x0 ¼ ½xhð0; 0ÞT; xhð0; 1ÞT; xhð0; 2ÞT . . . ;

xvð0; 0ÞT; xvð1; 0ÞT; xvð2; 0ÞT . . .�T
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The transfer function matrix of the 2-D discrete-time
system (S) under zero boundary conditions can be writ-
ten as

Gðz1; z2Þ ¼ CðIðz1; z2Þ � AÞ�1BþD ð3Þ

where

Iðz1; z2Þ ¼ diagðz1Inh ; z2InvÞ ð4Þ

Definition 1 (Kaczorek 1985): The 2-D linear
discrete-time system (S) is said to be asymptotically
stable if

lim
i;j!1

kxði; jÞk ¼ 0

under zero input wði; jÞ � 0 and boundary conditions
such that supj kxhð0; jÞk < 1 and supi kxvði; 0Þk < 1,
where xði; jÞ ¼ ½xhði; jÞT, xvði; jÞT�T.

We will also use the following result.

Lemma 1 (Anderson et al. 1986, Agathoklis
1988): The 2-D linear discrete-time system (S) is
asymptotically stable is there exists a block-diagonal
matrix P ¼ diagðPh;PvÞ > 0 with Ph 2 Rnh and
Pv 2 Rnv such that

ATPA� P < 0 ð5Þ

Motivated by the theory of positive realness for 1-D
discrete systems (Anderson and Vongpanitlerd 1973),
positive realness for 2-D systems can be defined as
follows.

Definition 2:

(1) The 2-D discrete-time system (S) is said to be
positive real (PR) if its transfer function matrix
Gðz1; z2Þ is analytic in jz1j > 1, jz2j > 1 and satis-
fies Gðz1; z2Þ þ G�ðz1; z2Þ � 0 for jz1j > 1,
jz2j > 1.

(2) The 2-D discrete-time system (S) is said to be
strictly positive real (SPR) if its transfer function
matrix Gðz1; z2Þ is analytic in jz1j � 1, jz2j � 1
and satisfies Gðej�1 ; ej�2Þ þ G�ðej�1 ; ej�2Þ > 0 for
�1, �2 2 ½0; 2�Þ.

(3) The 2-D discrete-time system (S) is said to be
extended strictly positive real (ESPR) if it is
SPR and Gð1;1Þ þ Gð1;1ÞT > 0.

The following theorem gives a sufficient condition
for the 2-D discrete-time system (S) to be asymptotically
stable and ESPR. This result will play a key role in
solving the positive real control problem for 2-D systems
defined in the following section.

Theorem 1: The 2-D discrete-time system (S) is
asymptotically stable and ESPR if there exists a block-

diagonal matrix P ¼ diag ðPh;PvÞ > 0 with Ph 2 Rnh
and Pv 2 Rnv such that the following LMI holds

ATPA� P CT � ATPB

C � BTPA �ðDþDT � BTPBÞ

" #
< 0 ð6Þ

Proof: From (6) it is easy to see that

ATPA� P < 0

By Lemma 1, it follows that system (S) is asymptotically
stable. This implies that Gðz1; z2Þ is analytic in
jz1j � 1; jz2j � 1. Next, we show that Gðe j�1 ; e j�2Þþ
G�ðe j�1 ; e j�2Þ > 0 for all �1; �2 2 ½1; 2�Þ.

By Schur complements, it follows from (6) that

D ¼ DT � BTPB > 0 ð7Þ
and

ATPA� Pþ ðCT � ATPBÞðDþDT � BTPBÞ�1


ðC � BTPAÞ < 0 ð8Þ
Define

Fðe j�1 ; e j�2Þ ¼ Iðe j�1 ; e j�2Þ � A
where Iðz1; z2Þ is defined in (4). Now, writing

A ¼
A11 A12

A21 A22

" #
with compatible dimensions to Iðz1; z2Þ yields, after
some (extensive but routine and hence the details are
omitted here) calculations that for all �1; �2 2 ½0; 2�Þ

Fðe�j�1 ; e�j�2ÞTPFðe j�1 ; e j�2Þ þ Fðe�j�1 ; e�j�2ÞTPA

þATPFðe j�1 ; e j�2Þ ¼ �ðATPA� PÞ
Noting that Fðe j�1 ; e j�2Þ is invertible for all
�1; �2 2 ½0; 2�Þ, it follows from the above equality that

BTPBþ BTPAFðe j�1 ; e j�2Þ�1Bþ BTFðe�j�1 ; e�j�2Þ�TATPB

¼ �BTFðe�j�1 ; e�j�2Þ�TðATPA� PÞFðe j�1 ; e j�2Þ�1B ð9Þ
Conversely, equation (8) implies that there exists a
matrix Q > 0 such that

Qþ ATPA� Pþ ðCT � ATPBÞðDþDT � BTPBÞ�1


ðC � BTPAÞ < 0 ð10Þ
Pre and post-multiplying (10) by BTFðe�j�1 ; e�j�2Þ�T and
Fðe j�1 ; e j�2Þ�1B respectively, we now have that for all
�1; �2 2 ½0; 2�Þ

