On the Use of Agents in a Biolnformatics Grid

Luc Moreau', Simon Miles', Carole Goble?, Mark Greenwood?, Vijay Dialani', Matthew
Addis'!, Nedim Alpdemir?, Rich Cawley?, David De Roure!, Justin Ferris!, Rob
Gaizauskas®, Kevin Glover?, Chris Greenhalgh?, Peter Li®, Xiaojian Liu', Phillip Lord?,
Michael Luck!, Darren Marvin!, Tom Oinn*, Norman Paton?, Stephen Pettifer?, Milena
V Radenkovic?, Angus Roberts?, Alan Robinson*, Tom Rodden?, Martin Senger*, Nick
Sharman?, Robert Stevens?, Brian Warboys?, Paul Watson®, Chris Wroe?

(1) University of Southampton, (2) University of Manchester, (3) University of
Nottingham, (4) EMBL Outstation - European Bioinformatics Institute, (5) University
of Newcastle, (6) University of Sheffield

Project site: www.mygrid.org.uk

Contact Author: Luc Moreau

Email: L.Moreau@ecs.soton.ac.uk
Abstract

MyGrid is an e-Science Grid project that aims to help biologists and bioinfor-
maticians to perform workflow-based in silico experiments, and help to automate
the management of such workflows through personalisation, notification of change
and publication of experiments. In this paper, we describe the architecture of my-
Grid and how it will be used by the scientist. We then show how myGrid can benefit
from agents technologies. We have identified three key uses of agent technologies in
myGrid: user agents, able to customize and personalise data, agent communication
languages offering a generic and portable communication medium, and negotiation
allowing multiple distributed entities to reach service level agreements.

1 Introduction

MyGrid is a Grid middleware project in a bioinformatics setting. In biological sciences,
it is not principally the size of the data that matters but the complexity involved in using
it: the complexity of the data itself, the number of repositories and tools that need to
be involved in the computations required to answer the kind of questions posed by the
scientist, and the heterogeneity of the data and operation of tools. Rather than a few
international facilities (e.g. CERN and Fermi Lab) producing vast amounts of data that
needs to be accessible, the pressing issue with biology is coping with a very large number
of sites (potentially thousands of individual laboratories) around the world, each using
cheap, commodity technology to continuously generate substantial quantities of different
kinds of data, and design new tools to process it.



In many resources, each record is analogous to an individual publication with not
only raw data, but also additional annotations supplied by a small number of human
experts (curators) or automated systems. Annotations are typically semi-structured text
that make some use of keywords and controlled vocabularies, and have to be parsed
computationally or read by people. Therefore, as well as a large number of data types,
much of the valuable knowledge is locked into semi-structured text, under the premise
that the scientist will read and interpret it.

In the past, this complexity has been dealt with largely by the intelligence of the
practising biologist. This has been possible because biologists working on a specific
organism, or a specific aspect of it, have needed access to only a small number of these
resources.

Interestingly, much of the growth of molecular biology has been contemporaneous
with the development of the Web, which probably explains why many resources have been
designed with the intention that a scientist will interact with a Web page, dealing with a
single query at a time, and read the results displayed as reports in a browser, navigating
between links in different databases by mouse-clicking. (e.g. http://www.expasy.org
for SWISS-PROT). We call this approach “query by navigation”. Where databases are
published, they are usually released as flat files, even in those cases, such as SWISS-PROT
and EMBL, where the production systems are relational databases.

Although the volume of data is not yet a computational problem, the advent of high
throughput experiment techniques means that human analysis is now reaching its limita-
tions. With sequence databases reaching hundreds of MBytes and microarray expression
data producing tens of GBytes, the limits of the non scalable query by navigation are
rapidly being reached, if not already passed.

The particular focus of myGrid, therefore, is on increasingly data-intensive bioinfor-
matics and the provision of a distributed environment that supports the in silico exper-
imental process. The vision is of a “lab book” environment where the e-Scientist can
construct in silico experiments, and find and adapt others, store partial results in local
data repositories and have their own view on public repositories, and be better informed
as to the provenance and the currency of the tools and data directly relevant to their
experimental space. For a less skilled user, myGrid should help in finding appropriate
resources, offering alternatives to busy resources and guiding the user through the com-
position of resources into complex workflows. In order to provide such an environment,
myGrid unequivocally needs to address the “Grid problem”, i.e. the flexible, secure,
coordinated resource sharing, among dynamic collection of individuals and institutions,
— Virtual Organisations [8] — in this context, the Grid becomes egocentrically based
around the Scientist: myGrid.

