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Abstract

In this paper, we develop decision making heuris-
tics for rational agents using artefacts of cognition
such as observation, learning and memory. Specif-
ically, we extend previous research in this area by
incorporating essential aspects of multi-agent inter-
actions such as building behavioural models via ob-
servation, selectively choosing interaction partners
and forming cooperating groups by identifying mu-
tual capabilities. In particular, we demonstrate that
cognitive capabilities enable agents to successfully
identify matching partners and establish coopera-
tive groups in a community of selfish agents with
varying expertise.

1 Introduction
Agent-based systems are increasingly being used in open en-
vironments such as the Semantic Web, the Grid and electronic
commerce applications. Typically, agents deployed in such
systems have different owners and act as self-interested en-
tities to achieve their corresponding goals. In such systems,
it is not feasible to predict in advance all possible services
that agents would require in order to achieve their individual
and collective goals[Jennings, 2001]. Also, it is not possible
to enumerate a priori the contexts in which an agent might
need to interact with another for its service requirements.
Against this background, this paper develops a set of decision
heuristics that assist self-interested agents in finding the nec-
essary service providers by interacting with a limited num-
ber of known acquaintances. In particular, we demonstrate
that flexible strategies can be developed using elements of
cognition, such as memory and learning, that allow agents to
successfully identify matching partner agents and form stable
interacting groups in a population of self-interested agents.

Previous research has developed strategies of rational be-
haviour for agents interacting in competitive multi-agent
domains [Axelrod, 1984; Sandholm and Crites, 1995].
These works have typically focused on developing utility-
maximizing decision strategies for agents playing idealized
“games” such as the Prisoner’s Dilemma. However, issues
such as whom to interact with, what information to reveal
to whom and when, whether and how interactions with one

agent can affect relationships with others, and whether co-
operation can emerge by identifying mutual service require-
ments are left unaddressed. To rectify this shortcoming, in
this paper we have designed agent decision making heuristics,
based on capabilities of individual cognition, that address
these fundamental issues. Specifically, cognitive abilities har-
ness a rich set of information about the environment that facil-
itate context analysis and allow for flexible behaviour. There-
fore, we believe that decision mechanisms supported by cog-
nitive abilities are likely to lead to robust and flexible agent
models that are suitable for deployment in complex, dynamic
domains of practical importance.

To apply and evaluate the decision heuristics, we have sim-
ulated a generic setting where agents are required to complete
sets of tasks that require both expertise and resource to be fin-
ished. Not all agents have all the expertise and resource ca-
pabilities to complete any task. Hence, an agent searches for
service from those with the required capabilities. This service
can be sought from agents with whom interactions exist cur-
rently. Alternatively, agents can search for new acquaintances
if their current acquaintances cannot provide the required ser-
vice. In so doing, the realistic constraint of each agent having
a limited number of acquaintances is assessed. This is im-
portant because it is impractical for an agent to interact with
all the other agents in the domain. Also, we have designed
agents that interact only with those that are capable of pro-
viding the required service. Without this, a self-interested
agent would stop interacting with them. During interactions,
the agents observe, analyse, learn and memorize models of
other agents. With the above specifications and equipped with
cognitive capabilities, our agents exhibit context-dependent
behaviour with respect to, whom to request assistance from,
whether to acknowledge a request for assistance, whether to
seek a new acquaintance, when to reveal information about
new acquaintances to other agents and whether it is “useful”
to continue interactions with a particular acquaintance. In this
work all the decisions are solely targeted towards improving
the agent’s own utility: we do not consider inherently social
agents that act towards the goal of the community[Panzarasa
et al., 2001]. In this context, we show that the agents success-
fully identify the capabilities of other agents and groups of
mutually cooperating partners emerge despite the constraint
of interacting with a limited number of acquaintances and all
being self-interested entities.



This work advances the state of the art in the following
ways: (a) strategies of rational decision making in a multi-
agent context are designed using artefacts of cognition and,
(b) agent decision strategies are shown to be effective in iden-
tifying partners and in forming cooperative groups in a com-
munity of selfish agents .