BTFðe�j�1 ; e�j�2Þ�TðATPA� PÞFðe j�1 ; e j�2Þ�1B

þBTFðe�j�1 ; e�j�2Þ�TCFðe j�2Þ�1B � 0 ð11Þ
where
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C ¼ Qþ ðCT � ATPBÞðDþDT � BTPBÞ�1ðC � BTPAÞ

Now, substituting (9) into (11) gives

�BTPB� BTPAFðe�j�1 ; e�j�2Þ�1B

�BTFðe�j�1 ; e�j�2 ; e�j�2Þ�TATPB

þBTFðe�j�1 ; e�j�2Þ�TCFðe j�1 ; e j�2Þ�1B � 0

for all �1; �2 2 ½0; 2�Þ. Hence by this last inequality, we
have that for all �1; �2 2 ½0; 2�Þ

Gðe j�1 ; e j�2Þ þ G�ðe j�1 ; e j�2Þ

¼ DþDT þ CFðe j�1 ; e j�2Þ�1Bþ BTFðe�j�1 ; e�j�2Þ�TCT

¼ ðDþDT � BTPBÞ þ CFðe j�1 ; e j�2Þ�1B

þBTFðe�j�1 ; e�j�2Þ�TCT þ BTPB

� ðDþDT � BTPBÞ þ ðC � BTPAÞFðe j�1 ; e j�2Þ�1B

þBTFðe�j�1 ; e�j�2Þ�TðCT � ATPBÞ

þBTFðe�j�1 ; e�j�2Þ�TCFðe j�1 ; e j�2Þ�1B

¼ ðDþDT � BTPBÞ � ðC � BTPAÞC�1ðCT � ATPBÞ

þ½BTFðe�j�1 ; e�j�2Þ�T

þðC � BTPAÞC�1�C½Fðe j�1 ; e j�2Þ�1B

þC�1ðCT � ATPBÞ�

� ðDþDT � BTPBÞ � ðC � BTPAÞC�1ðCT � ATPBÞ

ð12Þ

Noting

DþDT � BTPB C � BTPA

CT � ATPB C

" #
> 0

and using Schur complements, it follows that

ðDþDT � BTPBÞ � ðC � BTPAÞC�1ðCT � ATPBÞ > 0

This together with (12) shows that for all �1; �2 2 ½0; 2�Þ

Gðe j�1 ; e j�2Þ þ G�ðe j�1 ; e j�2Þ > 0

Hence the 2-D discrete-time system (S) is ESPR. &

Remark 1: Theorem 1 provides an LMI condition for
the 2-D discrete-time system (S) to be asymptotically
stable and ESPR. In the case when the system (S) re-
duces to a 1-D discrete system, it is easy to show that
Theorem 1 coincides with Lemma 4.2 in Haddad and
Bernstein (1994). Therefore, Theorem 1 can be viewed
as an extension of existing results on positive realness
for 1-D discrete-time systems to 2-D linear systems
described by the Roesser state space model.

3. Positive real control for Roesser models

The 2-D discrete-time linear systems to be consid-
ered in this section are described by the state-space
model of the Roesser structure

ðSRÞ :
xhði þ 1; jÞ

xvði; j þ 1Þ

24 35 ¼ A
xhði; jÞ

xvði; jÞ

24 35
þ Bwði; jÞ þ B1uði; jÞ ð13Þ

zði; jÞ ¼ C1

xhði; jÞ

xvði; jÞ

24 35
þD11wði; jÞ þD12uði; jÞ ð14Þ

yði; jÞ ¼ C2

xhði; jÞ

xvði; jÞ

24 35
þD21wði; jÞ þD22uði; jÞ ð15Þ

where xhði; jÞ 2 Rnh , xvði; jÞ 2 Rnv , wði; jÞ 2 Rs,
uði; jÞ 2 Rl, zði; jÞ 2 Rs and yði; jÞ 2 Rp are the horizon-
tal state, vertical state, exogenous input, control input,
controlled output and measured output, respectively; A,
B, B1, C1, C2, Dhk, h; k ¼ 1; 2 are known real constant
matrices with compatible dimensions. Without loss of
generality, we assume that D22 ¼ 0.

In this section, we focus on the output feedback
controller

ð�SSÞ :
�xxhði þ 1; jÞ

�xxvði; j þ 1Þ

24 35 ¼ �AA
�xxhði; jÞ

�xxvði; jÞ

24 35þ �BByði; jÞ ð16Þ

uði; jÞ ¼ �CC
�xxhði; jÞ

�xxvði; jÞ

24 35þ �DDyði; jÞ ð17Þ

where �xxhði; jÞ 2 R�nnh , �xxvði; jÞ 2 R�nnv and �AA, �BB, �CC and �DD are
the controller matrices to be selected. By introducing the
augmented state vectors

~xxhði þ 1; jÞ ¼ ½xhði þ 1; jÞT �xxhði þ 1; jÞT�T

~xxvði; j þ 1Þ ¼ ½xhði; j þ 1ÞT �xxhði; j þ 1ÞT�T

we obtain the closed-loop system ðScÞ

ðScÞ :
~xxhði þ 1; jÞ

~xxvði; j þ 1Þ

24 35 ¼ ~AA
~xxhði; jÞ

~xxvði; jÞ

24 35þ ~BBwði; jÞ ð18Þ

zði; jÞ ¼ ~CC
~xxhði; jÞ

~xxvði; jÞ

24 35þ ~DDwði; jÞ ð19Þ

where
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~AA ¼ YðÂAþ F̂FĜGĤHÞY�1; ~BB ¼ YðB̂Bþ F̂FĜGN̂NÞ;

