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Abstract

Ultrashort coherent phonon-pulse generation and detection is investigated in a GaAs–Al0:3Ga0:7As quantum well

structure containing three wells of different widths using an optical pump and probe method. The pump photon energy

is tuned to the region of the hh1–e1 transition energies of the wells and the probe photon energy is chosen for detection

of the phonon pulses that reach the sample surface. By studying the dependence of the probe reflectance change on the

pump photon energy, we demonstrate the possibility of wavelength-selective excitation of picosecond acoustic-phonon

pulses in quantum wells. r 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

The recent development of ultrashort-pulse
mode-locked lasers has allowed the excitation
and detection of high-frequency acoustic-phonon
pulses in solids. This technique, known as laser
picosecond acoustics, relies on the excitation of
acoustic-phonon pulses with sub-picosecond pump
laser pulses and their detection with appropriately
delayed probe pulses [1]. It has been applied to a
wide variety of metallic and semiconductor films
and nanostructures.

Application to semiconductor nanostructures is
interesting for elucidating the basic physics of
phonon generation and propagation in confined
quantum geometries. Quantum nanostructures
offer a vast testing ground in this field for probing
phonon generation mechanisms, hot electron
relaxation and electron–phonon interactions. By
exploiting the techniques of band engineering,
well-defined and highly confined phonon genera-
tion regions can be realized. Such structures
could serve as high-frequency THz phonon trans-
ducers to be used, for example, for phonon
spectroscopic studies. Preliminary experiments
involving the application of laser picosecond
acoustics to GaAs=AlGaAs quantum wells have
been reported [2,3]. It was shown that ultrashort
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acoustic-phonon pulses can be generated in buried
quantum wells and detected at the sample surface.
Quantum wells have a sensitive optical-wavelength
tunable response owing to their excitonic reso-
nances defined by accurately characterized wave
functions. We exploit this tunability in the present
study by demonstrating how the phonon genera-
tion region can be optically selected for a triple
quantum well structure.

2. Experiment and results

A GaAs=Al0:3Ga0:7As quantum well structure
was prepared on a GaAs (1 0 0) substrate using
metal organic vapor phase epitaxy (MOVPE) to
have three buried GaAs quantum wells of different
thicknesses (and hence different excitonic optical
resonances). Details of the design are shown in
Fig. 1. The calculated hh1–e1 transition energies at
300 K for isolated quantum wells with widths
corresponding to the labels A, B, and C in
Fig. 1 are 1.55, 1.48 and 1:61 eV; respectively.
Photoluminescence measurements at room tem-
perature show three distinct luminescence peaks at

around 1.51, 1.46 and 1:56 eV; that are reasonably
close to the design transition energies of the three
wells.
Infrared optical pump pulses of photon energy

tunable in the range 1.46–1:57 eV (wavelength
840–790 nm), duration B700 fs; and repetition
rate 82 MHz from a mode-locked Ti:Sapphire
laser are used to excite longitudinal acoustic-
phonon pulses in the quantum wells. The pump
photon energy range spans the hh1–e1 transition
of the three wells, low enough for the light to be
transmitted by the Al0:3Ga0:7As barrier layers. The
pump light is focused onto the sample surface with
a spot diameter B20 mm; with an incident fluence
B0:3 mJ cm�2 per optical pulse. The phonon
pulses excited inside the sample can be detected
at the top surface through the change in complex
reflectance arising from the photoelastic effect and
from the surface displacement. A blue probe beam
(with a penetration depth of o10 nm) of delayed
optical pulses of duration B200 fs derived by
doubling the pump photon energy is used for
detection of the change in (complex) reflectance
dr=r ¼ rþ idf in the near-surface region of the
sample using a Sagnac interferometer [4]. The
fluence of the probe pulses is B0:03 mJ cm�2 and
the spot diameter is B10 mm:
Some representative results for the real (r) and

imaginary (df) parts of the optical reflectance as a
function of delay time are shown in Fig. 2 for
pump photon energies 1.57 and 1:49 eV: Features
appearing at delay times > 230 ps correspond to
the arrival at the surface of phonon pulses
generated in the GaAs substrate. The vertical
scales have been adjusted to make this substrate
signal equal in all the graphs. The signals at
B100 ps correspond to the arrival at the surface
of phonon pulses generated in the quantum
wells. The overall duration for this quantum well
signal is significantly longer for the 1:57 eV
excitation than that for the 1:49 eV excitation.
This is not unexpected considering the optical
absorption characteristics of the wells: the lower
pump energy (1:49 eV) should excite phonon
pulses only at well B, while the higher pump
energy (1:57 eV) should do so in all the wells. (Well
B is the thickest and thus has the lowest hh1–e1
transition energy.)

