Coordination of Mobile Intermediaries Acting on
behalf of Mobile Users

Norliza Zaini* and Luc Moreau*
{ nmz00r, L.Moreau }@ecs.soton.ac.uk

Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ UK

Abstract. We introduce the notion of a mobile intermediary, called
Shadow, which is a mobile agent located in the network infrastructure,
interacting with complex applications on behalf of mobile users. Due to
intermittent connectivity, multiple Shadows may simultaneously coexist.
In this paper, we introduce a protocol capable of coordinating Shadows
and we present an abstraction layer, hiding away communication and
coordination details, which offers a substrate to build distributed appli-
cations across mobile devices and fixed infrastructure.

1 Introduction

The context of this paper is the “ubiquitous computing environment” [7] where
embedded devices and artifacts abound in buildings and homes, and have the
ability to sense and interact with devices carried by people in their vicinity.
Mobile devices’ networking capabilities offer opportunities for a new range of
services, such as customised access to news updates or exchange of information
with other mobile users discovered dynamically. However, communications be-
tween mobile devices and the infrastructure have some limitations, in the form
of intermittent connectivity and low bandwidth. Furthermore, processing power
and memory capacity of compact mobile devices remain relatively small. As a re-
sult, such an environment would prevent the large scale deployment of advanced
services to mobile users, as they tend to be communication and computation
intensive.

We believe that applications can be offloaded to the fixed infrastructure, and
act semi-autonomously on behalf of the user. Such an approach does not rely on
permanent connectivity with mobile devices, which can save device’s resources
and take advantage of the available resources on the wired network [3]. Here,
we introduce an intermediary process in the fixed infrastructure, whose respon-
sibility is to spawn applications in reaction to user’s requests and to store and
forward messages between devices and applications, according to the available
connectivity. Our vision is that of a mobile intermediary, which is a mobile agent
[2], acting as a Shadow of the mobile user, migrating to the user’s vicinity when

* This research is funded in part by QinetiQ and EPSRC Magnitude project (reference
GR/N35816).



prevailing conditions permit it. This benefits from a number of advantages: (%)
Shadow and mobile device can communicate using specialised protocols, pos-
sibly dynamically chosen according to the current location or to a negotiation
between parties; (%) newly created applications would run in the user’s vicinity,
making use of the local infrastructure; (i) local services on a local network
could be accessed; (iv) Shadows and applications can communicate reliably
using transparent routing of messages to mobile agents [4, 5].

When a user moves to a new location, their mobile device will request the
Shadow to migrate to a new location. However, this may fail when the local net-
work is not connected with the user’s previous location. To support services in
the current vicinity, we opted for a solution where new Shadows can be created
dynamically. As result, a user may be associated with multiple Shadows that
need to be coordinated. The purpose of this paper is to describe the interactions
between mobile devices, Shadows, applications and fixed infrastructure. Our spe-
cific contributions are: (i) An architecture supporting multiple Shadows; (i) A
coordination protocol between mobile devices and Shadows; (iii) An abstraction
layer, encapsulating migration and coordination offering a substrate to program
applications directly between mobile devices and fixed infrastructure.

In the next section, we overview the architecture. Then, we present the algo-
rithms to be implemented by all its components. In Section 4, we discuss related
work, and describe work in progress on the implementation.

2 Architecture Overview

Our proposed architecture is composed of three major components, namely a
mobile device, a Shadow and a Shadow Manager, which we describe with the
assumptions we make concerning their communication capabilities. A mobile de-
vice has the ability to connect to a network in its vicinity and we assume that
it is allocated an address, which can be used by networked entities to commu-
nicate with it. Shadow Managers and Shadows are agents that need to run on
agent platform which is a runtime environment that is able to perform the tasks
of supporting the agents’ creation, execution, localization, migration, commu-
nication and security control. A Shadow Manager acts as a local daemon in a
local network, first contact point of a mobile device with the local network. It is
responsible for starting or migrating Shadows on behalf of devices.