The contributions of this paper are threefold. First, we present a service-based archi-
tecture to support the vision of the “lab book” environment. Second, we illustrate how
this architecture can be used during the enactment of workflows. Third, we review how
a bioinformatics grid can benefit from agent technologies.



2 The MyGrid Service-Oriented Architecture

In this section, we describe the different services that are provided by myGrid, and sketch
their interactions. (They are displayed in Figure 1.) The experimental in silico process is
expressed as a workflow script by the scientist. Services can be viewed as being provided
by agents and workflow can be seen as an agent interaction script. Some initial work in
this vein has already been done [2, 3].

2.1 Workflow Enactment

At the heart of the myGrid runtime system, we find the workflow enactment engine
which, given a workflow script, is able to execute (or enact) the script. Scientists and
their institutions may have preferences that must be taken into account when enacting
a workflow script: e.g., some databases are preferred over others, or specific tools and
parameters are routinely chosen. It is the role of the workflow resolution service to
customise a script’s “free variables”, possibly making use of a workflow personalisation
service able to obtain preferences from a user (or a user agent acting on their behalf).
There exist several strategies to resolve a workflow: eagerly before enactment, or lazily
if and when required by the enactment engine. (Both can be expressed at the level of
scripts through the use of an appropriate program transformation.)

The workflow enactment can send requests to existing running services or can activate
tools and interact with them: services need to be discovered and processes need to be
created. For the former, a service directory is used as a repository of service instances
that are currently active, whereas the latter makes use of a job activation and scheduling
system. Generally, scripts may require space to store temporary results, or may like to
ensure that computational resources are reserved at the same time as storage space to
ensure the prompt execution of the workflow: allocation and reservation will be handled
by the resource management service.

2.2 User Interaction

The user, through an interface, may interact with the workflow enactment engine, sus-
pending and resuming workflows, observing their progress, analysing their logs. Sus-
pended workflows will be serialised and stored in a repository, potentially shared with
other users.

Some workflows may take days, if not weeks, to complete their execution. Users
therefore need to be notified when workflow execution terminates. We prefer not to as-
sume the existence of user agents able to handle incoming notifications. Indeed, users are
not logged on permanently, and we feel that always running user agents would overload
the system unnecessarily. Instead, we make use of a notification service able to forward
messages to user agents, when present, or to store messages in their absence. The use of
the notification service is of course not restricted to the user agent, but may be used by
any services in myGrid.

Sharing information between users, discovering information, finding out users or insti-
tutions that are investigating given topics are all key functionalities of myGrid. Several



Service Functionality ~ Workflow Definitign

Metadata Repository
/ Workflow Provenance
i it Validation
Authenttication Service Ontological Definitions
Authorisation Directory Ontological Reasoning
Provenance

Repository
Notification Workflow /
Enactment
\s

erialised Workflow

Repository
Workflow Workflow
Personalisation Resolution ormatio
a 0
Databases Distributed Job Scheduling
Queries Resource Management

Figure 1: MyGrid Services

directories are used for that purpose: the user directory holds information about users,
groups, roles and institutions; the workflow repository contains information about scripts
and their functionality.

2.3 Ontology Service

All information about workflows and users is what we call metadata and is structured
according to a set of ontologies — an ontology is generally defined as a shared under-
standing of a specific domain [10]. Information about services are also expressed using
such ontologies, and are stored in the service functionality metadata service; the latter
service contains metadata about classes of services, and must be distinguished from the
service directory which lists active service instances.

Not only are ontologies a shared understanding of some domains, but their logical
foundations also allow users to perform reasoning over such domains. Examples of rea-
soning include classification (i.e., the computation of a concept hierarchy based on the
specialisation relation), or consistency checking (i.e., checking that a statement is not
inconsistent in a logic). An ontology-based reasoning facility is provided by myGrid to
help users compose new workflows. Additionally, the ontology service will allow users



to reason about concepts of the application domain in order to understand their inter-
relationships.