The remainder of the paper is structured in the following
way. Section 2 discusses related research to establish the con-
text for our work. Section 3 describes the domain in which we
evaluate the agent decision strategies. Section 4 details for-
mulations of the different decision heuristics. Subsequently,
Section 5 outlines a brief summary of the simulation before
Section 6 reports the experimental results. Finally, Section 7
concludes and presents proposals for future work.

2 Related Work

A key research issue in the field of multi-agent systems
(MAS) is that of designing adaptive decision mechanisms that
support agent interactions in open environments. In addition
to MAS researchers proposing theoretical and computational
models of agents to explain such behaviour, useful results
have also been obtained from social and cognitive sciences.
Both strands of work are discussed in this section.

Azoulay-Schwartz and Kraus[2001] have developed a
game theoretic approach for strategy selection where agent-
pairs repetitively interact by asking and responding to
queries. However, in their work, agents do not evaluate the
consequences of decisions on their relationships with other
agents, neither do they take decisions based on their current
relationships with others. Multiple self-interested agents in-
teracting to form coalitions have been studied in the work of
Lerman et. al[2000]. However, in their work, agents do not
employ cognitive abilities to recognise behaviours of other
agents, nor do they adapt their action selection during inter-
actions. Learning another agent’s strategy and analysing past
experience to take interaction decisions are employed in[Sen,
2002]. However, assumptions such as any agent can inter-
act with any other constrain the scalability of his strategies.
Also, agents do not model environment characteristics and
do not employ future lookahead to predict the behaviour of
another agent. We remove all these restrictions in our work.
Castelfranchi and Falcone[1998] advocate trust-based inter-
action mechanisms for multi-agent collaboration. Although
they use a different mechanism, their work is related to our
approach in that it is inspired by the notion of using cogni-
tion for autonomous decision making. Yu et. al[2003] simu-
late a social network for information access in a multi-agent
scenario. They use referrals to search for matching expertise
and show that learning improves the network quality which
is a measure of how close in the network are agent-pairs with
matching expertise. In our work, since agents are solely self-
interested, they deliberate on the consequences of such de-
cisions in terms of the cost incurred. Each such decision is
facilitated by their individual cognition and directed towards
improving their own utility. Agents with both individual and
societal decision-making components are studied in[Hogg
and Jennings, 2001]. Here, learning others’ behaviour and
employing a meta-level reasoning to adapt strategies of in-

teractions are shown to yield improvements in utility earn-
ings. However, though this work dwells on adaptive agent
behaviour, it does not address emergence of group structures
as an influence of the task environment and the individual ex-
pertise of agents.

Our work also builds upon certain design methodologies
from the social network literature (e.g.,[Jin et al., 2001;
Kautzet al., 1997]). In these works, an entity is set to have a
limited number of direct acquaintances at any time. Also,
the relationships between acquaintances weaken if interac-
tions fail to occur. Entities get referred to prospective collab-
orators via acquaintances which facilitates information dis-
semination. In our work, we adapt these specifications to
shape our simulation dynamics. Specifically, the social net-
work literature deals with abstract simulations of the growth
of a network from a random graph, and this is not concerned
with studying agent decision strategies as mechanisms for the
emergence of group structures in a multi-agent system.

The final strand of related work is that of cognitive sci-
ence. This is mostly focused on explaining individual cog-
nition and rational judgments[Betchel and Graham, 1998;
Forgas, 1991]. The first significant attempt to unite the
threads of research in cognitive science, sociology and multi-
agent systems can be accredited to the work of Sun[2001].
His work emphasises the application of the theories of cog-
nitive science in agent-based applications. Understanding
well the issues of individual cognition would enable agent re-
searchers to model agent behaviour more accurately in open
environment settings. In our work, we demonstrate that cog-
nitive knowledge empowers an agent with the reasoning capa-
bility that helps selecting the appropriate actions to maximize
its self-interest.

