Extending execution tracing for mobile code security

*
Hock Kim Tan
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

hkvt99r@ecs.soton.ac.uk

Keywords
Mobile agent security protocols, mobile agent security frame-
work, cryptographic tracing

ABSTRACT

The problem of protecting mobile code from both denial-of-
service and state tampering attacks by malicious hosts are
not well addressed in existing techniques for mobile code se-
curity. We propose a possible approach based on extending
an existing mobile code security technique: cryptographic
tracing. This is achieved through the introduction of a
trusted third party, the verification server, which undertakes
the verification of execution traces on behalf of the agent
owner. The interaction between the verification servers and
host platforms in the new protocol is outlined. Security
properties of the protocol are verified by modelling the sys-
tem in CSP and checking the resulting state transitions us-
ing the model checker FDR. Limitations of this approach to
verification are then briefly discussed.

1. INTRODUCTION

Mobile code security can be broadly classified into two areas:
host security and code security. Host security is concerned
with protecting the host platform (i.e. the computational
environment that supports the execution of the agent) from
malicious agents. Such agents may attempt to gain unau-
thorized access to local resources on the host or else in-
flict damage on other agents or programs executing on the
host. Code security deals with the exact reverse; it attempts
to safeguard honest agents from potentially malicious host
platforms. Attacks from these malicious hosts could take the
form of extracting confidential information (such as crypto-
graphic keys or credit card numbers) embedded within the
agent. Many viable mechanisms have been developed to
tackle the host security aspect, but code security still re-
mains problematic. An overview of security issues in both
these areas, along with a comparative discussion of the cur-
rent techniques available to address them can be found in
[10], [4].

In general, the most common types of attacks on mobile
agents described in literature can be classified as involving
either:

*This research is funded in part by QinetiQ and EPSRC
Magnitude project (reference GR/N35816).

Luc Moreau
Department of Electronics and Computer
Science
University of Southampton
Southampton SO17 1BJ, UK

L.Moreau@ecs.soton.ac.uk

e manipulation / extraction / truncation of information
accumulated in the agent from its previous hops, par-
ticularly in a free-roaming scenario (i.e. where the
itinerary of the agent is dynamically determined dur-
ing migration). Techniques such as forward integrity
[11] and chained signatures [5] can provide some pro-
tection again this type of attack by making it possible
to detect the point in the route at which the attack
occurred.

e alteration of the state or execution flow of the agent.
Techniques such as execution tracing [24] or obfus-
cated code [9] are designed to either detect an attack
and identify the perpetrator or render such attacks im-
practical by increasing the difficulty of interpreting the
semantics of code execution correctly.

More recently the issue of resource control has become a
topic of interest in host security research [25], [18], partic-
ularly in the Java environment which is extremely popular
for developing mobile agent systems. This raises the inter-
esting question from the viewpoint of code security: how do
we ensure that an agent is provided sufficient resources by
its host in order for it to complete execution successfully ?
In its most basic form, a denial-of-service attack would in-
volve a malicious host platform simply terminating all mo-
bile agents that migrate to it. A more subtle form of attack
could involve withholding resources (memory, CPU cycles)
for a protracted period of time so that an agent executes
for a longer period than it normally would. This may be
problematic in certain situations; for example, if the agent
owner is later charged for the amount of resources allegedly
consumed by the agent on that host.

A survey of the code security literature reveals very few tech-
niques that address this problem directly. The techniques
we have mentioned so far appear to be vulnerable to this
type of attack. Approaches that could address this prob-
lem include the use of replicated agents [17]or co-operating
agents [19]. In [17], replicated agents are executed on differ-
ent hosts and simple voting is used to determine the outcome
of computational results. This approach is extended on in
[19], where other strategies such as secret sharing, remote
authorization or remote storage of commitments can be used
as part of protocols involving two co-operating (but not nec-
essarily identical) agents that communicate with each other
while migrating in different host platform domains. Some

of the criticisms regarding these approaches are that they
require replication of services on all host platforms and may
fail if the number of malicious hosts outnumber the honest
ones (for the case of replicated agents). Co-operating agents
appear more feasible but require that a specific co-operating
agent and associated protocol be created for each application
scenario, thus making it difficult to use for generic mobile
agents.

In this paper, we provide three contributions:

e Describe an approach to detecting some forms of denial-
of-service attacks that involves extending the execu-
tion tracing protocol, an existing code security tech-
nique.

e Formally model the extended protocol using CSP and
FDR and establish specific security properties.

e QOutline some general problems related to the use of
finite state models in modelling mobile code security
protocols.

In the next section, we discuss the original protocol and how
it is extended. The detailed protocol of message exchanges
involved in this extension version is outlined in section 3.
Formal modelling and verification of the protocol using CSP
and the model checker FDR is presented in section 4. Sec-
tion 5 discusses the limitations of this modelling approach
as well as some general problems that may arise when at-
tempting to formally model mobile agent security protocols.
Finally, section 6 concludes with a short summary and di-
rection for future work.