2.4 Data and Metadata

Most myGrid repositories will be implemented as databases. Additionally, biological
information is stored in multiple and heterogeneous databases. Distributed query systems
over such databases are an essential component to facilitate information integration. In
myGrid, databases will be accessed though a service interface [15], whereby structured
data stores support consistent interfaces for database access, manipulation and metadata
description. As a component within the personalisation framework of myGrid, database
services will be used to provide individual users with access to (i) locally produced
data sets; (ii) the results of analyses run by the user over local or remote data; and
(7 ) distributed querying over local and remote data resources. The distributed query
processor will benefit from the consistent service interfaces and metadata descriptions
provided by local and remote databases.

Above, we have discussed the existence of metadata that is structured according to
ontologies. In biological sciences, it is also customary to create annotations in free text
form. Such metadata contains invaluable information assembled by database curators.
MyGrid also provides support for correlating such an information with medical literature
through an information extraction service.

MyGrid provides support for provenance in two different ways. First, provenance in-
formation, in particular related to workflow enactement, can be logged in the provenance
annotation service; such a service is also used to store provenance information for ser-
vices having no built-in support for provenance. Additionally, the workflow provenance
validation service is able to re-enact workflows to establish change over time.

2.5 Security and Fault Tolerance

The myGrid authentication service extends the PKI infrastructure to provide X.509 cer-
tificates for users and objects (called identities henceforth) needing verification. It sup-
ports a notion of logical domain which is defined by the set of identities it manages. The
confederation of several logical domains forms an enterprise infrastructure. Each logical
domain has associated domain administrators who are authorised to create and revoke
identities within their logical domains.

In myGrid, a sub-component of the user agent acts as a credentials repository, per-
mitting simultaneous access to multiple logical domains. This facility allows a user to
have simultaneous access to multiple virtual organisations [8] and obtain the access rights
to multiple resources across sites.

MyGrid supports role-based access control [16] and dynamic mapping between users
and roles. Within each logical domain, there exists a hierarchy of user roles and access
rights; roles are statically associated with access rights. The model is extensible by allow-
ing the definition of new roles and access rights. In an enterprise security infrastructure,
one needs to support identities from different logical domains, which may have different



access models: this requires the definition of a mapping of roles and access rights of a
domain onto roles and access rights of another domain.

Mygrid computations may be long-lived and involve a very large number of computing
resources. Hence, they need to be designed with fault tolerance in order to be robust. To
this end, myGrid will provide a set of interfaces, which services are required to implement,
and which will provide robustness to applications involving the use of multiple services.
The complete description is beyond the scope of this paper, and we refer the reader to
a companion paper [4]. The approach may be summarised as follows: implementors of
a service have to implement an interface (for checkpoint and rollback); the architecture
dynamically extends the service interface by methods for fault tolerance; applications
making use of different services have to declare their inter-dependencies, which are used by
a fault-manager to control checkpoints and rollbacks; an extension of the communication
layer is able to log and replay messages.

3 MyGrid Workflow Enactment in Practice

We have implemented a prototype of this architecture, based on a subset of the services
described in Figure 1 and exclusively relying on Web Services technology. In this section,
we show how the scientist is able to enact workflows in myGrid.

An in silico experiment typically involves using several bioinformatics databases and
algorithms available on the World Wide Web. Currently, these resources are integrated
by a “query by navigation” process, i.e. by cutting and pasting across browser windows.
Alternatively, a script (such as perl script or bat file) may be written to facilitate the
frequent repeat of in silico experiments. There are a number of limitations of this current
state of practice that workflows in the myGrid environment address.

First, there is the problem of knowing what in silico experiment to perform. A
user typically has an understanding of what they are trying to achieve in bioinformatics
terms and might know some specific Web resources or script, based on past experience.
How they acquired this experience, how they keep their knowledge up-to-date, and how
they adapt previous experiences to new tasks are essential elements of the experimental
process, which we intend to make explicit.

Second, there is the problem of incorporating new resources. In most situations
the user is interested in a specific type of resource, a SWISS-PROT database, rather
than a specific resource instance such as the SWISS-PROT database hosted at a specific
institution. If their first (default) choice is unavailable, then the user would like to use
an alternative of the same type. In the current state of practice, scripts tend to include
hard-coded references to specific resources.

Third, there is the limited recording of how in silico experiments have been performed.
Without knowing what resources have been used in the derivation of a result, there is
no way of knowing if it might be worthwhile re-running the in silico experiment in the
light of more recent knowledge (or if the result should be disregarded, as more recent
knowledge has rendered some of the experimental assumptions invalid.)