3 Domain and Agent Roles

We start by describing a generic setting in which agents ex-
ecute tasks which require certain levels of expertise and re-
source, not all of which are available to all agents. This set-
ting can be mapped to several domains of practical interest
with appropriate elaboration and refinement, viz., peer-to-
peer networks, supply chain networks, etc. This lack of all
the required expertise and resource provides an agent with
the incentive to locate other agents with the required capabil-
ities and acquire “benefit” by receiving assistance on tasks.
This, in turn, saves time and resource (required for complet-
ing the task) by handing the task over to the assisting agent.
In this context, an agent can decide to initiate an interaction
by asking for assistance for a task from an acquaintance with
whom it has interacted in the past and has estimates of the lat-
ter’s behaviour. Alternatively, it can attempt to discover new
acquaintances in the hope that this will improve the quality of
assistance it can get on tasks. The agent who receives requests
for assistance takes the decision to accept or deny based on
factors such as its estimates of the requester’s capabilities,
expected future “usefulness” of the requester, estimate of task
cost, and the extent to which its current acquaintances cater
to its requirements. Thus, for example, the probability of giv-
ing service increases if the agent evaluates that the requester
can potentially provide service in the future, if the cost of



the requested service is low or if it believes that serving the
particular requester does not affect its relations with other ac-
quaintances (see Section 4 for more details).

However, at first glance, it seems that agreeing to serve a
request apparently contradicts selfish behaviour because the
agent serving incurs cost in terms of time and resource spent
for the service. However, a selfish agent can potentially serve
if it evaluates a high future prospect of receiving help from the
agent requesting service. Also, the fact that serving an agent
earns an agent some “goodwill”, helps to get reciprocated by
receiving service in future. So, we identify that agents can
act in two distinct roles; that of an interaction initiator orre-
questerand that of a serviceprovider. Some practical issues
concerning such multi-agent interactions are described in the
following paragraphs.

Due to communication and computational constraints, it is
not possible for an agent to keep track of or interact with ev-
ery other agent in a large system. We have, therefore, limited
the maximum number of acquaintances that an agent can in-
teract with at any time to a certain fixed percentage of the
total number of agents. For assistance on an assigned task,
an agent seeks help from these acquaintances (also described
as its “neighbours” hereafter). Alternatively, when searching
for a new agent, instead of depending on some ad-hoc pro-
tocol (such as, randomly seeking) of finding an agent in the
entire population, the seeker can request a referral from one
of its neighbours — a referral request. If acknowledged, this
referral request would provide the requesting agent with the
reference of another which was not present in its neighbour-
hood. However, a referral can be an agent that the requester
already knows, in which case, the latter denies from accept-
ing the referral. Depending on the capability of the referred
agent, an agent can get new acquaintances with better service
capabilities than the current ones. In this way an agent can,
potentially, extend its neighbourhood size beyond the initial
set and locate better matching partners.

In addition to seeking assistance or referrals from neigh-
bours, an agent can renege interactions with an existing
neighbour. As self-interested entities, agents rate their inter-
actions with neighbours in proportion to the assistance (and
hence, to the amount of benefit earned) they receive from the
latter. The “relationship” (based on help requests/responses)
is stronger for higher benefit earned from such interactions
and vice versa. An agent tends to interact more with a neigh-
bour from which it receives greater service assistance than
from another in order to maximize the utility earned via in-
teractions. This process leads to the cumulative strengthen-
ing of the relationships between some agents and weakening
of others, and finally, reneging on some neighbours. How-
ever, an erratic task environment, with frequent changes in
capability requirements for agents, can prevent long-standing
stable relationships from developing. In this work, we have
used a task environment where task requirements are time pe-
riodic, with a short period compared to the total time agents
interact in the simulation so that they have sufficient time to
learn the task arrival pattern and use the information in their
decision strategies (see Section 4 for details). Lastly, we note
that agents give lesser importance to past interactions (i.e.,
interaction ratings decay over time).

Against this background, brief descriptions of the two es-
sential components of the agent cognitive model are given
below.

Task environment: We consider an agent’s model of the
task environment to consist of estimates of how the ex-
pertise and resource requirements of tasks vary with
time. In our simulations, each task can have one of two
possible required expertise types and one of two possi-
ble required resource types; hence, a task can have one
of 4 different types (designating the two expertise types
as exp1 and exp2, and the two resource types as res1
and res2, the 4 different task types can be (exp1, res1),
(exp1, res2), (exp2, res1) and (exp2, res2)). Also, we as-
sume a fixed probability distribution over the task types
as per Table 1. It shows the probabilities of occurrences
of different task types at each time instance (for exam-
ple, row 1 shows the probabilities with which task types
1, 2, 3 and 4 can occur at time instantcurrent time
mod 1). The expertise and resource components of each
task type are shown within parentheses under the corre-
sponding task type box. This probability pattern repeats
itself after everyF time instances, which is the task type
periodicity. We assume a task type periodicity of 4 time
instances. To keep the simulation simple, we have pro-
vided the agents with perfect information about this task
distribution1.