2. EXTENDING EXECUTION TRACING

In execution tracing (Fig. 1), a host platform executing an
agent creates a trace of an agent’s execution that contains
precisely the lines of code that were executed by the mo-
bile agent as well as all the external values that were read
by the mobile agent. The trace is then stored by the host.
This tracing activity is repeated for all hosts in the path of
the agent. Upon its return, the agent owner may (if she/he
suspects that the mobile agent was not correctly executed)
request the complete trace of the agent’s execution com-
mencing from the first host platform (a). The agent owner
will then simulate the execution of the mobile agent based
on the information contained in the trace. This simulation
will result in an intermediate state and identify the next
host platform in the mobile agent’s itinerary. The agent
owner requests from this platform its trace (b) and proceeds
in this manner for all hosts in the agent’s itinerary (c). If
at some point a discrepancy is found during the verification
of the trace provided by a particular host platform, then a
malicious host has been detected.

There have been some criticisms of this approach. The main
drawbacks are the size and number of logs related to traces
that need to be retained by the hosts, and the fact that
the detection process is triggered only on suspicion that an
agent has been manipulated. Other problems include the
difficulty of tracing the execution results of multi-threaded
agents.

Host Host Host
/ - -
® 07 _ o
OwnerX _—_-—~)
[g'y
- 0

mobile
agent
Figure 1: Execution tracing - original protocol

2.1 Introducing verification servers

In extending this protocol, we seek only to change the man-
ner in which agents and traces are propagated in the system.
The possible implementation of trace creation and verifica-
tion using the approach outlined in the original protocol
merits a complete analysis of its own and will not be dis-
cussed in this paper. Our approach is based on an earlier
proposal [23] which involves the introduction of a trusted
third party, the verification server that undertakes the pro-
cess of verifying traces on behalf of the agent owner (Fig.
2). When an agent owner launches a mobile agent to a host
platform (b), it creates a copy of the agent’s code and state
and forwards it onto a verification server (a) designated by
the host platform. While the host executes the agent, it cre-
ates a trace of this execution simultaneously. Upon request
of migration, the host then forwards this trace and the final
agent state (c¢) to the designated verification server, which
ensures that the execution sequence is valid. Once a verifi-
cation server receives an agent copy, it will be aware of the
identity of the platform executing the actual agent. It can
thus implement a mechanism (for example, using time-outs)
to ensure that a trace of the execution arrives from the re-
quired host within a reasonable time. This provides a way
to safeguard against some forms of denial-of-service attacks.

v —e)—}
,p
/ " + *
| i
Owner © [=2 | 3
i ! ‘
f)
6/\ A B C
Vs Vg, V, - Verification O mobile agent
servers
A, B, C - Host platforms r’ N mobile agent
oy copy

Figure 2: Execution tracing - extended protocol

When the validity of a trace is ascertained by a verifica-
tion server, the agent is then forwarded from the verifica-
tion server to its next destination host (d) and a copy (e)
is sent to the corresponding verification server. Verification

and migration then proceed in this fashion until the agent
completes its itinerary and returns to its owner (f). Host
platforms do not need to retain traces once they are submit-
ted to the verification server; verification servers only retain
submitted traces which do not verify properly. These faulty
traces can later be submitted as evidence to the agent owner
or a suitable arbitrator for appropriate sanctions to be un-
dertaken if so required. Only verification servers are allowed
to migrate agents to host platforms; correspondingly, honest
platforms will only accept agents from authenticated verifi-
cation servers (more on this in section 4).

Prior to the commencement of a protocol run, host platforms
will need to interact with verification servers to determine
the servers that are willing (or capable) of verifying traces
of agents executing in their environment. A host platform
could thus have a choice of several verification servers to use
in verifying any trace from its environment; conversely, a
verification server could be responsible for verifying traces
from several different hosts. Verification servers may dele-
gate verification activities to other verification servers in the
system if they are overloaded; this allows the formation of
trust relationships between servers as detailed in [22].

2.2 Comparison with existing protocol
This extended protocol yields several advantages over the
original one:

1. Trace verification is now performed by a verification
server for each host platform that an agent migrates
to in its itinerary. This permits the detection of mali-
cious tampering as soon as it occurs at any platform
on the agent’s itinerary. In the original protocol, trac-
ing only commences when an agent completes its tour
and returns (by which time the damage inflicted by a
malicious host could have been propagated to the re-
maining hosts in the itinerary) and even then, is only
an optional activity triggered by a suspicious owner.

2. Traces have to be retained by a host in the original
protocol (since the owner could request these for veri-
fication after a complete run of the agent), resulting in
a high storage and maintenance overhead. This is no
longer necessary in the extended version as verification
is performed at every platform. In addition, verifica-
tion servers can discard successfully verified traces and
need only retain those with discrepancies as possible
future evidence.

3. One of the primary motivations for using a mobile
agent is to avoid communication problems attributable
to low bandwidth or intermittent network links. In
such an instance, the request of traces by an agent
owner from potentially remote hosts in the original
protocol could be problematic (for example, from be-
hind a firewall). It would be easier instead for a host to
select verification servers in its network vicinity that
it can establish reliable communications with.

The extended protocol employs replication of agent code
and state and is thus similar in motivation to the replicated
agents approach. However, by imposing the trusted third

party concept (i.e. the verification server is assumed to be a
trustworthy entity that would not willingly collaborate with
other hostile parties), we eliminate the need for replication
of hosts as well as the possibility of failure that may arise
when the number of malicious hosts outnumber honest ones
in a voting scheme.