~CC ¼ ðĈC þ ŜSĜGĤHÞY�1; ~DD ¼ D̂Dþ ŜSĜGN̂N ð20Þ

ÂA ¼
A 0

0 0

" #
; B̂B ¼

B

0

" #
;

F̂F ¼
B1 0

0 I

" #
; ĜG ¼

�DD �CC

�BB �AA

" #
ð21Þ

ĤH ¼
C2 0

0 I

" #
; N̂N ¼

D21

0

" #
; ĈC ¼ ½C1 0�;

ŜS ¼ ½D12 0�; D̂D ¼ D11 ð22Þ

Y ¼

Inh 0 0 0

0 0 I�nnh 0

0 Inv 0 0

0 0 0 I�nnv

26666664

37777775 ð23Þ

Then the closed-loop transfer function matrix �GGðz1; z2Þ
is given by

�GGðz1; z2Þ ¼ ~CCðIðz1; z2Þ � ~AAÞ�1 ~BBþ ~DD ð24Þ

The positive real control we address in this section
can now be formulated as determining the parameters
�AA, �BB, �CC and �DD of the output feedback controller (�SS) such
that the resulting closed-loop system (Sc) is asymptoti-
cally stable and ESPR.

The following lemma will be used in the proof of our
main result in this section.

Lemma 2 (Gahinet and Apkarian 1994, Iwasaki and
Skelton 1994): Given a symmeric matrix H and two
matrices G and P, consider the problem of finding some
matrix � such that

Hþ G�Pþ ðG�PÞT < 0 ð25Þ

Then ð25Þ is solvable for � if and only if

G?HG?T < 0; PT?HPT?T < 0

Now we are in a position to give our main result on
the positive real control problem.

Theorem 2: Consider the 2-D discrete-time system
ðSRÞ. If there exists matrices X ¼ diagðXh;XvÞ > 0 and
Y ¼ diagðYh;YvÞ > 0 with Xh;Yh 2 Rnh , Xv, Yv 2 Rnv
satisfying the LMIs

G?
X

ATXA � X ATXB� CT
1

BTXA� C1 BTXB� ðD11 þDT
11

24 35G?T
X < 0 ð26Þ

G?
Y

AYAT � Y AYCT
1 � B

C1YA
T � BT C1YC

T
1 � ðD11 þDT

11

24 35G?T
Y < 0

ð27Þ

Xh Inh

Inh Yh

24 35 � 0;
Xv Inv

Inv Yv

24 35 � 0 ð28Þ

where

GX ¼
CT
2

DT
21

" #
; GY ¼

B1

D12

" #
then there exists an output feedback controller ð�SSÞ
such that the resulting closed-loop system ð�cÞ is
asymptotically stable and ESPR. Moreover,
if rank ðI � XhYhÞ ¼ kh < nh and rank ðI � XvYvÞ
¼ kv < nv for solution matrices ðX ;YÞ, then there exists
a reduced order controller with order kh þ kv. In this case,
a desired output feedback controller corresponding to a
feasible solution ðX ;YÞ of ð26ÞNð28Þ is given by

�DD �CC

�BB �AA

24 35 ¼ U þ
RKX

þ
L þ Z � U þ

RURZXLX
þ
L ð29Þ

K ¼ �W�1U T
LLX

T
RðXRLXjTRÞ�1

þW�1S1=2LðXRLXT
RÞ�1=2 ð30Þ

S ¼W � U T
L½L� LXT

RðXRLXT
RÞ�1XRL�UL ð31Þ

L ¼ ðULW�1U T
L � OÞ�1 ð32Þ

O ¼

�Xhv ĈCT ÂAT

ĈC �ðD̂Dþ D̂DTÞ �B̂BT

ÂA �B̂B �Yhv

26664
37775 ð33Þ

Xhv ¼
X X12

XT
12 X22

" #
; Yhv ¼

Y Y12

YT
12 Y22

" #
ð34Þ

X12 ¼
Xh12 0

0 Xv12

" #
; X22 ¼

Xh22 0

0 Xv22

" #
ð35Þ

Y22 ¼
ðXh22 � XT

h12X
�1
h Xh12Þ�1 0

0 ðXv22 � XT
v12X

�1
v Xv12Þ�1

24 35ð36Þ
Y12 ¼

�YhXh12X�1
h22 0

0 �YvXv12X�1
v22

24 35 ð37Þ

X ¼ ½ĤH � N̂N 0�; U T ¼ ½0 ŜST F̂FT� ð38Þ

where ÂA, B̂B, ĈC, D̂D, ĤH, N̂N, ŜS and F̂F are defined in ð21Þ and
ð22Þ. Z and L are any matrices satisfying kLk < 1, where
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k � k denotes the spectral norm and Xh12 2 Rnh
kh ,
Xh22 2 Rkh
kh , Xv12 2 Rnv
kv , Xv22 2 Rkv
kv , Xh22 > 0,
Xv22 > 0 and W > 0 satisfying

L > 0; Xh � Y�1
h ¼ Xh12X�1

h22X
T
h22 � 0;

Xv � Y�1
v ¼ Xv12X�1

v22X
T
v12 � 0

ð39Þ

ðXL;XRÞ and ðUL; URÞ are any full rank factors of X and U,
that is, X ¼ XLXR, U ¼ ULUR.