Fourth, there is difficulty in propagating good in silico experimental practice. This
essentially incorporates the previous three issues and extends them beyond the indi-



vidual scientist to the sharing of resources between research communities. Within an
e-Science community, it is not just the available data that is valuable, but also knowing
the acceptable/proven ways of combining that data to generate new insights.

3.1 Prototype Experiment

In our prototype, a myGrid user has access to a personal repository containing their
domain data (and results), a workflow repository containing the available workflow scripts
and a service directory of the available service instances. Each data item in the personal
repository has an associated concept type (a term in the ontology); such concept types
are used to initiate the enactment of in silico experiments, as we now explain.

Potential workflows are identified through a conversation with the ontology service.
A specific user interface is used to incrementally build up an abstract description of a
workflow, starting with the selected concept type. Once the abstract workflow description
is complete, it can be classified to give a workflow service type identifier (also a term in
the ontology). This is used to retrieve the identifiers of workflow scripts that match this
required type, and from the identifier, the workflow script itself. In this way, the user
interacts with the ontology service to determine the concept that match their task; then,
they get a list of all the workflow scripts of this type and choose the one to run (perhaps
using some metadata to help in the selection).

3.2 Workflow Details

Inspired by WSFL [11], the workflow definition consists of a set of service providers,
activities, data links and control links between activities. For many myGrid workflows,
each activity has its own service provider, which includes a locator element to identify
the Web Service, to be used by the workflow enactment engine. It is possible for the
locator to be static and directly reference the WSDL definition of the service, but it is
more usual for the locator to be dynamic. In this case, it gives the service type identifier
that is used to lookup possible services (using UDDI) from the service directory. Each
activity is described in terms of its service provider and an operation, thus expressing
the specific provided operation that matches the abstract activity in the workflow. The
data links describe how the outputs of an activity are mapped to the inputs of other
activities, while the control links are used to decide when the activities should be fired.

The enactment of a workflow script starts by sending the script and input data to the
workflow enactment service. This responds by returning a workflow instance identifier
that the user interface portal can use to query the workflow status and identify the
workflow result in the personal repository.

The use of a dynamic locator to identify a service provider in the workflow script is the
main mechanism for abstracting a workflow over specific service instances. The dynamic
locator gives the service type identifier; any service instance that has registered under
this identifier in the service directory is a potential match. The dynamic locator also
gives the policy to be used for selecting between the potential services. In the prototype,
only two policies are available. The simplest policy is first, where the enactment engine



chooses the first element in the list returned from the service directory. The other is user-
choice, where the list of services is sent to the user agent who makes choice on behalf of
the user, possibly interacting with the user through the portal, if configured to do so.

The workflow enactment service also creates a provenance log within the personal
repository for each workflow instance. This trace includes: the initial data, the workflow
script, the intermediate results, the actual service instances selected and the time taken
for the service operations. These logs could be viewed through the portal to understand
the detailed derivation of a particular result.

The definition of an in silico experiment as a workflow means that it exists as an
explicit piece of data that can be shared, copied and altered by a community of scientists.
Even within the context of the simple examples in the prototype, it was clear that what a
user might consider a single in silico experiment might be supported by many workflows.
There are variants of workflows that have the same type and the choice between them is
often the personal choice of the user. Some users will always want to be involved in the
dynamic selection between alternative services, while others will be content to leave that
to the enactment engine, or an agent acting on their behalf. Another way that workflows
of the same type might vary is in the filtering of sets of intermediate results. (In the
current state of practice, this corresponds to a user who applies their knowledge to cut
and paste selected data between resources in an in silico experiment.)

While our project is still at an early stage, we were able to enact workflows that
expressed rather complex queries in bioinformatics, such as (i) Has anyone else studied
the effect of neurotransmitters on the circadian rhythms of Drosophila? (i) How do
the functions of the clusters of proteins from my experiment interrelate? (4ii) What are
the proteins with a particular function? (iv) What is known about a given protein?

The enactement of workflows has shown that there is a need for user preferences to
guide the selection of services to invoke. There is scope for user agents to (semi-)automate
the customisation of service selection, and also for negotiation when multiple service
with complementary characteristics are available to the user. This is precisely the role
of software agents, which we discuss in the following section.