Our extended protocol shows greater similarity with the co-
operating agents approach. The agent copy forwarded to
verification servers for purposes of verifying the actual agent
that migrates along a separate itinerary of host platforms
can be regarded as a ‘co-operating’ agent that helps to de-
tect tampering of the actual agent. However, the extended
protocol offers the additional advantage of fault tolerance.
A co-operating agent is not a replica of the actual agent
to be protected, rather it is an agent that is specifically
designed to support the actual agent in specific scenarios
via constant communication so that it is immediately aware
whenever the actual agent is compromised. In such an event
however, it can only note or report the compromise but is
incapable of continuing the compromised agent’s agenda on
its own. In the extended protocol however, if a verification
server detects tampering in a trace, it can signal an excep-
tion to the agent copy executing in its environment so that
suitable action can be taken.

3. PROTOCOL DESCRIPTION

In this section, we detail the protocol used in the extended
version of execution tracing for one stage of a single protocol
run (Fig. 3). A single protocol run is defined as the com-
plete traversal of an unique agent instance along its itinerary,
starting from where it departs from its owner (Fig. 2 b) to
the point when it returns again (Fig. 2 e). This may include
any possible loops in its path (i.e. when an agent returns to
a previously visited host). We assume that a PKI is operat-
ing in the background, from which appropriate certificates
and corresponding public keys can be obtained to perform
encryption of data or verification of digital signatures. The
pseudocode for the verification server and host platform is
given in the Appendix. The format and sequence of mes-
sages exchanged in the protocol are shown in Fig. 4 and are
explained as follows:

Vs Vg, V. - Verification —
servers

Message for current stage of protocol run
A, B - Host platforms N

Message for next stage of protocol run

Figure 3: Message sequence in extended protocol

my1: This message sent by V4 is in reaction to the mobile
agent’s request to migrate to A. It is essentially a request

m1 o VasAnyyIe el sprOwner) FSPr(vaA) Y pycay

my o {{A,Vg,ta .y, Ic, Ace, VB’{A’VB}SP’“(VB)}SPr(A)}Pb(V)
A

mg {{VA’A’tAl’nVA’IC’S(c'VA’T(C’VA))}SPT(VA)}PI)(A)

my {{AaVA’tA2’"VA’IC,5(CvVAsT(C’VA))}spr(A)}Pb(VA)

ms {{VA>VB‘{C}SPT*(Owne'r')}SPT'(VA)'m4}Pb(VB)

mg {VB,VA,nVA,Ic}Pb(VA)

my {{A,VB,Ic,nVA,T(c,A),S(c,A,T(C,A))}Spr(A)}Pb(VB)

mg {VB,A,nVA,Ic}Pb(A)

Notation

. {X}SP,,.(Y) - indicates a message sequence X signed with the
private key of entity Y

. {X}Pb(y) - indicates a message sequence X encrypted with the
public key of entity Y

e ty - indicates a timestamp created at entity Y
e ny - indicates a nonce created at entity Y

e Ic - refers to a unique agent identifier

e ¢ - refers to static mobile agent code

e T(c,Y) - refers to the trace of the agent code ¢ after execution
at entity Y

e S(c,Y,T(c,X)) - refers to the state of the agent code c after
execution at entity Y, using the trace of the agent execution
specified by T'(c, X)

Figure 4: Protocol messages

to A to accept a mobile agent code instance Ic with asso-
ciated code c. A nonce ny, is included here to keep track
of a protocol run, and will be subsequently included in the
following messages as a reference to that protocol run.

ma2: Upon receipt of m1, A can decide whether or not to ac-
cept the mobile agent, based on consideration of the agent
code. This may involve performing security checks on the
code itself (i.e. host security) using techniques such as byte-
code verification or proof carrying code. Acc in this message
is therefore an indication of A’s willingness (or otherwise)
to accept the mobile agent. The last part of this message
indicates the verification server (in this case Vp) that will
verify the execution of any dispatched agent to A. This
is accompanied by a certification signed by the verification
server in question ({4, VB}gp,(v,)). Message my must be
dispatched regardless of A’s willingness to accept the mobile
agent; this is necessary for V4 to distinguish between com-
munication/server failure or agent rejection. A time-stamp
ta, is included so that a record can be kept of ms in the
event of a rejection.

ms: An affirmative decision (with Acc = Accept) results
in the state of the agent prior to migration being sent to
A. In the event of rejection of platform A, the protocol run
will terminate at this stage (with an appropriate exception
flagged to the mobile agent), and recommence again at m;
if so required by the mobile agent.

my4: An acknowledgment message from A of the receipt of
the agent. This message is vital to provide non-repudiation
in the event that A attempts a denial of service attack once
it has received the agent. The time-stamp ¢4, provides a
reference value to implement a time-out mechanism in Vg

to safeguard against denial of service.

ms: A copy of the agent code and the entire contents of m4
(which includes the agent’s state) along with the appended
signature created by SPr(A) is then dispatched to Vp, the
server that will be responsible for verifying correct execution
on A. The identity of this verification server is obtained
from the second portion of message ms. Upon receipt of this
message, a time-out mechanism will be in effect at Vg using
ta, to ensure that me arrives within a reasonable period of
time, the failure of which is an indication of either a denial
of service attack or a possible failure at A.

meg: A simple acknowledgement of receipt of ms by Vg with
inclusion of ny, and Ic to keep track of the current protocol
run and agent instance.

my: Upon completion of agent execution, a trace is created
at A (T'(c, A)) and then submitted along with the new agent
state S(c, A, T(c, A)) to the appropriate verification server.

mag: A simple acknowledgement of receipt of mr by Vg with
inclusion of ny, and Ic to keep track of the current protocol
run and agent instance.