Proof: It follows from (28) that there always exist
matrices �XXh12, �XXh22 2 Rnh
hh , �XXv12, �XXv22 2 Rnv
nv and
�XXh22 > 0, �XXv22 > 0 such that

Y�1
h � Xh ¼ � �XXh12 �XX

�1
h22

�XXT
h12 � 0

Y�1
v � Xv ¼ � �XXv12 �XX

�1
v22

�XXT
v12 � 0

Define

Ph ¼
Xh �XXh12

�XXT
h12

�XXh22

" #
; Pv ¼

Xv �XXv12

�XXT
v12

�XXv22

" #
ð40Þ

Then

P�1
h ¼

Yh Zh12

ZT
h12 Zh22

" #
; P�1

v ¼
Yv Zv12

ZT
v12 Zv22

" #
ð41Þ

where

Zh12 ¼ �Yh �XXh12 �XX�1
h22; Zv12 ¼ �Yv �XXv12 �XX�1

v22

Zh22 ¼ ð �XXh22 � �XXT
h12X

�1
h

�XXh12Þ�1;

Zv22 ¼ ð �XXv22 � �XXT
v12X

�1
v

�XXv12Þ�1

Let

½W1 W2� ¼
B1

D12

" #?

; ½v1 V2� ¼
CT
2

DT
21

" #?

Then it is easy to show that

U? ¼ ½V1 0� �V2 0
½0 0� 0 I

	 

; XT? ¼ 0 W2 ½W1 0�

I 0 ½0 0�

	 

Define

O1 ¼
� �XXhv ĈCT ÂAT

ĈC �ðD̂Dþ D̂DTÞ �B̂BT
ÂA �B̂B �ŶYhv

24 35
where

�XXhv ¼
X �XX12

�XXT
12

�XX22

" #
; �YYhv ¼

Y �YY12

�YYT
12 Y22

" #

�XX12 ¼
�XXh12 0

0 �XXv12

" #
; �XX22 ¼

�XXh22 0

0 �XXv22

" #

�YY12 ¼
Zh12 0

0 Zv12

" #
; �YY22 ¼

Zh22 0

0 Zv22

" #

From (40) and (41), we have �XX�1
hv ¼ �YYhv. Then, using

(26) and (27), we can verify that

XT?O1X
T?T < 0; U?O1U

?T < 0 ð42Þ

Therefore, by Lemma 2 it follows that there exists a
matrix ĜG such that

O1 þ UĜGXþ ðUĜGXÞT < 0 ð43Þ

Pre- and post-multiplying (43) by diagðY; I ; I) and
diagðYT; I ; I) respectively, we now have that

� ~PP ~CCT ~AAT

~CC �ð ~DDþ ~DDTÞ � ~BBT

~AA � ~BB � ~PP�1

2664
3775 < 0 ð44Þ

where the relationship Y�1 ¼ YT has been used, and ~PP
is given by

~PP ¼ diag ðPh;PvÞ

By Schur complements, equation (33) implies that

~AAT ~PP ~AA� ~PP ~CCT � ~AAT ~PP ~BB

~CC � ~BBT ~PP ~AA �ð ~DDþ ~DDT � ~BBT ~PP ~BBÞ

" #
< 0 ð45Þ

Noting this and applying Theorem 1, we have that there
exists an output feedback controller ð�SSÞ such that the
resulting closed-loop system Sc is asymptotically stable
and ESPR, i.e. the positive real control problem is sol-
vable. Furthermore, when (26)–(28) are satisfied, the
parameterization of all desired output feedback control-
lers satisfying the LMI (43) can be obtained by using the
results in Gahinet and Apkarian (1994) and Iwasaki and
Skelton (1994). This completes the proof.

Remark 2: Theorem 2 provides a sufficient condition
for designing an output feedback controller which sta-
bilizes a 2-D discrete linear system described by the
Roesser state-space model and achieves the extended
strictly positive realness property of the closed-loop
system. It is worth pointing out that the LMIs (26)–
(28) in Theorem 2 can be solved efficiently, and no
tuning of parameters is required (Boyd et al. 1994).
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4. Positive realness of linear repetitive processes

The state-space model of a discrete linear repetitive
process has the following form over 0 � p � �, k � 0

xkþ1ðpþ 1Þ ¼ bAAxkþ1ðpÞ þ bBBukþ1ðpÞ þ bBB0ykðpÞ
ykþ1ðpÞ ¼ bCCxkþ1ðpÞ þ bDDukþ1ðpÞ þ bDD0ykðpÞ

9=; ð46Þ

Here on pass xkðpÞ 2 Rn is the current pass state vector,
ykðpÞ 2 Rm is the current pass profile vector, and
ukðpÞ 2 Rm is the vector of current pass inputs. To com-
plete the process description, it is necessary to specify
the initial, or boundary conditions, i.e. the state initial
vector on each pass xkþ1ð0Þ, k � 0, and the initial pass
profile y0ðpÞ. Here these are taken to be of the simplest
possible form, i.e. xkþ1ð0Þ ¼ dkþ1, k � 0, and
y0ðpÞ ¼ yðpÞ, 0 � p � �, where dkþ1 is an n
 1 vector
with constant entries and the entries in the m
 1 vector
yðpÞ are known functions of p. Note, however, that the
structure of the boundary conditions alone can cause
instability in these processes. (See Owens and Rogers
(1999) where this fact is established for the differential
counterparts of the processes considered here using a
pass state initial vector sequence which is an explicit
function of points on the previous pass profile.)

