JDOS: A Jini Based Distributed Operating
System

M. Saywell and J.S. Reeve*
Department of Electronics and Computer Science
University of Southampton
Southampton SO17 1BJ, UK
email jsr@ecs.soton.ac.uk

September 2, 2002

Abstract

J-DOS provides and integrated JAVA environment for the execu-
tion of a program across an interconnected network of heterogeneous
computers. The system provides a file system, shared memory and a
distributed execution scheme, all of which is transparent to the user.
The framework used to provide these service is sufficiently general
as to allow the provision of extra services by the user. We describe
the client-server execution, remote execution and the shared file sys-
tem, paying particulat attention to the techniques used to distribute
threads over many nodes. Distributed Mandelbrot set generation and
rendering is used to benchmark and validate the the remote execution
and load balancing aspects of the system.

1 Introduction

With the wide scale deployment of fast computer interconnection technology;,
for instance, 100Mbit and Gigabit ethernet, the clustering of computers is

*Corresponding Author



JDOS: A Jini Based Distributed Operating System 2

becoming more usual. The purpose of a cluster is to present a number of phys-
ically distinct machines as a single networked virtual computer[1]. However
such systems are typically only distributed at the processing level, requiring
independently configured third party software to provide further distributed
flunctionality. For example NFS[4] is commonly used to share file systems
and X11[2] provides support for remote GUIs. Our purpose is to provide
the essential distributed services of remote processing, shared memory and
a common storage medium and offer a framework which is readily exten-
sible so that supplementary services can be added with minimal program-
ming overhead. In contrast to high performance computing environments like
Beowulf[3] which usually provide The Message Passing Interface[6], J-DOS
provides the ability to adapt and scale in an un-managed way. Additionally
the system doesn’t attempt to disguise its distrubted nature and instead al-
lows the programmer to distribute processes when it is most suitable to do
SO.

J-DOS provides a dynamic extensible distributed computing environment in
100% pure Java. The system includes a file system, shared memory and a
distributed processing environment. Provision is made for extra services to be
added by the user without detailed knowledge of the system or the underlying
Jini and RMI behaviour. The J-DOS environment is “zero configuratio”, in
the sense that the introduction of a new service is made simply by running
it to trigger the automatic registration registration of the service which then
becomes available to clients. Finally, J-DOS provides classes which automate
the thread distribution and collection processes.

2 Description

Remote Method Invocation RMI[7] is a feature of Java which allows a JVM
running on one host to invoke methods on another host, arguments and
return values are passed across the network. RMI is essential as it is the
only way provided that allows distinct instances of a Java Virtual Machine
running on separate hostes to communicate but it requires remotely invokable
methods to be pre-declared and stubs generated. The programmer must also
deal know the location of the remote service. The Jini[5] set of classes, built
on top of RMI, however does provide a client server architecture in which
the client can locate and utilise service by name reference. When a client
connects to a Jini enabled network it will typically send out a multicast
request asking for all look-up servers to reply with their network address.



JDOS: A Jini Based Distributed Operating System 3

A look-up server maintains a registry of all currently available services. As
part of the registration process the server must provide a proxy. This is
held on the look-up server and downloaded to clients when they request the
corresponding service. The client uses the proxy to talk directly to the server
which provides the Java byte code necessary for the client to control and use
the service. The client needs to know the method signatures of the proxy
in advance as it uses them to filter the available services, as reported by the
look-up server.

3 Conclusions and Future Delelopments

The system is currently being developed by adding a remote GUI interface
so that graphical applications could be displayed on one node and the J-DOS
interface on another. Inter-thread communication is also being developed so
that programmers are not restricted to the client server model. This would
allow parallel programs with any logical communication patterns to be run
under the system. The file system, as so far developed, is not distributed
and woul benefit from being so by allowing more overall storage capacity and
allowing data searches to be distributed over all available nodes. Redundancy
could also be built into such a file system making it more robust.

Overall J-DOS provides a dynamic extensible distributed computing environ-
ment in Java, with well defined interfaces by which programmers can write
and distribute there own programs, without detailed knowledge of the cluster
and using either client server or shared memory communication or both.

References
[1] C.Catlett and L.Smarr. Metacomputing. Communications of the ACM,
35:44-52, 1992.

[2] D.Young. X Window system programming and applications with XT.
Prentice Hall, 1990.

[3] T.Sterling nad G.Bell and J.Kowalik. Beowulf Cluster Computing with
Linuz. MIT Press, 2001.

[4] R.Sandberg. The SUN network file system: Design, implementation and
experience. Technical report, SUN Microsystems, Inc., 1985.



JDOS: A Jini Based Distributed Operating System 4

[5] S.Oaks and H.-Wong. Jini in a nutshell. O’reilly, 2000.

[6] W.Gropp, M.Snir, B.Nitzberg, and E.Lusk. MPI: The Complete Refer-
ence. MIT Press, 1998.

[7] W.Grosso. Java RMI. O’reilly, 2002.