A Shadow is a mobile agent, acting as an intermediary between a mobile
device and infrastructure applications. Being able to migrate allows it to move
“closer” to the mobile device, and to communicate with it using the address
allocated by the local network. Shadow functions include: (i) to create applica-
tions on behalf of the mobile device; (%) to send messages to the applications on
behalf of the mobile device; (#4) to store and forward messages for the mobile
device; (iv) to migrate to a location closer to the mobile device, whenever the
mobile device changes its location, network connectivity permitting.

Our architecture may be summarised as follows. When connected to a net-
work, a mobile device makes contact with a Shadow Manager, and requests its



Shadows to migrate to the manager’s location. In the simplest case, there ex-
ists a single Shadow. If successful, the Shadow can start interacting locally with
the mobile device after its migration. The Shadow spawns new applications as
requested by the device and forwards messages to and from them; in essence,
the Shadow acts as a router of messages to the applications. Communications
between Shadow and applications are robust to the migration of Shadows, based
on a transparent routing algorithm [4,5]. If migration failed for all Shadows, a
new Shadow is spawned locally, and the device keeps a log of all created Shad-
ows. When several Shadows are requested to migrate to a specific destination,
the first Shadow to reach the location is assigned to be the “main Shadow”; the
others coordinate with it to offload information about applications they were
routing messages to.

In the following section, we describe the algorithm of each component. Our
goal is to define an abstraction layer, which hides the details of communication
and coordination between mobile devices, Shadows and applications. On top of
this abstraction layer, we will be able to construct applications involving mobile
devices: in the mobile device, a programming APIT will be provided to commu-
nicate transparently with fixed infrastructure applications, while applications
will be given the possibility to interact transparently with mobile devices; the
abstraction layer takes care of all necessary routing and coordination.

3 The Algorithm

In this section, we describe the algorithm coordinating the interactions between
mobile devices, Shadows, Shadow Managers and applications.

Mobile Device When connected to a network, a mobile device sends a “Mi-
grateRequest” message to a discovered Shadow Manager requesting its Shadows
to migrate “closer” to its current location. Then, if it receives a “ShadowInforma-
tion” message, it sets the sender as the main Shadow by sending an “MSAssign-
ment” message. To each subsequent “ShadowInformation” message received, the
sender is notified about the current main Shadow by using an “MSInformation”
message. The application layer on a mobile device may request an application
to be created or a message to be sent to a particular application on the fixed
infrastructure. This request would be forwarded to the main Shadow.

A mobile device may receive “TerminationMessage” from the main Shadow
which informs about a Shadow that has recently terminated. On every attempt to
send message to a Shadow, a failure handler is provided which adds any message
failed to be sent to a queue of outgoing messages. In parallel to other activities,
messages from the queue of outgoing messages are sent to the respective receivers.
On failure the messages are added back to the queue.

Shadow Manager When a Shadow Manager is started, it advertises its pres-
ence through e.g. Jini or LDAP, and then waits for messages. A Shadow Man-
ager may receive a request from a mobile device to migrate Shadows; the Shadow



Manager then sends a “MigrateRequest” message to all Shadows requesting them
to migrate to the platform on which it is operating. If no Shadow was able to
migrate, it starts a new Shadow to which an “MDInformation” message which
contains information on the requesting mobile device is sent.

Shadow In a Shadow, there is a hook for intelligent decision making about
migration, in which the output of this decision making process is obtained by
the “callback” canMigrate(), which returns true if the application layer decides
to migrate. A Shadow may create application on behalf of mobile device. Each
application has an identifier and an address. The application identifier to ap-
plication address mappings are placed in a list (LAM). Messages failed to be
sent to the mobile device are added to the list of outgoing messages (LOM),
while messages failed to be sent to applications are added to a list of incoming
messages (LIM). In parallel to other activities, messages from these two lists are
attempted to be sent to the respective receivers.

On creation, a Shadow waits for an “MDInformation” message, which con-
tains information about a mobile device. Then the Shadow sends a “Shadow-
Information” message to the mobile device. If it receives an “MSAssignment”
message, it is assigned to be the main Shadow and responsible for sending “Loca-
tionInformation” messages to all other active Shadows of the device. The message
indicates current location of the mobile device. If a Shadow receives an “MSIn-
formation” or a “LocationInformation”, another Shadow is acting as the main
Shadow and it has to handover its function to the main Shadow by transfer-
ring its LAM, LOM and LIM. Then the Shadow informs all applications it is
interacting with, that the main Shadow is the new intermediary to communicate
with the mobile device. When this is done, the Shadow is ready for termination;
before terminating itself, it sends a “TerminationMessage” to the main Shadow.