4 Agents in Bioinformatics Grids

The bioinformatics domain is characterised by rapid and substantial change over time.
The volume of data poses problems, but the change in the resources available to the
bioscientist is a distinct problem; new resources can appear, old ones can disappear, and
some can simply change. Although there are several well-known and highly regarded
databases, limiting a system to only these could impose undesirable constraints. Thus,
any system intended for application to the bioinformatics domain should be able to
cope with this dynamism and openness, and nothing addresses these concerns in quite
the way as the agent approach. Agents are flexible, autonomous components designed to
undertake overarching strategic goals, while at the same time being able to respond to the
uncertainty inherent in the environment. On the one hand, agents provide an appropriate
paradigm or abstraction for the design of scalable systems aimed at this kind of problem;



on the other, the field of agent-based computing offers a set of technologies that may be
used for particular purposes in certain aspects of the system, including personalisation,
communication, negotiation, which we discuss below.

4.1 User Agent

The user agent of Figure 1 is an agent in the sense that it represents a user within the
myGrid system (so could also be described as a personal agent [12]). It can autonomously
provide the personal preferences and conditions of a user to other parts of the system.
This is useful, in particular, when a workflow is being enacted and a choice of services
becomes available. The choice should not be made arbitrarily, but on the priorities and
circumstances of the particular user. For example, a user may have greater trust in the
ability of one service to produce accurate results than another, or the user’s operating
system may only support some forms of interaction between services and the user. The
user should not have to be queried each time a service must be chosen, as these preferences
and previous choices can be recorded and acted upon by the user agent to select from
each set of options presented to it. We call this function personalisation.

Another application of the user agent is as a contact point between services within
myGrid and the user. By having an intermediary able to receive, for example, requests
from services for the user to enter data or notifications about changes to remote databases,
these messages can be provided to the user only when the user is able and willing to receive
them. Conversely, the user can delegate the details of a procedure to the user agent, such
as authenticating itself with a service before use, or for personalisation of workflows as
described above.

4.2 Agent Communication Language

A key requirement of myGrid is the design of a future proof environment in which collab-
orative distributed bioinformatics applications may be developed. Bioinformatics is not
a green field, and multiple protocols and standards are already supported by the com-
munity. Our methodology is to design a generic architecture able to support multiple
existing protocols, languages and standards, and which hopefully will be able to accom-
modate future developments. In particular, we want to design an abstract communication
architecture that we can map onto concrete communication technologies.

At the same time, in the eBusiness community, Web Services have emerged as a
set, of open standards, defined by the World Wide Web consortium, and ubiquitously
supported by IT suppliers and users. They rely on the syntactic framework XML, the
transport layer SOAP [20], the XML-based language WSDL [19] to describe services, and
the service directory UDDI [18]. Web Services therefore look like a strong contender for
Grid Computing, as illustrated by the recent Open Grid Service Architecture (OGSA) [7]
which extends Web Services with support for the dynamic lifecycle management of Grid
Services.

The idea of an “agent communication language” dates back from the DARPA Knowl-
edge Sharing Effort, which led to the design of KQML (Knowledge Query and Manipula-
tion Language) [5], and was followed later by FIPA (Foundation for Intelligent Physical



Agents) Agent Communication Language [6].

In agent systems, it is common practice to separate intention from content in com-
municative acts, abstracting and classifying the former according to Searle’s speech act
theory [17]. An agent’s communications are thereby structured and classified according
to a predefined set of “message categorisations”, usually referred to as performatives.

In previous work, we have successfully adapted a key concept of the Nexus commu-
nication layer [9] to the world of agents, which resulted in SoFAR, the Southampton
Framework for Agent Research [14]. Communications between agents take place over
a virtual communication link, identified by a startpoint and an endpoint. An endpoint
identifies an agent’s ability to receive messages using a specific communication protocol.
An endpoint extracts messages from the communication link and passes them onto the
agent. A startpoint is the other end of the communication link, from which messages get
sent to an endpoint. Given a startpoint, one can communicate with a remote agent, by
activating a performative on the startpoint, passing the message content.

In [13, 1], we have described how the idea of agent communication languages, and
the startpoint/endpoint communication model could be mapped onto the communication
stack of Web Services. In [13], we only focused on the communication layer by encoding
performatives and message contents in SOAP. In [1], we made use of the WSDL language
to describe agents and the performatives they support, so that such definitions could be
published in the UDDI registry, discovered and re-used like any other Web Service.