Recall that the unique control problem for repetitive
processes is that the output sequence of pass profiles
generated can contain oscillations that increase in the
pass-to-pass direction (i.e. in the k direction in the
notation for variables used here). Also this problem can-
not be solved (in all but a few very restrictive cases) by
1-D systems based control action. This fact has led to
the development of a rigorous stability theory as the first
essential step in the development of a mature systems
theory for onward translation (where possible/appropri-
ate) into computationally and implementable control
laws.

The stability theory for repetitive processes with
linear dynamics and a constant pass length is based on
an abstract model of the underlying dynamics in a
Banach space setting which includes all such processes
as special cases—for a full treatment see Rogers and
Owens (1992). This theory consists of two distinct
concepts termed asymptotic stability and stability
along the pass respectively where the former is a necess-
ary condition for the latter. In effect, asymptotic
stability demands that bounded input sequences
produce bounded sequences of pass profiles (where
here bounded is defined in terms of the norm on the
underlying function space) over the (finite and constant)
pass length.

If this asymptotic stability property holds then the
output sequence of pass profiles converges (in the k
direction) to the so-called limit profile but the fact that
the pass length is finite does not ensure that this limit

profile has acceptable along the pass dynamics. For ex-
ample, in the case of processes described by (46) asymp-
totic stability (with the assumed boundary conditions)
holds if, and only if, all eigenvalues of the matrix bDD0

have modulus strictly less than unity and the resulting
limit profile is given by a 1-D linear systems state space
model where in the case when bDD ¼ 0 (which incurs no
loss of generality) the state matrix in this model isbAAþ bBB0ðIm � bDD0Þ�1 bCC. Hence it is possible for asymptotic
stability to hold but this last matrix has at least one
eigenvalue with modulus greater than unity, e.g. the
case when bAA ¼ �0:5, bBB0 ¼ 0:5þ 	, bCC ¼ 1, bDD0 ¼ 0,
where 	 is a real scalar.

In a case such as this last example, the resulting limit
profile is unstable along the pass. The stronger property
of stability along the pass prevents such a case from
occurring by demanding the bounded input bounded
output stability property uniformly, i.e. independent of
the pass length. For applications, therefore, a critical
task is to specify the structure for a control law to ensure
asymptotic stability and also to obtain computationally
tractable algorithms for designing the control law par-
ameters. This is still an essentially open problem and the
remainder of this section addresses this problem for dis-
crete linear repetitive processes described by (46) via
positive realness analysis based on the 1-D equivalent
model of the dynamics of such processes which, in turn,
can be constructed from a Roesser model interpretation
of the repetitive dynamics in this case.

In Roesser model terms, the pass profile vector here
ykðpÞ plays the role of the vertical state vector and the
pass state vector xkðpÞ plays the role of the horizontal
state vector. Also the pass profile vector is simul-
taneously the output vector in Roesser model terms
and hence we can write for k � 1

ykðpÞ ¼ bCC xkðpÞ

ykðpÞ

" #
þ bDDukðpÞ

¼ ½0 I �
xkðpÞ

ykðpÞ

" #
þ 0ukðpÞ

9>>>>>>=>>>>>>;
ð47Þ

The corresponding 2D z transfer function matrix is

Gðz1; z2Þ ¼ ½0 I �
z1I � bAA � bBB0
� bCC z2I � bDD0

24 35�1 bBB
bDD

24 35 ð48Þ

Hence, it follows immediately that no discrete linear
repetitive process of the form considered here can ever
by asymptotically stable and ESPR since bDD ¼ 0 and
hence Dþ bDDT > 0, which is necessary for ESPR, see
(7), can never hold.

To apply PR theory to discrete linear repetitive pro-
cesses, we propose a route via the 1-D equivalent state
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space model description of the underlying dynamics.
This 1-D equivalent model has been developed in, for
example, Galkowski et al. (1998) and here we need only
give the final construction.

The starting point is to make the substitutions
l ¼ kþ 1 and yk�1ðpÞ ¼ vkðpÞ, 0 � p � �� 1,
l ¼ 1; 2; . . .. Now define the so-called global pass profile,
state and input vectors respectively for (46) as

YðlÞ : ¼ ½vTl ð0Þ; vTl ð1Þ; . . . ; vTl ð�� 1Þ�T

XðlÞ : ¼ ½xTl ð1Þ; xTl ð2Þ; . . . ; xTl ð�Þ�T

UðlÞ : ¼ ½uTl ð0Þ; uTl ð1Þ; . . . ; uTl ð�� 1Þ�T

9>>>>=>>>>; ð49Þ

Then, assuming without loss of generality that the state
initial vector on each pass is zero, i.e. dkþ1 ¼ 0, k � 0,
the 1-D equivalent state space model of the dynamics of
(46) has the form

Yðl þ 1Þ ¼ FYðlÞ þ�UðlÞ

XðlÞ ¼ GYðlÞ þ SUðlÞ
ð50Þ

where

F ¼

bDD0 0 � � � 0bCC bBB0 bDD0 � � � 0bCC bAA bBB0 bCC bBB0 � � � 0

..