Capability models: An agent records the expertise and re-
source requirements of another agent when the latter re-
quests assistance for a certain task type. This informa-
tion is used to build estimates of the task types in which
the requester requires assistance from other agents2.
These estimates are utilised by agents to compute the
dependence of its acquaintances on its own capabilities
and are important in decisions described in Section 4.5.
Additionally, an agent learns the capabilities of a service
provider when it receives assistance from the latter. In
this work, the agents employ reinforcement learning to
build such estimates (see Section 4 for details).
There are four possible capability types that an agent can
have — having expertise and resource of either one, two,
three or all four task types. Thus, we label an agent as
typei (i 2 f1; 2; 3; 4g) wherei is the cardinality of its
capability set.

Having described the task and agent capability models that
agents develop, we show in the next section how these models
are utilised by agents in their decision making processes.

4 Cognition-based Decision Strategies
In this section we formalise the agent decision strategies that
are designed by incorporating the cognitive models discussed
in Section 3. However, we note that our formulations are but
one possible way of characterising the behaviour of agents in

1We believe this is reasonable and does not affect our results and
conclusions in a significant way.

2We assume that an agent does not attempt to reveal false infor-
mation.



Table 1: Probability distribution of task types over time

Task types(exp,res)
Time 1 2 3 4
(t%F) (e=1,r=1) (e=1,r=2) (e=2,r=1) (e=2,r=2)

1 0.4 0.3 0.2 0.1
2 0.1 0.4 0.3 0.2
3 0.2 0.1 0.4 0.3
4 0.3 0.2 0.1 0.4

this context. The parameters that agents take into considera-
tion for building their decision heuristics and the way they are
combined to generate formal behavioural specifications are
not claimed to be unique. Moreover, we do not claim they are
optimal. Instead, our goal is to lay out a generic behavioural
model motivated by cognitive capabilities.

In Section 3, we have identified two behavioural roles that
an agent can adapt to — that of a service requester and a
provider. As a requester, an agent can either:

� request assistancefrom a neighbour (see Section 4.1),
or,

� request referral with the motivation of finding a new
neighbour from whom it can gain improved quality of
assistance on task types in which it lacks expertise (see
Section 4.2), or,

� accept or deny a referraldepending on whether it al-
ready knows the acquaintance or it was reneged on ear-
lier (Section 4.3).

As a service provider an agent can either decide to,

� grant or deny serviceassistance (Section 4.4), or,

� grant or deny referral request (Section 4.5).

The decision torenege on an acquaintance, formalised
in Section 4.6, can be taken by any agent and is not an ac-
tion that corresponds to either the requester or the provider
roles. In the following discussion, each of the above actions
are elaborated and the influence of the cognitive models on
action selection explained.

4.1 Requester Action: Request Assistance
Agenti requests its neighbourj to execute a task on its behalf
when its own expertise and resources do not match with the
task’s requirements. In more detail,i computes the “likeli-
hood” of receiving help from each of its neighbours and polls
a neighbour (j) with a probability in proportion to the com-
puted likelihood for that neighbour. To this end, we have in-
corporated the following factors in the decision process ofi.
First, i assesses how much the requirements of its taskmatch
with the capabilities ofj. It believes that ifj has the match-
ing capability for a task, then the likelihood of getting assis-
tance increases becausej is more likely to help for a task it
has expertise on and hence, incurs less cost (relation between
capability match and task cost is explained later). Second,
from its previous interactions withj, i computes the number
of times it was helped byj as opposed to it helpedj or was
denied assistance byj. From these numbers, it compares the

frequency with which it received benefit in the past fromj
with the frequency of incurring cost due toj. The higher the
frequency of the first type compared to the latter, the greater
is the likelihood of getting help fromj. Lastly, in addition
to computing how many timesj had assisted in the past,i
computeshow muchj had been “useful” in past interactions
by helpingi, allowing i to save cost (discussions on task cost
later). The morej has been useful in the past, the greater is
the likelihood thati would get assistance again fromj. In-
tuitively, the last two factors helpi use its past experiences
in deriving the chances of receiving help from a neighbour.
Now, we present formal definitions of each of these factors
and a logical way of putting them together for the agents to
compute the likelihood metric.