This approach turns out to be promising, as it offers a declarative communication
semantics, which promotes inter-operability, openness, and dynamic discovery and reuse
of agents. It also opens the agent world to the Web Services community, helping in the
design of more complex interactions, as discussed in the following section.

4.3 Negotiation Broker

Another application of research from the agent field is in the area of negotiation. Services
and the users and service providers they interact with will have differing criteria over the
preferable quality and content of the service they receive.

An area in which negotiation can be seen as particularly useful in myGrid is notifi-
cation support. The providers of various services may want to send out into the wider
system notifications concerning improvements to tools, changes to databases or updates
concerning the state of enacted workflows, etc. Other services or agents will want to reg-
ister to receive some subset of these notifications. For stability, we support asynchronous
messages, and manage their distribution using a notification service.

4.3.1 Quality of Service

The subjects (quantitative and qualitative) over which negotiation takes place could
include the following forms of quality of service.

e The cost of receiving the notification,

e the topic (event category) of the notifications,

10



the frequency with which notifications are received, e.g. every time a change occurs,
daily, hourly,

the generality of the change described by the notifications,

the form in which the information in the notification message is supplied,
e the accuracy of information contained within a notification.

Quality of service refers to these distinctions in both what a publisher produces and how
it produces it.

A publisher of notifications will be able to produce notifications matching (or ex-
ceeding, where appropriate) one or more measures of quality of service. For example,
a publisher may be able to publish notifications on a particular topic every minute or
every hour. A consumer of notifications may prefer, or demand, one measure of quality
of service over another. Whether, or how well, their demands can be met by a publisher
depends on the quality of service that the publisher can provide.

If demands cannot be met exactly, the consumer may choose to negotiate with the
publisher to find the next best quality of service that the publisher can provide. For
example, if the consumer desires notifications weekly and the publisher can provide daily
or fortnightly notifications, the subscriber must find this out from the publisher and
then decide between them, or decide not to subscribe at all, based on the subscribers
particular priorities. Alternatively, the publisher may be able to exceed the quality of
service in several ways which the subscriber may be unaware of, which could also lead to
negotiation.

4.3.2 Model

As the notification service must provide notification support for a potentially large and
varying number of consumers, it should not change its contract based solely on the results
of negotiation between a single consumer and a publisher. Therefore, the notification
service should have some control over the quality of service agreed upon. There are
other reasons that the notification service may usefully limit the interaction between the
publisher and consumer, such as limiting the knowledge of one by the other for reasons
of privacy.

We propose using a quality of service broker that is an agent conceptually contained
within the notification service (available through the same communication channels).
The quality of service broker will negotiate on behalf of each consumer wishing to receive
notifications of a specified quality, then provide a final proposal to the consumer. It can
negotiate with any of the publishers known to the notification service, and also limit
the agreed quality of service to that acceptable to the notification service. We wish to
make the quality of service broker able to negotiate with publishers produced by various
providers, so we use the concept of pluggable negotiation algorithms, allowing the quality
of service broker to select the appropriate protocol for negotiating with a publisher.

11



5 Conclusion

In this paper, we have presented the myGrid architecture and overviewed possible use
of agents. MyGrid aims to provide a personalised environment for the bioscientists,
which helps them to automate, repeat and therefore better achieve their experiments.
Agents are particularly useful in tailoring the myGrid system to the priorities of individual
scientists, personalising each step of a workflow and negotiating on their behalf. It can be
seen from our discussion that, along with dynamic workflow enactment, standardisation
of data semantics via ontologies and the many other facilities of myGrid, agents can make
conducting in-silico experiments flexible and more easily controlled by the individual or
collaborating scientists.

The examples of use of agency we have presented, while already offering a capability
inexistent in current bioinformatics environment, still remain rather localised to some
specific services (user agent or negotiation over quality of service of notification service),
or components such as a communication layer.

For the long term, agent-based computing also counts in its armoury a range of
techniques for enabling individual components to collaborate with others, as well as for
competing with others in the provision of services as may be found in bioinformatics. For
example, the former aspects include issues in the construction of the virtual organisation
mentioned earlier, whereby different services come together in some coherent whole sub-
system for a particular purpose; and issues in the regulation of open societies of services
through the use of norms and electronic institutions. The latter aspects, for example,
include the possible use of sophisticated auction mechanisms, or electronic marketplaces,
for obtaining the best services or resources at the least cost to the user.