. ..
. . .

. ..
.

bCC bAA��2 bBB0 bCC bAA��3 bBB0 � � � bDD0

266666666664

377777777775
;

� ¼

D̂D 0 0 � � � 0bCC bBB D 0 � � � 0bCC bAA bBB bCC bBB bDD � � � 0

..

. ..
. ..

. . .
. ..

.

bCC bAA��2 bBB bCC bAA��3 bBB bCC bAA��4 bBB � � � bDD

26666666664

37777777775

G ¼

bBB0 0 0 � � � 0bAA bBB0 bBB0 0 � � � 0bAA2 bBB0 bAA bBB0 bBB0 � � � 0

..

. ..
. ..

. . .
. ..

.

bAA��1 bBB0 bAA��2 bBB0 bAA��3 bBB0 � � � bBB0

266666666664

377777777775
;

S ¼

bBB 0 0 � � � 0bAA bBB bBB 0 � � � 0bAA2 bBB bAA bBB bBB � � � 0

..

. ..
. ..

. . .
. ..

.

A��1B bAA��2 bBB A��3 bBB � � � bBB

26666666664

37777777775

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð51Þ

Given this 1-D equivalent model, we can now establish
one of the main results in this paper which requires the
additional assumption that the dimension of xkðpÞ is
equal to that of ukðpÞ. This assumption arises from the
fact that in the 1-D equivalent model the pass profile,
which in the 2-D linear systems interpretation of the
dynamics of these processes, is the subject of dynamic
updating and the pass profile vector (horizontally
transmitted information in the 2-D setting) is embedded
in a static (or purely algebraic) equation. The proof of
this result follows immediately from the known result
for 1-D discrete linear systems (Sun et al. 1994) and
the structure of the 1-D equivalent model. Hence it is
omitted here.

Theorem 3: Discrete repetitive processes of the form
ð46Þ with 1-D equivalent state space model defined by
ð50Þ and ð51Þ are asymptotically stable and ESPR if,
and only, if there exists an m�
m� real matrix P > 0
such that the following LMI is satisfied

FTPF� P GT � FTP�

G��TPF �ðSþ ST ��TP�Þ

24 35 < 0 ð52Þ

The only major difficulty with Theorem 3 is that the
(potentially) large dimension of the matrix P may cause
numerical difficulties. In what follows, we develop a fea-
sible way of avoiding such problems by assuming that P
has a block diagonal form, i.e.

P ¼ diagðP1;P2; � � � ;P�Þ ð53Þ

Under the assumption of (53), the block sub-matrices of
(52) can be expressed as

FTPF� P ¼ ½O1
ij ��
� ð54Þ

where

O1
ii ¼ bDDT

0Pi bDD0 þ
X��1�i
k¼0

bBBT0 ð bAATÞk bCCTPkþiþ1 bCC bAAk bBB0 � Pi
O1
iþq;i ¼ bDDT

0Piþq bCC bAAq�1 bBB0
þ

X��1�i
k¼q

bBBT0 ð bAATÞk�q bCCTPkþiþ1 bCC bAAk bBB0
O1
i;iþq ¼ ðO1

iþq;iÞT

9>>>>>>>>>>>>>>=>>>>>>>>>>>>>>;
ð55Þ

i ¼ 1; 2; . . . ; �; q ¼ 1; 2; . . . ; �� i

GT � FTP� ¼ ½O2
ij��
� ð56Þ

with
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O2
ii ¼ bBBT0 � bDDT

0Pi bDD�
X��1�i
k¼0

bBBT0 ðATÞk bCCTPkþiþ1 bCC bAAk bBB
O2
iþq;i ¼ � bDDT

0Piþq bCC bAAq�1 bBB
�

X��1�i
k¼q

bBBT0 ð bAATÞk�q bCCTPkþiþ1 bCC bAAk bBB
O2
i;iþq ¼ bBBT0 bAAqT � bBBT0 ð bAATÞq�1 bCCTPiþq bDD

�
X��1�i
k¼q

bBBT0 bAAkTCTPkþiþ1 bCC bAAk�q bBB

9>>>>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>>>>;
ð57Þ

and

�ðSþ ST ��TP�Þ ¼ ½O3
ij ��
� ð58Þ

with

O3
ii ¼ � bBB� bBBT þ bDDTPi bDD

þ
X��1�i
k¼0

bBBTð bAATÞk bCCTPkþi¼1 bCC bAAk bBB
O3
iþq;i ¼ �Aq bBBþ bDDTPiþq bCC bAAq�1 bBB

þ
X��1�i
k¼q

bBBT bAAk�q;T bCCTPkþiþ1 bCC bAAk bBB
O3
i;iþq ¼ ðO3

iþq;iÞT

9>>>>>>>>>>>>>>>>=>>>>>>>>>>>>>>>>;

ð59Þ

and i ¼ 1; 2; . . . ; �; q ¼ 1; 2; . . . ; �� i.
Hence, all blocks in (52) are of the form

K0 þ
X�
i¼1
KiPiLi ð60Þ

where the matrices Ki and Li have constant entries,
which are defined by the matrices in the original process
state space model, and the positive definite Pi,
1 � i � �, are the problem solution matrices to be
searched for in the LMI computation. Note also that
the underlying assumption here, i.e. that P has a block
diagonal structure, will make the stability condition
more conservative. Also this would be increased further
if it were to be assumed that Pj ¼ P, j ¼ 1; 2; . . . ; �.