Match: For a task of typex, requiring expertise and re-
source typesex andrx respectively, an agent’s capabil-
ities “match” with the task requirements if it has both
ex and rx in its capability set. We say the “match”
value is “high” in this case and “low”, otherwise. To
compute the match (matchi(x; j)) of the requirements
of task typex with the capabilities ofj, i uses its own
estimates (E) of j’s expertise and resource capabilities,
updated using reinforcement learning techniques[Sut-
ton and Burto, 1998]: Ex

t+1  (1��)Ex
t +�R, where

t refers to the interaction number,x is the task type,�
is the learning rate andR is the immediate reward (the
value of resource or expertise with which the helping
agent executes the task). Whenj assistsi for task type
x, the latter updates its estimates (Ex) of j’s capabili-
ties for that task type. Since a task is composed of both
an expertise and a resource type, separate estimates of
both aspects are kept to match an acquaintance’s capa-
bility with a given task. In our formulation, we say that a
match is “high” (=5) if both the estimated expertise and
resource values are close to the required values of the
task (within a permissible error,Æ (=10) %), and “low”
(=1), otherwise. A learning rate of0:5 is used.

Interaction frequency: “Beneficial” interaction frequency
for i with j is the ratio of the number of timesi received
assistance (the benefactor) fromj to the total number
of interactions between the two. Analogously,i’s “non-
beneficial” interaction frequency withj is the ratio of
the number of timesi helpedj and was denied assis-
tance byj to the total number of interactions. At time
t, i computes time-discounted frequencies from its inter-
action record withj over a finite past time period (P ):

frcati (j; t) 

PP

T=1 

T jcond(i; j; T )

jinteractionsjP1
:

The boolean variablecond(i; j; T ) is “true” if i and
j interacted at timeT . Here, cat can be one of
the two frequency types, beneficial or non-beneficial.
T corresponds to absolute time(t � T ) in the past.
jinteractionsjP1 denotes the total number of interac-
tions betweeni andj in a time ofP units in the past and

 is the discount factor (a value of0:9 is used). For ben-
eficial frequency,i computes the numerator using inter-
actions where it was the benefactor. For non-beneficial



frequency, interactions wherei either helped or was de-
nied assistance fromj are used. A value ofP = 10 is
used which is sufficient to allowi consider interactions
with j for all task types (since task types repeat every 4
time instances).

Rating: Utility earned and cost incurred fromj are repre-
sented ini’s ratings ofj. i ups its “beneficial” rating of
j at that time by an amount equal to the cost3 i saved,
if either i receives help fromj or from another agent
that j referred toi. However, ifi servesj’s request, it
reduces the “non-beneficial” rating ofj at that time by
an amount equal to the cost incurred. Alternatively, if
i is denied assistance byj, i reduces its non-beneficial
rating ofj by a fixed positive “penalty” (=0:5). Ratings
are maintained for interactions over a finite past time pe-
riod P . To compute the likelihood metric,i calculates
at timet the cumulative, time-discounted ratings of its
neighbourj,

C ratingcati (j; t) 

PX

T=1

xT 

T ;

wherexT denotes a saving at timeT in the past in case
of beneficial rating (cat = beneficial), or a cost incurred
at time T in the past in case of non-beneficial rating
(cat = non-beneficial). We note that all agents initially
have zero values for both types of ratings of their neigh-
bours. The beneficial ratings (and hence, the cumulative
beneficial rating) are, therefore, positive real numbers.
Similarly, non-beneficial ratings (thus, cumulative non-
beneficial rating) are negative real numbers.