6 Acknowledgements

This research is funded by EPSRC myGrid project (reference GR/R67743/01).

References

[1] Arturo Avila-Rosas, Luc Moreau, Vijay Dialani, Simon Miles, and Xiaojian Liu.
Agents for the Grid: A Comparison with Web Services (part II: Service Discovery).
In Workshop on Challenges in Open Agent Systems, Bologna, Italy, July 2002.

2] K. Bryson, M. Luck, M. Joy, and D. Jones. Agent interaction for bioinformatics
data management. Applied Artificial Intelligence, 15(10):917-947, 2001.

3] K. Decker, X. Zheng, and C. Schmidt. A Multi-Agent System for Automated Genetic
Annotation. In The fifth ACM International Conference on Autonomous Agents,
Montreal, Canada, May 2001.

[4] Vijay Dialani, Simon Miles, Luc Moreau, David De Roure, and Michael Luck. Trans-
parent fault tolerance for web services based architectures. In Eighth International

12



Europar Conference (EURO-PAR’02), Lecture Notes in Computer Science, Pade-
born, Germany, August 2002. Springer-Verlag.

[5] T. Finin, Y. Labrou, and J. Mayfield. Software Agents, J. Bradshaw, Ed., chapter
KQML as an Agent Communication Language. MIT Press, 1997.

(6] FIPA: Foundation for Intelligent Physical Agents.
http://drogo.cselt.stet.it/fipa/.

[7] Tan Foster, Carl Kesselman, Jeffrey M. Nick, and Steven Tuecke. The Physiology of
the Grid — An Open Grid Services Architecture for Distributed Systems Integration.
Technical report, Argonne National Laboratory, 2002.

[8] Tan Foster, Carl Kesselman, and Steve Tuecke. The Anatomy of the Grid. Enabling
Scalable Virtual Organizations. International Journal of Supercomputer Applica-
tions, 2001.

[9] Tan Foster, Carl Kesselman, and Steven Tuecke. The Nexus Approach to Integrating
Multithreading and Communication. Journal of Parallel and Distributed Computing,
37:70-82, 1996.

[10] Thomas R. Gruber. Toward principles for the design of ontologies used for knowledge
sharing. Technical Report KSL-93-04, Knowledge Systems Laboratory, Stanford
University, August 1993.

[11] Frank Leyman. Web Services Flow Language (WSFL). Technical report, IBM, May
2001.

[12] Pattie Maes. Agents that Reduce Work and Information Overload. Communications
of the ACM, 37(7):31-40, July 1994.

[13] Luc Moreau. Agents for the Grid: A Comparison for Web Services (Part 1: the
transport layer). In Henri E. Bal, Klaus-Peter Lohr, and Alexander Reinefeld, ed-
itors, Second IEEE/ACM International Symposium on Cluster Computing and the
Grid (CCGRID 2002), pages 220-228, Berlin, Germany, May 2002. IEEE Computer
Society.

[14] Luc Moreau, Nick Gibbins, David DeRoure, Samhaa El-Beltagy, Wendy Hall, Gareth
Hughes, Dan Joyce, Sanghee Kim, Danius Michaelides, Dave Millard, Sigi Reich,
Robert Tansley, and Mark Weal. SoFAR with DIM Agents: An Agent Framework
for Distributed Information Management. In The Fifth International Conference
and Exhibition on The Practical Application of Intelligent Agents and Multi-Agents,
pages 369-388, Manchester, UK, April 2000.

[15] N.W. Paton, M.P. Atkinson, V. Dialani, D. Pearson, T. Storey, and P. Watson.
Database access and integration services on the grid. In Fourth Global Grid Forum
(GGF }) Databases and the Grid BOF, 2002.

13



[16] Ravi S. Sandhu and Qamar Munawer. How to do discretionary access control using
roles. In ACM Workshop on Role-Based Access Control, pages 47-54, 1998.

[17] John Searle. Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, 1969.

[18] Universal Description, Discovery and Integration of Business of the Web.
www.uddi.org, 2001.

[19] Web Services Description Language (WSDL). http://www.w3.org/TR/wsdl, 2001.

[20] XML Protocol Activity. http://www.w3.0rg/2000/xp, 2000.

14