A Shadow may receive a “MigrateRequest” from a Shadow Manager. If can-
Migrate() returns true, it migrates to the platform on which the Shadow Manager
is running. On arrival at the new platform, it sends a “ShadowInformation” mes-
sage to the mobile device. Otherwise, the Shadow stays on the same platform
and may receive a “LocationInformation” from the main Shadow. As usual, on
receiving this message, a Shadow has to hand over its function to the main
Shadow before terminating itself.

A main Shadow is expected to receive LAM, LIM and LOM from other
Shadows. When received, these lists are extended to the Shadow’s local lists. The
main Shadow may also receive a “TerminationMessage” which requires it to relay
this message to the mobile device indicating the termination of a Shadow. As for
messages coming from the mobile device, a main Shadow may receive requests to
create application or send message to an application on the fixed infrastructure.
An application is started according to the type and identifier included in the
“CreateApplication” request, while its identifier to address mapping is added to
LAM. A “SendMessage” request includes identifier of an application to which
a message should be forwarded. Before sending the message, the application
address is extracted from LAM. If the Shadow failed to create application or
send a message, a failure notification is returned to the mobile device.



4 Discussion and Related Work

This paper has focused on the coordination of multiple Shadows, and on the
communication between devices and Shadows. We have not given details on
how applications can communicate with Shadows: this issue has been studied
extensively in previous papers, for instance by using a message routing algorithm
for mobile agents [4]. In our approach, we wish to promote the flexibility of the
system, by allowing multiple Shadows to be created, according to the prevailing
network conditions, and by allowing Shadows to make intelligent decisions as
whether to migrate. The handover of function of a Shadow to the main Shadow
shortcuts chains of forwarding pointers when the Shadow does not migrate.

There are other projects applying mobile agent technology to support appli-
cations for mobile users. In TACOMA on PDAs [1] and MobiAgent [6], there
exists a stationary proxy communicating with mobile devices and mobile agents.
This offers less flexibility than ours as it requires a connectivity to exist to the
stationary proxy regardless of the distance.

As far as implementation of this system is concerned, we are currently pro-
totyping the coordination algorithm. The transparent routing of messages to
mobile agents is already available in the Southampton Framework for Agent
Research (SoFAR). In this coordination algorithm, we have not yet considered
robustness to failures: in complement to [5], we would like to introduce some re-
dundancy to become tolerant to failures of intermediary nodes. We are planning
to develop two applications on this abstraction layer: an application to share doc-
uments with mobile users in virtual meeting rooms, and a virtual briefing room,
where documents from multiple (mobile) sources are collated and presented to
the user.

References

1. Kjetil Jacobsen and Dag Johansen. Mobile software on mobile hardware — expe-
riences with tacoma on pdas. Technical Report 97-32, Department of Computer
Science,University of Troms, Norway, 1997.

2. Danny B. Lange and Mitsuru Ishima. Programming and Deploying Java Mobile
Agents with Aglets. Addison-Wesley, 1998.

3. Patrik Mihailescu and Walter Binder. A Mobile Agent Framework for M-Commerce.
Computer Science 2001, GI/OCG annual Convention:2:959-967. .

4. Luc Moreau. Distributed Directory Service and Message Router for Mobile Agents.
Science of Computer Programming, 39(2-3):249-272, 2001.

5. Luc Moreau. A Fault-Tolerant Directory Service for Mobile Agents based on For-
warding Pointers. In The 17th ACM Symposium on Applied Computing (SAC’2002)
— Track on Agents, Interactions, Mobility and Systems, Madrid, March 2002.

6. Mahmoud Q.H. MobiAgent — An Agent-based Approach to Wireless Information
Systems. In Proceedings of the 8rd International Bi-Conference Workshop on Agent-
Oriented Information Systems (AOIS-2001), Montreal, 2001.

7. Mark Weiser. Some Computer Science Problems in Ubiquitous Computing. Com-
munications of the ACM, 36(7):74-84, July 1993.