For i to compute at timet, the likelihood of receiving help
from j on a task of typex, we develop the following method.

likelihoodi(j; t) (matchi(x; j) + C rating+i (j; t)

�fr+i (j; t)) + (C rating�i (j; t) � fr
�
i (j; t)):

Here, “+” superscript is used for beneficial frequency and rat-
ing categories, “-” for non-beneficial. This measure ensures
that the the higher the match of the current task withi’s esti-
mates ofj’s capabilities (or, lower the estimated task cost for
j) and the savings earned fromj (note:C rating+ � 0), and
the lower the cost incurred due toj in the past (C rating� �
0), the greater is the likelihood of receiving help fromj.

An agenti uses a standard Boltzmann exploration function
to compute the probability of asking neighbourj at timet :

Pr
j;t
i (ask) 

exp( likelihoodi(j;t)
K

)
P

k2neighboursi
exp( likelihoodi(k;t)

K
)
; (1)

where, K is an exploration constant with value 0.8 and
neighboursi refers to the current set of neighbours ofi.
Equation 1 guarantees that the probability of asking help from
a neighbour increases with increasing value of thelikelihood
metric of that neighbour and vice versa.

3We assume that the cost of doing a task is “high” (=5) if an
agent lacks matching capability for the task. “High” cost is used as
an equivalence to the agent’s inability to complete that task; cost is
“low” (= 1), otherwise.

4.2 Requester Action: Request Referral

An agent seeks a new acquaintance if services on task types
for which it lacks expertise are not available from exist-
ing acquaintances. In more detail, each agent periodically
checks, using its own learned models of neighbour capabili-
ties, whether its current neighbours have the matching exper-
tise and resource capabilities for all of its task requirements.
We say the “state” of an agent is “fit” if it has at least one
matching neighbour for each of the task types it requires as-
sistance for. This implies that the agent can potentially re-
ceive service from its neighbours on all task types in which it
lacks the abilities. If there is at least one task type in which it
lacks the required capabilities and does not have a neighbour
with those capabilities, its “state” is “not fit”. An agent with
state “not fit” requests a randomly chosen neighbour to reveal
one of the latter’s existing neighbours. The motivation for
seeking a new neighbour is to increase the chance of locat-
ing an agent with the required capabilities. We observe that
precise measurement of an agent’s state is possible by having
accurate models of its neighbour capabilities. Such accurate
information would help an agent to take decisions that are
relevant, rather than random referral requests that incur un-
necessary communication costs.

4.3 Requester Action: Accept/Deny Referral

An agenti accepts a referrala only if the following conditions
hold for bothi anda: (a) either did not have the other agent as
a neighbour before (and reneged in the past), and (b) the cur-
rent neighbourhood of both contains less than the maximum
number of neighbours an agent can have at any time.

4.4 Provider Action: Grant/Deny Assistance

An agenti while deciding whether or not to acknowledge a
service request from agentj considers the following factors.
First, i evaluates the cost it will incur to execute the task for
which j requests assistance. The greater the cost incurred by
i, the less likely it would be to help. Second, similar to the
decision process in Section 4.1, the provideri also uses its
assessments of previous interactions withj (the “interaction
frequency” and “rating”) to evaluate the probability of grant-
ing service to the provider. Thus, the greater the frequency of
beneficial interactions in the past and the more utility earned
from j, the higher is the chance of helpingj. In addition to
the above,i also looks ahead into its own future task require-
ments and computes how likely isj to help on those. Specif-
ically, i’s probability of helpingj increases if it evaluatesj
as a prospective future helper by comparingj’s capabilities
with its own future task requirements. To this end, we note
that agents require precise models of both the task environ-
ment and of capabilities of other agents. In the following, our
formulations of the above factors are described together with
the method of combining them into a decision strategy.

Task cost (Cx
i ) that agenti would incur to execute a task

of type x. If it has the desired expertise and resource
capabilities as demanded by the task, it incurs a “low”
cost, otherwise, a “high” cost (similar to the previous
discussion on capability match).



Interaction frequency with j. The “beneficial” and “non-
beneficial” interaction frequency computations are the
same as discussed in Section 4.1.

Rating of i for j. “Beneficial” and “non-beneficial” rat-
ing calculations are similar to what have been defined in
Section 4.1.