Upon receipt of m7, Vp will commence replay of the agent ¢
(identified by Ic) using the submitted trace T(c, A). If the
resulting state from this replay S(c, Vg, T(c, A)) is equiva-
lent to the submitted state S(c, A,T(c, A)), then the next
stage of the protocol run can be initiated, that is Vg can
dispatch mi* (the equivalent of m; in the next stage of the
protocol) to B. The submitted trace can then be discarded.
If equivalence is not obtained, an appropriate exception is
raised to the mobile agent and the faulty trace and state is
retained as evidence for further action by the home platform
or an arbitrator (if so required).

4. FORMALLY MODELLING AND VERI-
FYING THE PROTOCOL

The primary security goal of execution tracing is to safe-
guard the state and execution flow of an agent, which is ac-
complished in the original protocol and in our extended ver-
sion, by verifying agent states produced by replaying agents
according to a given trace. If we assume that the verification
and replay process is capable of detecting any malicious tam-
pering, then the security goal essentially reduces to ensuring
that traces and agents are dispatched correctly and securely
to their designated destinations as outlined in the protocol.
The original protocol uses various cryptographic primitives
in order to achieve this goal (in a similar fashion to us) but
does not attempt to formally verify the satisfaction of any
security property. As it has been noted in literature that de-
veloping good security protocols is notoriously difficult [2],
we believe that some form of modelling and verification is
necessary in order to provide a basic assurance that certain
specific security properties are achieveable. In the case of
our extended protocol, we are primarily interested in two
security properties that provide guarantee of correct and se-
cure dispatch of agents and traces:

e Mutual authentication of verification servers and host
platforms - It is important to make a distinction be-

tween these two entities as host platforms should only
accept mobile agents that are dispatched from verifica-
tion servers. This ensures that honest host platforms
will never accept agents with potentially corrupted
states directly from other platforms. The possibility
of a hostile host platform spawning multiple copies of
an agent and dispatching it randomly to other plat-
forms in the system is also circumvented. In a similar
context, a verification server has to ensure that it re-
ceives a copy of an agent from an authentic verification
server to ensure that it is verifying the correct agent
instance for a particular protocol run.

e Non-repudiation of commitment to executing agents -
It is important to retain evidence of the fact that a
host platform has committed to executing a particu-
lar mobile agent instance in a given protocol run to
prevent a denial of service attack (i.e. terminating a
mobile agent or delaying its execution for an inordi-
nate period of time). This is primarily achieved by a
digital signature appended to m4 which is retained by
Va. The trace of agent execution as encapsulated in
my is also retained by Vg in the event it turns out to
be faulty; this can be later be submitted to a third
party arbitrator or the agent owner for sanctions to
be undertaken towards the erring platform if the need
arises.

In considering the security properties of the protocol, it
should be mentioned that the basic underlying assumption
is that the verification server is treated as a trusted third
party. Thus we assume that verification servers will not en-
gage in any action that will directly or indirectly lead to the
corruption of an agent’s state. We also make the usual as-
sumption that the basic cryptographic primitives used are
resistant to standard cryptanalysis and that private keys
are not compromised. There are many approaches available
for formally modelling and verifying properties of a security
protocol. Some of the more commonly utilised ones include:

1. BAN logic of authentication [3], which reasons about
the states and beliefs of agents involved in a protocol
run and how these beliefs evolve with the reception of
new information

2. Spi-calculus [1], which is an extension of m-calculus
designed to deal with cryptographic primitives

3. Strand-spaces approach [6] uses the concept of a strand
to represent the sequence of actions in which a partic-
ular protocol principal may participate and then rea-
sons about how the strands interact or intertwine as
participants interact by the exchange of messages

4. CSP-based approach [12] models the protocol interac-
tions as a system described by CSP process algebra [§],
for which violation of given specifications can be de-
tected through the use of a finite-state model checker
such as FDR [16]

We have chosen the last approach as it has been used suc-
cessfully in discovering attacks upon cryptographic protocols

([12], [13], [15]). In addition, modelling protocol runs as in-
teractions between entities using a process algebra like CSP
appears to be a reasonably intuitive one. As a complement
to this approach, tools such as Casper [14] have been devel-
oped that are capable of converting a high-level description
of a security protocol to a CSP specification of the model
that can be fed as input into the FDR model checker for
subsequent verification. This greatly simplifies the process
of CSP specification, which can be tedious and error-prone
for complicated protocols. We employ Casper in describing
our protocol in this section, further details on this protocol
specification language can be found at [14].

4.1 Modelling the protocol in Casper

For the free variables section, we have declared the following
variable types:

#Free variables

A : Agent

VA, VB : Server

nva, ntl, nt2 : Nonce

ca : AgentCode

asva, asa : AgentState

ata, atvb : AgentTrace

PK : Agent -> PublicKey

SK : Agent -> SecretKey

SSK : Server -> ServerSecretKey
SPK : Server -> ServerPublicKey
hash : HashFunction

InverseKeys = (PK,SK), (SSK, SPK)

The agent code ¢, trace T'(c,Y’) and state of the agent S(c,
Y,T(c, X)) (see Fig. 4) are represented by the types Agent
Code, AgentState and AgentTrace respectively and can as-
sume different values independently of each other. This
makes the protocol easier to model as it is difficult to de-
fine multi-variable functions correctly using Casper (i.e. the
state of an executed agent would be a one way function of its
code, initial state and trace). A side effect of this is that the
chances for attack by a malicious host is increased since it
can interleave different values of code, state and trace with
impunity in a protocol run. Indirectly, this enhances the
strength of the security property that we intend to estab-
lish. We distinguish between the public and private keys of
host platforms and verification servers as we regard them as
two distinct classes of entities in our protocol. A hash func-
tion is used to model the unique agent identifier, Ic, which
we treat simply as a hash of the agent code (the actual value
of Ic is explained at the conclusion of Section 6).