Fig. 1. Dimensions of the GaAs=Al0:3Ga0:7As quantum well

structure.
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3. Discussion

In order to interpret the experimental data
further, we have performed a simulation that
takes into account the phonon generation, propa-
gation, and detection processes. The absorbed
photons set up an excited electron–hole (e–h)
distribution and also produce a change in lattice
temperature distribution governed by the relaxa-
tion of this excited e–h distribution. These e–h and
temperature distributions lead to an initial stress
mediated by the deformation potential and the
thermal expansion coefficient, respectively. For
semiconductors the deformation potential me-
chanism is often the dominant mechanism, and
this is expected to be the case here [3,5–7]. We
therefore assume that the spatial distribution of
the initial stress is proportional to that of the
initial excited e–h density, independent of the
excess electron energy. The excited e–h density

depends on the optical constants of the wells and
on the spatial profile of the appropriate wave
function(s). However, for simplicity, we assume
here that this spatial profile is a top-hat function
defined by the well width.
The phonon propagation is calculated from the

one-dimensional elastic wave equation, using
literature values of the longitudinal sound velo-
cities 4.73 and 4:95 nm ps�1 for the GaAs and
Al0:3Ga0:7As layers, respectively [8]. The multiple
acoustic reflection problem is treated using a
knowledge of the acoustic impedance mismatch
between the GaAs and Al0:3Ga0:7As layers. (For
example, the acoustic reflectance for strain at such
an interface is B0:02:) Frequency-dependent
ultrasonic attenuation is not included here for
simplicity.
The travelling acoustic-phonon pulses modulate

the optical properties of the sample inhomogen-
eously, and a general treatment of this optical
modulation is possible [9]. Here, the inhomoge-
neous perturbation occurs near the sample surface
within the probe light penetration depth. Fig. 2(d)
and (f) show fitted results for dfðtÞ for the case in
which all three quantum wells are excited and for
the case in which only one quantum well (B) is
excited, respectively. The overall agreement with
experiment is good.

4. Conclusions

In conclusion, we have studied the acoustic-
phonon generation and detection in a
GaAs=Al0:3Ga0:7As quantum well structure using
laser picosecond acoustics. The excitation-wave-
length dependence of the echo shapes conclusively
demonstrates that we have achieved wavelength-
selective phonon excitation in the quantum wells.
This ease of optoacoustic tuning should lead to
interesting applications in high-frequency phonon
spectroscopy.
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Fig. 2. Real (r; (a) and (b)) and imaginary (df; (c)–(f)) parts of
the reflectance change at pump photon energies 1.57 and

1:49 eV: The pump-energy dependence of the phonon genera-

tion region is clearly seen from the difference in signal shape at

B100 ps: Calculated results for df are shown in (d) and (e) for

the cases of three-well excitation and single-well (B) excitation,

respectively.

O. Matsuda et al. / Physica B 316–317 (2002) 205–208 207



Education, Science, Sports, and Culture (Japan)
and the Murata Science Foundation.

References

[1] C. Thomsen, H.T. Grahn, H.J. Maris, J. Tauc, Phys. Rev. B

34 (1986) 4129.

[2] J.J. Baumberg, D.A. Williams, K. K .ohler, Phys. Rev. Lett.

78 (1997) 3358.

[3] I. Ishii, O. Matsuda, T. Fukui, J.J. Baumberg, O.B. Wright,

in: N. Miura, T. Ando (Eds.), Proceedings of the 25th

International Conference on Physics and Semiconductors,

Osaka 2000, No. 87, Springer Proceedings in Physics,

Springer, Berlin, 2001, p. 871.

[4] D.H. Hurley, O.B. Wright, Opt. Lett. 24 (1999)

1305.

[5] O.B. Wright, V.E. Gusev, Appl. Phys. Lett. 66 (1995)

1190.

[6] N.V. Chigarev, D.Y. Paraschuk, X.Y. Pan, V.E. Gusev,

Phys. Rev. B 61 (2000) 15 837.

[7] O.B. Wright, B. Perrin, O. Matsuda, V.E. Gusev, Phys.

Rev. B 64 (2001) 081202(R).

[8] S. Adachi, J. Appl. Phys. 58 (1985) R1.

[9] O. Matsuda, O.B. Wright, to be published.

O. Matsuda et al. / Physica B 316–317 (2002) 205–208208


	Wavelength selective photoexcitation of picosecond acoustic-phonon pulses in a triple GaAs/Al0.3Ga0.7As quantum well structure
	Introduction
	Experiment and results
	Discussion
	Conclusions
	Acknowledgements
	References