Future expected usefulness:Sincei has the knowledge of
how the task types vary with time (see Table 1) and it
has the estimates ofj’s expertise and resource capabili-
ties for different task types (developed via learning dur-
ing interactions withj), it can compute the match ofj’s
capabilities with its future service requirements. Thus,i
computes the future prospect ofj at timet as:

proi(j; t) 

PF

T=1

PM

x=1matchi(x; j) � Pr(x; T
0

)

jF j

Here,T countsF time instants (F is the periodicity of
the task environment).Pr(x; T

0

), whereT
0

= (t +
T )%F , is the probability of task typex occurring at time
(t+T ) in the future (corresponds to (time =T

0

,task type
= x) in Table 1). M is the total number of task types.
¿From Table 1, we see that the values ofF andM are
both four.

Agenti uses a sigmoidal probability function,

Pr  
1

1 + exp(V�Th
�

)
; (2)

to determine the probability (Pr) of acceptingj’s service re-
quest. This form is inspired from the Fermi function and has
been used in settings[Sen, 2002; Jinet al., 2001] where the
probability of choosing an action is thresholded around some
valueTh of a control variableV . The probability takes a
value of 0.5 when the control variable is equal to the thresh-
old. The transition of the probability function around the
point V = Th can be made more or less skewed by adjust-
ing the shaping parameter� . We propose a novel method that
agenti uses to computeV .

V  (Cx
i � C rating�i (j; t) � fr

�
i (j; t))

�(proi(j; t) + C rating+i (j; t) � fr
+
i (j; t)):

Such a formulation ensures that the probability of providing
service toj increases with:

� lower task costs fori,

� lower cost incurred from interactions withj in the past
(lower non-beneficial rating and frequency values),

� higher prospect ofj as future service provider, and,

� higher savings earned from interactions withj in the past
(higher beneficial rating and frequency values).

We have used a� value of 1 and setTh = 0. We note that the
terms in the first pair of parentheses are comparable to those
in the second pair. Also, the provider agent has a small pos-
itive helping probability when it is completely neutral (i.e.,
when it has no cognitive models of either the environment or
other agents’ capabilities and the rating and frequency terms
in the control variable all have values of zero).

As more interactions occur agenti can improve its cogni-
tive models ofj’s capabilities and, hence, can compute the
above probability function in a more precise manner.

4.5 Provider Action: Grant/Deny Referral
First, we summarize agenti’s deliberations as they relate to
deciding to provide a reference of an agenta to requesting
agentj. Being self-interested,i reveals a referral only if that
action earns it some utility. Therefore, the first condition that
i verifies is whether it has any dependence on the requester
j 4. In case it does not, its rational choice is to ignorej’s
request: since it does not foresee any service assistance from
j, it is not inclined to acknowledge the latter’s requests. In
casei depends onj, it then considers whetherj has a de-
pendence on the prospective referencea. It evaluates this by
comparing the requirement estimates ofj with the capability
estimates ofa. The reason being, ifj has a dependence on
a, then it is likely to receive assistance froma and thus, as-
sign the referring agent (i, in this case) a positive beneficial
rating (see discussion onrating in Section 4.1). This, in turn,
would assisti in obtaining future assistance fromj. If i de-
tects no dependence ofj ona, it does not refera because in so
doing it would not earn any future expected utility (positive
rating) fromj. On the contrary, ifi confirms that the above
two dependences exist, it subsequently computes if there is a
chance of losing utility by getting reneged on by eithera or
j or both. Agents renege on interactions with those acquain-
tances that fail to serve their requests or are less capable of
service compared to other acquaintances. The latter situation
can arise if an agent gets referred to a new acquaintance hav-
ing high match and thus, reneges on some of its previous ac-
quaintances. So,i checks whether the condition arises where
eithera or j, being new acquaintances, might stop interacting
with it. The above factors are evaluated sequentially by the
deciding agenti, and are enumerated in the following.
� i depends onj: As described before,i considers refer-

ring only if it estimates a dependence of its task require-
ments with the capabilities ofj.

� j depends ona: i considers referring if it estimates that
j depends ona’s expertise. The motivation is (stated
earlier),i earns positive rating fromj every time the ref-
erencea helpsj, which allowsi to receive help fromj
in the future. Thus,i aims to maximize the utility earned
(rating fromj) from its action of referringa to j.