There are three processes representing V4 (SERVERINI-
TIATOR), Vs (SERVERRESPONDER) and A (HOSTRE-
SPONDER) respectively of Fig. 3. All three entities will
have knowledge of their respective secret keys and will be
able to access the public keys of the other entities.

#Processes

SERVERRESPONDER(VB) knows SSK(VB), SPK, PK
SERVERINITIATOR(VA, nva, ca, asva) knows SSK(VA), SPK, PK
HOSTRESPONDER(A, ntl, nt2, asa, ata) knows SK(A), SPK, PK

The protocol is modelled below, where lines 1 — 8 correspond
to m1 — mg of the protocol. We use ntl and nt2 (of type

Nonce) to represent the time-stamps ta, and ta, issued by
A, as we are only interested in their unique values in the
protocol run and do not employ them to enforce a notion
of freshness. The protocol run is preceded with step Oc.,
which establishes the result of an earlier interaction where
A obtains a certification from a verification server Vg certi-
fying Vg’s capability of verifying agent traces from A. The
% notation is used to indicate that this certification is not
processed directly by A, rather stored in a temporary vari-
able and then later relayed to V4 in message 2. The same
comments apply as well to enc in message 4 and 5.

#Protocol description

0. -> VA : A
Oa. ->A : VA, VB
Ob. ->7VB : A
Oc. VB -> A : {{A, VB}{SSK(VB)} % storecert}{PK(A)}
1. VA -> A : {{VA, A, nva, ca, hash(ca)}{SSK(VA)}}{PK(A)}
2. A -> VA : {{A, VA, nva, ntl, hash(ca), VB,
storecert % {A, VB}{SSK(VB)2}}{SK(A)}}{SPK(VA)}
3. VA -> A : {{VA, A, ntl, hash(ca), asva}{SSK(VA)}}{PK(A)}
4. A -> VA : {{A, VA, nt2, nva, hash(ca), asva}{SK(A)},
{A, VA, nt2, nva, hash(ca), asva}
{SK(A)} % enc}{SPK(VA)}
5. VA -> VB : {{VA, VB, ca}{SSK(VA)},
enc % {A, VA, nt2, nva, hash(ca), asva}
{SK(A)}}{SPK(VB)}
6. VB -> VA : {VB, VA, nva, nt2}{SPK(VA)}
7. A -> VB : {{A, VB, hash(ca), nva, ata, asa}{SK(A)}}{SPK(VB)}
8. VB -> A : {VB, A, nva, hash(ca)}{PK(A)}

We assume that the intruder is capable of creating its own
agent trace, code and state. In addition, in line with the
normal assumptions for an intruder in Casper, the intruder
will also be capable of creating its own nonces and accessing
the public keys and identities of all entities in the system.

#Intruder Information

Intruder = BadHost
IntruderKnowledge = {FirstServer, SecondServer, BadHost, Nb,
Nbtl, Nbt2, Cb, PK, SPK, Asb, Atb, SK(BadHost)}

4.2 Specifying security properties

As mentioned earlier, the two important security proper-
ties to be established are mutual authentication and non-
repudiation. We employ the concept of authentication as
outlined in Casper . This is briefly expressed in the form
of the statement Agreement (A, B, [x]), which states that
A is authenticated to B on the basis of the fact that both
A and B agree on the value of x. More formally [14], this
means that if B (taking the role of responder) completes
a protocol run, apparently with A, using the data value x,
then the same entity A (taking the role of initiator) has pre-
viously been running the protocol, apparently with B, using
the same value x. In addition, each such run of B corre-
sponds to a unique run of A. x is typically some unique data
item (such as nonce or time-stamp) known only to A or B.
Mutual authentication will therefore require the additional
statement Agreement (B, A, [x]) to be verified as well.

For the case of V4 and A, we can claim that these two en-
tities are properly authenticated to each other after the ex-
change of mi - mu, if only these two entities agree on the

values Ic,tay,nyv,, S(¢, Va, T(c,Va)). Icis necessary to pro-
vide reference to the unique agent instance, ny, provides ref-
erence to the current protocol run, ta, and S(¢, Va, T(c,Va))
provides reference to A’s response in ma4.