5. Positive real control for linear repetitive processes

Consider the following repetitive process

xkþ1ðpþ 1Þ ¼ bAAxkþ1ðpÞ þ bBBukþ1ðpÞ
þ bBB0ykðpÞ þ bEEwkþ1ðpÞ

ykþ1ðpÞ ¼ bCCxkþ1ðpÞ þ bDDukþ1ðpÞ
þ bDD0ykðpÞ þ bRRwkþ1ðpÞ

9>>>>>>=>>>>>>;
ð61Þ

where wkþ1ðpÞ is an exogenous input vector. Then the
1-D equivalent state space model of the dynamics of (61)
(with the pass state initial vector sequence set equal to
zero) has the form

Yðl þ 1Þ ¼ FYðlÞ þ�UðlÞ þPWðlÞ

XðlÞ ¼ GYðlÞ þ SUðlÞ þ UWðlÞ

)
ð62Þ

where F, �, G and S are given in (51)

WðlÞ :¼

wlð0Þ
wlð1Þ

..

.

wlð�� 1Þ

2666664

3777775 ð63Þ

and

P ¼

bRR 0 0 � � � 0bCC bEE bRR 0 � � � 0bCC bAA bEE bCC bEE bRR � � � 0

..

. ..
. ..

. . .
. ..

.

bCC bAA��2 bEE bCC bAA��3 bEE bCC bAA��4 bEE � � � bRR

266666666664

377777777775

U ¼

bEE 0 0 � � � 0bAA bEE bEE 0 � � � 0bAA2 bEE bAA bEE bEE � � � 0

..

. ..
. ..

. . .
. ..

.

bAA��1 bEE bAA��2 bEE bAA��3 bEE � � � bEE

266666666664

377777777775
Then we have the following synthesis result whose

proof is immediate from Theorem 3 and a simple appli-
cation of the Schur complement’s formula. Hence it is
omitted here.

Theorem 4: Consider the discrete repetitive processes
described by the 1-D equivalent state space model of
ð62Þ. Then if there exists an m�
m� real matrix
P > 0 and a matrix Z such that the following LMI is
satisfied

�P ðGPþ SZÞT ðFPþ�ZÞT

GPþ SZ �ðUþ U TÞ �PT

FPþ�Z �P �P

2664
3775 < 0 ð64Þ

the state feedback control law

UðlÞ ¼ KYðlÞ ð65Þ

where K ¼ ZP�1 will be such that the resulting closed-
loop system formed by ð62Þ and ð65Þ is asymptotically
stable and ESPR.
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Now we give two examples to illustrate the effective-
ness of the proposed method—one for each of the two
model classes considered.

Example 1: Consider the 2-D discrete linear system
ðSRÞ defined by

A ¼

0:2 0:3 0:2 �0:1

0:2 0:1 0 0:5

0:8 0:2 �0:3 �0:1

0:2 0 0:3 0:1

26666664

37777775; B ¼

0:2 0:2

0:5 0

0:5 0

0:2 0:3

26666664

37777775

B1 ¼

0 1

1 0

1 1

0 0

26666664

37777775; C1 ¼
0:2 0 0:1 0:2

0 �0:3 0:1 0

24 35

D11 ¼
2 0:5

0:1 2:5

" #
; D12 ¼

0 1

1 0

" #

C2 ¼ 1 0 1 0
h i

; D21 ¼ 1 1½ �

Then, it is easy to see that

G?
X ¼

CT
2

DT
21

" #?

¼

�1 0 1 0 0 0

�1 0 0 0 1 0

�1 0 0 0 0 1

0 1 0 0 0 0

26666664

37777775

G?
Y ¼

B1

D12

" #?

¼

�1 �1 1 0 0 0

0 0 0 1 0 0

�1 0 0 0 1 0

0 �1 0 0 0 1

26666664

37777775
Noting this, we can verify that the pair ðX ; YÞ with
X ¼ diag ðXh;XvÞ > 0 and Y ¼ diag ðYh;YvÞ > 0 satis-
fies (26)–(28) with

Xh ¼
2:5290 0:3576

0:3576 3:0691

" #
; Xv ¼

2:5374 0:0126

0:0126 3:7856

" #
ð66Þ

Yh ¼
0:4470 �0:0521

�0:0521 0:3319

" #
; Yv ¼

0:4908 �0:0019

�0:0019 0:3044

" #
ð67Þ

Therefore, from Theorem 2, there exists an output feed-
back controller ð�SSÞ such that the resulting closed-loop

system Sc is asymptotically stable and ESPR. To con-
struct such a controller, we can choose