Agreement (VA, A, [nva, nt2, hash(ca), asval)
Agreement (A, VA, [nva, nt2, hash(ca), asval)

Similarly mutual authentication between V4 and Ve and
between Vg and A can be expressed as

Agreement (VA,VB, [nva, nt2])
Agreement (VB,VA, [nva, nt2])
Agreement (VB, A, [nva, nt2])
Agreement (A, VB, [nva, nt2])

Non-repudiation can be simplified to the more general case
of maintaining secrecy of specific data items whose non-
repudiation is to be established. If we know that only entity
A issues item x in a protocol exchange between itself and an-
other entity B, and if we can establish that item x remains
secret in such a protocol exchange, then we can conclude
that A is indeed responsible for issuing z. In our protocol,
we are not interested whether x can later be duplicated by
another entity (such as B) in another protocol run, rather
we are concerned with whether z is issued in a given protocol
run. The property of non-repudiation then follows simply
by applying a digital signature to . As mentioned earlier,
non-repudiation is necessary for messages:

1. mo - to provide evidence a host accepts or denies an
agent for a particular protocol run indicated by nv,
and an agent instance indicated by Ic;

2. my - to provide evidence a host has received the state
S(c,Va,T(c,Va)) necessary to begin execution of the
agent instance Ic in the protocol run indicated by nv, ;

3. mr - to provide evidence the agent instance was Ic
executed with a trace T'(c, A) to provide a state S(c, A,
T(c, A)).

In Casper, the statement Secret (4, x, [B]) is used to ex-
press the property that A believes x remains secret in an
interaction between itself and an entity that appears to be
B. If this entity is not B, then x will remain hidden to it.
Thus, to show non-repudiation, we have the following secu-
rity specifications ':

Secret (VA, nva, asva, ca, [A])
Secret (A, ntl, [VA])

Secret (A, ata, asa, [VB])
Secret (VB, nt2, [A])

Both specifications for mutual authentication and secrecy
were satisfied in the resulting CSP model that was checked
using FDR. The checking process itself was lengthy (several
hours) due to the complexity of the protocol and the number
of independent data variables involved.

!These are provided in an abbreviated form; specifications
for secrecy should be in the form Secret(VA, x, [A]) for each
item x

5. LIMITATIONS OF MODELLING USING
CASPER AND FDR

The use of Casper to model security protocols for mobile
agent systems has been attempted previously by Hannotin
et al. [7]. In their work, they attempt to verify the property
of data integrity in a protocol proposed by Corradi et. al
[5] which intends to safeguard data accumulated by a mobile
agent (for example, price offers from various shop platforms)
during its itinerary from invalid tampering. The protocol
functions by making tampering of this data by a malicious
host (for example:- modification or truncation of previous
offers) detectable by either the home platform of the agent
or the next honest host that the agent migrates to. Although
this property is verified in the CSP model that they develop,
the same protocol (as well as other protocols with a similar
motivation of protecting accumulated data) was shown to
be vulnerable to a certain type of attack described by Roth
in [20], which has a general two-step approach:

1. Protocol data from an honest mobile agent is cut and
pasted on to a ‘dummy’ mobile agent generated by a
hostile host. This mobile agent is then launched to
another honest host with which it interacts in a cer-
tain manner to acquire critical information about the
current protocol run (which it would not normally be
able to acquire without the use of the ‘stolen’ protocol
data).

2. The ‘dummy’ agent migrates back to the hostile host
with this information, which is then used by the host
in some way to change the accumulated data of the
honest agent. This change will subsequently be unde-
tectable when the honest agent is migrated on to the
next host or back to its home.

The strategy of this attack is not new and is similiar in mo-
tivation to an earlier well-known attack on the Needham-
Schroeder public key protocol described by Lowe [13]. In
his attack, a replayed message from a previous protocol run
is used by an intruder to initiate a new protocol run in which
an unsuspecting participant is then abused as an unwitting
oracle to reveal confidential information. This information
can then be used to compromise the integrity of a commu-
nication channel. Roth’s technique is essentially the same
with the primary difference being that a new mobile agent
(instead of a replayed message) is used by a malicious host
in a new protocol run to initiate the oracle attack. In order
to nullify the attack, it is necessary to prevent one or both
of these steps from occurring. Roth presents a method to
prevent the first step by using authentication to uniquely
associate the identity of an agent instance along with the
protocol data transported by it. This would allow an hon-
est host to discern whether an incoming agent is carrying
protocol data that belongs to it or that was ‘stolen’ from
another agent. The host could then refuse to accept or ex-
ecute agents carrying ‘stolen’ data, thus preventing itself
from being abused as an oracle. This security measure is in
actual fact a form of host security, and we have here an in-
teresting illustration of how the two different aspects of code
and host security (which often appear to be orthogonal to
each other) can be actually closely interlinked.

The main reason underlying the failure of Hannotin’s Casper
model to detect such attacks is the inability to model a mo-
bile agent accurately using traditional cryptographic pro-
tocol analysis methods. In those methods, a fundamental
assumption in analysis is that the format of messages ex-
changed between static entities and the sequence in which
they occur within a single protocol run are predefined and
remain fixed throughout the duration of the protocol run.
Thus, attacks can only occur through judicious interleaving,
reflection or replay of messages from different protocol runs.
In Hannotin’s approach (and our approach as well) the mo-
bile agent is implicitly treated as a unique, static portion
of a message. This permits a reasonably straightforward
approach to modelling, but as we have just seen, it is not
accurate as it does not reflect the ability of the mobile agent
to potentially alter the sequence and content of messages
during an ongoing protocol run. For example, in the second
step of the attack, the data carried back by the ‘dummy’
agent to the hostile host has to be part of the specification
of the protocol run (since this is the data that actually al-
lows the hostile host to successfully carry out its attack).
Obviously, the format and contents of this data cannot be
predefined and will depend on the interaction of the agent
with the honest host. Thus, in order for a model to be able
to detect such attacks, two additional requirements are nec-
essary:

1. The model must be able to encapsulate all possible
behaviours of a mobile agent (as a function of its code,
internal state and state of its execution environment)
that have the ability to alter the format or sequence
of messages exchanged within a single protocol run

2. The model must be able to take into account all these
different possibilities of message contents and sequences
when it is used to simulate a protocol run

With regards to the first requirement, the identification of
the specific state or code of an agent that is capable of al-
tering the format or sequence of messages is clearly not a
trivial matter. Even if this could be accomplished, the addi-
tional possibilities for protocol runs with different message
contents and sequences will greatly increase the number of
possible interleaving of protocol runs, consequently creat-
ing a potential explosion in the state space to be explored.
This may make it less suitable for use on a finite state space
model checker such as FDR. In that case, checking the vi-
ability of the model may require techniques to reduce the
state space explosion (such as those used in [21]) or mod-
elling the protocol using a different approach (for example
strand spaces or spi-calculus). As a matter of interest we
note that the attacks described by Roth were discovered in
an ad hoc, intuitive manner without resort to any formal
methods of verification. It is thus possible that more subtle
attacks may yet exist on the protocols in question (even after
the remedy of authentication is applied), if these protocols
can be expressed and analysed in more thorough manner us-
ing models that encapsulate the two requirements that we
have briefly discussed.

Since we also treat the mobile agent as a static message in
our approach, our model is equally susceptible to the same

vulnerabilities as Hannotin’s. However, our modified proto-
col for execution tracing differs from the approach employed
by Corradi as well the original execution tracing protocol in
an important way: agent state (and code) is replicated. In
our approach, the agent that is actually migrated on to the
next host platform is the mobile agent copy on the verifica-
tion server (the trusted platform), and not the actual agent
on the current host. The consequence of this is that the cur-
rent host will not be able to directly manipulate the state
of the mobile agent, in effect nullifying step two of Roth’s
attack. The only way a hostile host can affect the state of
the agent copy is through the trace it supplies; this how-
ever will also contain the signature of the host to act as
a measure of non-repudiation. Supplying faulty traces as a
form of attack is thus meaningless as liability can eventually
be established for the resulting problems that arise (this, of
course, is based on the assumption that the economic cost
of being sanctioned for an attack is greater than the eco-
nomic cost resulting from the attack). Therefore, our only
concern is ensuring that traces, agent code and agent state
are securely propagated in our system, and that traces are
correctly associated with the corresponding agents. Mobile
agent behaviour is subsequently of no concern to us any
longer. We are therefore justified in using Casper to model
our protocol as the nature of our protocol is now analogous
to those modelled in standard cryptographic protocols. It
is also our belief that completely secure code execution on
untrusted platforms cannot be achieved without some form
of code/state replication.

6. CONCLUSION

In this paper, we identified the need for code security tech-
niques that address the concept of denial-of-service attacks
in addition to the usual data integrity and state tampering
attacks. A technique to detect some forms of such attacks is
proposed which involves the extension of a well known code
security technique, execution tracing. This essentially in-
volves the introduction of a trusted third party, the verifica-
tion server, that undertakes verification of traces on behalf of
the agent owner. The advantages of this modified technique
as compared to the original approach as well as other tech-
niques that prevent denial-of-service attacks are outlined.
The sequence of messages for the new protocol is described
in detail, and is then modelled in CSP using the high-level
security protocol description language, Casper. The model
is then analysed in FDR to determine whether specific se-
curity specifications are valid. Finally, we discuss the lim-
itations of modelling the protocol using Casper and finite
state model checkers such as FDR and point out the diffi-
culties involved in formal modelling of mobile agent security
protocols in general.

Our current work focuses on developing a practical method
to implement creation and verification of traces in a work-
ing mobile agent system. In addition, we are also looking
at ways of reducing the cryptographic cost of the protocol
without compromising on its security properties. A more
formal method of expressing the use of time-outs to pro-
vide protection against denial-of-service attacks would also
be useful. Once the protocol is sufficiently refined and trace
verification properly developed, a mobile agent framework
using the extended protocol can be created and evaluation
conducted against existing code security techniques.

7. REFERENCES
[1] Martin Abadi and Andrew D. Gordon. A calculus for
cryptographic protocols: The spi calculus. In Fourth
ACM Conference on Computer and Communications
Security, pages 36-47. ACM Press, 1997.

[2] Martin Abadi and Roger M. Needham. Prudent
engineering practice for cryptographic protocols.
Software Engineering, 22(1), 1996.

[3] Micheal Burrows, Martin Abadi, and Roger Needham.
A logic of authentication. Proceedings of the Royal
Society, 426(1871), 1989.

[4] D. M. Chess. Security issues in mobile code systems.
In Mobile Agents and Security, number 1419 in LNCS.
Springer-Verlag, 1998.

[5] A. Corradi, R. Montanari, and C. Stefanelli. Mobile
agents integrity in e-commerce applications. In
Proceedings of thel9th IEEE International Conference
on Distributed Computing Systems Workshop, IEEE
Computer Society Press, Austin, May 1999.

[6] F. J. Thayer F’abrega, J. C. Herzog, and J. D.
Guttman. Strand spaces : Why is a security protocol
correct ? In Proceedings of the 1998 IEEE Symposium
on Security and Privacy, pages 160-171, February
1998.

[7] Xavier Hannotin, Paolo Maggi, and Riccardo Sisto.
Formal specification and verification of mobile agent
data integrity properties : A case study. In Mobile
Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.
Springer-Verlag, 2001.

[8] C. A. R. Hoare. Communicating Sequential Processes.
Prentice-Hall International Series in Computer
Science, 1985.

[9] Fritz Hohl. Time limited blackbox security: Protecting
mobile agents from malicious hosts. In Mobile Agents
and Security, number 1419 in LNCS. Springer-Verlag,
1998.

[10] Wayne Jansen. Countermeasures for mobile agent
security. In Computer Communications, Special Issue
on Advances in Research and Application of Network
Security, November 2000.

[11] G. Karjoth and N. Asokan. Protecting the
computation results of free-roaming agents. In Mobile
Agents and Security, number 1419 in LNCS.
Springer-Verlag, 1998.

[12] Gavin Lowe. Breaking and fixing the
Needham-Schroeder public-key protocol using FDR.
In Proceedings of Tools and Algorithms for
Construction and Analysis of Systems, number 1055 in
LNCS. Springer-Verlag, 1996.

[13] Gavin Lowe. Some new attacks on security protocols.
In 9th IEEE Computer Security Foundations
Workshop, 1996.

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

22]

[24]

[25]

Gavin Lowe. Casper : A compiler for the analysis of
security protocols. In Proceedings of The 10th
Computer Security Foundations Workshop. IEEE
Computer Society Press, 1997.

Gavin Lowe and Bill Roscoe. Using CSP to detect
errors in the TMN protocol. IEEE Transactions on
Software Engineering, 23(10), 1997.

F.S.E. Ltd. Failures-Divergence Refinement : FDR2
User Manual, Available at
http://www.formal.demon.co.uk/fdr2manual/.
Technical report, Formal Systems Europe, 1999.

Yaron Minsky, Robbert van Renesse, Fred B.
Schneider, and Scott D. Stoller. Cryptographic
support for fault-tolerant distributed computing. In
Proceedings of the Seventh ACM SIGOPS European
Workshop, 1996.

Luc Moreau and Christian Queinnec. Distributed
computations driven by resource consumption. In
Proceedings of IEEE International Conference on
Computer Languages (ICCL’98), 1998.

Volker Roth. Mutual protection of co-operating
agents. In Secure Internet Programming: Security
Issues for Mobile and Distributed Objects, number
1603 in LNCS. Springer-Verlag, 1999.

Volker Roth. On the robustness of some cryptographic
protocols for mobile agent protection. In Mobile
Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.
Springer-Verlag, 2001.

D. Song, S. Berezin, and A. Perrig. Athena, a novel
approach to efficient automatic security protocol
analysis. Journal of Computer Security, 9(1), 2001.

H. K. Tan and L. Moreau. Trust relationships in a
mobile agent system. In Proceedings of the 5th IEEE
International Conference on Mobile Agents, Georgia,
USA, December 2001.

H. K. Tan and L. Moreau. Certificates for mobile code
security. In Proceedings of the 17th ACM Symposium
on Applied Computing, March 2002.

Giovanni Vigna. Cryptographic traces for mobile
agents. In Mobile Agents and Security, number 1419 in
LNCS. Springer-Verlag, 1998.

Alex Villazon and Walter Binder. Portable resource
reification in java-based mobile agent systems. In
Mobile Agents : Proceedings of the 5th International
Conference, Altanta, USA, number 2240 in LNCS.
Springer-Verlag, 2001.

APPENDIX

Operation of host platform

Accept mq

Verify signature SPr(V,4) and identity of verification server (Vy)
through a certificate

Verify signature on agent code ({¢}gpr(Owner)) to detect possible
tampering

Perform security check on agent code ({c})

If decision is made to commit to running agent code
Select verification server Vp to be employed in verifying the code
Submit in mg2 suitable certification {A, VB}SPT(VB)
If verification server responds with ms

Verify signature on S(m, Va, T(m, Va)) to safeguard

against possible tampering

Respond with acknowledgment m4

Instanstiate agent code with verified state

Commence execution of mobile agent and create a trace of its
execution sequence T(m, A)

Upon completion of an agent run, sign trace and submit in mr
to Vg

else

else

Terminate protocol run and await commencement from another
verification server

Indicate refusal in reply ma
Terminate protocol run and await commencement from another
verification server

Operation of verification server Vg

Receive initial state of agent S(c, Va,T(c,Va)) in ms
Implement time-out mechanism using t 4, from mqy
If trace T'(¢, A) in m7 arrives in specified time period
Verify identity of host submitting trace
Replay agent execution from initial state and submitted trace to
obtain final state S(c, Vg, T(c, A))
If final state S(c,Vp,T(c, A)) is equivalent to submitted
state S(c, A, T(c, A))

Identify destination platform contained in S(c, Vg, T(c, A))
Submit m1* to destination
Receive ma*
If Acc in mox is positive
Verify identity of the verification server associated with
submitted certification
Submit final state of agent S(c, Vg, T(c, A)) to
host platform in mg*
Receive acknowledgment of reception ma* from
the host platform
Forward S(c, Ve, T(c, A)) and {c}sPrpynen
on to the next verification server in ms*
else
Signal exception to agent
Record platform identity that refused to host the agent

else

else

Retain trace T'(c, A) as evidence
Signal exception to agent
Record occurrence of trace inequivalence in agent

Signal exception to agent
Record occurrence of time-out in agent