Xh12 ¼
1 0

0 0

" #
; Xh22 ¼

4 0

0 4

" #
; Xv12 ¼

1 0

0 1

" #

Xv22 ¼
2 0

0 2

" #
; ð68Þ

W ¼

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

26666666666664

37777777777775

L ¼

0:8 0 0 0 0

0 0:8 0 0 0

0 0 0:8 0 0

0 0 0 0:8 0

0 0 0 0 0:8

0 0 0 0 0

26666666666664

37777777777775
ð69Þ

It can be shown that (68) and (69) satisfy (39). Thus, by
(29) we can obtain a desired output controller

�DD �CC

�BB �AA

24 35

¼

0:0151 �0:1054 0:0267 �0:0729 �0:0032

�0:1459 0:6637 �0:0688 �0:0555 �0:1214

�0:0130 �0:0829 0:7245 0:0117 0:0150

0:0273 0:0091 �0:0001 0:2289 �0:0021

�0:0465 �0:0655 0:0147 �0:0603 0:5843

�0:0804 �0:0023 �0:0006 0:0106 0:0143

26666666666664

37777777777775
That is

�xxhði þ 1; jÞ
�xxvði; j þ 1Þ

" #

¼

�0:0829 0:7245 0:0117 0:0150

0:0091 �0:0001 0:2289 �0:0021

�0:0655 0:0147 �0:0603 0:5843

�0:0023 �0:0006 0:0106 0:0143

26666664

37777775
�xxhði; jÞ
�xxvði; jÞ

" #
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þ

� 0:0130

0:0273

� 0:0465

� 0:0804

26666664

37777775yði; jÞ

uði; jÞ ¼
�0:1054 0:0267 �0:0729 �0:0032

0:6637 �0:0688 �0:0555 �0:1214

24 35

 �xxhði; jÞ

�xxvði; jÞ

" #
þ

0:0151

�0:1459

" #
yði; jÞ

Example 2: Consider the discrete linear repetitive
process defined by (61) withbAA ¼ 0:6; bBB ¼ 0:2; bBB0 ¼ 0:1; bCC ¼ 0:1; bDD ¼ 0:2;

bDD0 ¼ 0:99; bRR ¼ 0:5; bEE ¼ 0:3

This process is not ESPR stable since (52) does not hold.
The LMI of (64) is, however, feasible and one solution is
the positive definite 10
 10 matrix P ¼ 1:7530I10, where
I10 is the 10
 10 identity matrix and

6. Conclusions

In this paper we have studied the problem of positive

real control for 2-D discrete linear systems described by

the Roesser model. A version of positive realness for

such systems has been established and an LMI approach

has been developed to construct a dynamic output feed-

back controller, which guarantees not only the asymp-

totic stability of the closed-loop system but also the

extended strictly positive realness property of a certain

closed-loop transfer function matrix. A similar problem

has been considered for discrete linear repetitive pro-

cesses based on the application of their 1-D equivalent

state-space model representation. Analogous results to

those for the Roesser model have also been developed

for this case. Finally, numerical examples have been

included which demonstrate the application of the

design procedure for each case.
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Z ¼

�8:6775 0 0 0 0 0 0 0 0 0

0:7801 �8:6775 0 0 0 0 0 0 0 0

0:3900 0:7801 �8:6775 0 0 0 0 0 0 0

0:1950 0:3900 0:7801 �8:6775 0 0 0 0 0 0

0:0975 0:1950 0:3900 0:7801 �8:6775 0 0 0 0 0

0:0488 0:0975 0:1950 0:3900 0:7801 �8:6775 0 0 0 0

0:0244 0:0488 0:0975 0:1950 0:3900 0:7801 �8:6775 0 0 0

0:0122 0:0244 0:0488 0:0975 0:1950 0:3900 0:7801 �8:6775 �0 0

0:0061 0:0122 0:0244 0:0488 0:0975 0:1950 0:3900 0:7801 �8:6775 0

0:0030 0:0061 0:0122 0:0244 0:0488 0:0975 0:1950 0:3900 0:7801 �8:6775

2666666666666666666666664

3777777777777777777777775
Hence state feedback control law (65) with

K ¼

�4:9500 0 0 0 0 0 0 0 0 0

0:4450 �4:9500 0 0 0 0 0 0 0 0

0:2225 0:4450 �4:9500 0 0 0 0 0 0 0

0:1112 0:2225 0:4450 �4:9500 0 0 0 0 0 0

0:0556 0:1113 0:2225 0:4450 �4:9500 0 0 0 0 0

0:0278 0:0556 0:1113 0:2225 0:4450 �4:9500 0 0 0 0

0:0139 0:0278 0:0556 0:1112 0:2225 0:4450 �4:9500 0 0 0

0:0070 0:0139 0:0278 0:0556 0:1112 0:2225 0:4450 �4:9500 0 0

0:0035 0:0070 0:0139 0:0278 0:0556 0:1112 0:2225 0:4450 �4:9500 0

0:0017 0:0035 0:0070 0:0139 0:0278 0:0556 0:1112 0:2225 0:4450 �4:9500

2666666666666666666666664

3777777777777777777777775
will ensure that the resulting closed loop system is asymptotically stable and ESPR.
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