� i does not losej as neighbour by referringa to j: An
agentm reneges on a neighbourn if m does not re-
ceive service from it. This can happen under two cir-
cumstances: (1)n does not have the capabilities to serve
m on tasks in whichm requires assistance, or, (2)m has
too many other neighbours on whom its dependences are
much stronger than onn and hence,m does not interact
with n often enough to be able to detect the latter as a
beneficiary.
Sincei considers referring only if it depends onj, it en-
sures that the referral would not engender the latter of

4The “dependence” of an agentx on another agenty consists of
the set of task types in whichx’s own requirements match withy’s
capabilities as estimated byx.



the above two situations wherej gets a more beneficial
neighboura and stops interactions withi. It achieves this
by referring only if, (a)j’s dependence ona is a proper
subset ofj’s dependence oni or, (b) j’s dependence on
a is completely uncorrelated withj’s dependence oni.
In either situations,j would not potentially renege oni
after being referred agenta.

� If i detects thatj depends ona andj does not renege
on i as a consequence of referral, then it refersa to j if
it estimates that it does not depend ona. Otherwise, it
considers the following.

� Sincei evaluates dependence ona, it can ensure it is not
getting reneged on bya in the future following similar
reasons as applied to the case of not losingj. Therefore,
i refersa to j if, (a) a’s dependence onj is a proper
subset ofa’s dependence oni or, (b)a’s dependence on
j is completely uncorrelated witha’s dependence oni.
The reason being similar to that described in the third
criterion above.

4.6 Reneging on Interactions with a Neighbour
Interacting with a neighbour involves computation costs to
evaluate and update their behavioural models and commu-
nication overhead. Hence, a selfish agent decides to revoke
interactions with those acquaintances that fail to provide its
required services. The following discussion formally estab-
lishes an agent’s decision to renege on a neighbour.

In our formulation, an agenti maintains a record of the
number of times it has requested assistance from a neighbour
j for each of the task types in which it lacks expertise. The
higher the number of times such requests failed, the higher is
the likelihood thati would renege on interacting withj. We
let our agents use the decay functionexp(�xt � �) to update
the current “strength” of the relationship betweeni andj (this
form of the equation is inspired from the work on evolution
of social networks[Jin et al., 2001]). Here,xt is the number
of failed requests made byi to j for tasks of typet and� is
the decay factor. Wheneveri receives help fromj on typet,
it sets the decay function to 1. An agent revokes interactions
with its neighbour if the decay function falls below a thresh-
old (of 0.3) for all task types that it requires assistance for.
Thus, by adjusting the value of�, the agents can have dif-
ferent punishing tendencies for neighbours who do not assist
— in the current formulation, we select� = 0:1204 which
implies that an agenti would renege onj if j fails to helpi
on 10 successive requests (sinceexp(�10 � 0:1204) � 0:3)
on tasks of each type in whichi lacks expertise.

In the following section we summarily describe the simula-
tion of agent interactions where the above decision strategies
are used by agents.

5 Simulation and Interaction Dynamics
Our domain simulations can be summarized in the following
steps.
� Agents are assigned their capability sets and the initial

random neighbours.
� While simulation continues forN time steps, at each

time step:

- K tasks assigned to each of a random set of agents.
- While all tasks are not completed (each task is

assumed to take one time unit for completion):
- All agents who do not have required expertise

and resource for assigned tasks, ask for help.
- The provider updates estimates of the

requester’s expertise and resource requirements.
- Provider decides to help/not help.
- Requester updates capability model of provider.
- Both requester and provider assigns ratings to

the other.
- All agents evaluate ‘‘state’’ and decide to request

a referral
- Provider takes referral decision.
- Requester accepts / rejects referral, if any.

- All agents check for possible reneging on neighbours.

6 Experimental Results
Our goal is to study whether and to what extent can agents
locate partners with matching capabilities in the specified do-
main (Section 3) using the decision heuristics described in
Section 4. These observations are compared with those where
agents adopt random decision strategies as opposed to using
cognition-based strategies. The following metrics are chosen
for comparison.

Agent state: In the agent groups that emerge out of the
simulations, we measure the proportion of an agent’s
expertise and resource requirements that match with its
neighbours’ (group members) capabilities. We compute

the “state” of an agenti,

P
x2requiredi

1jcondi(x)

requiredi
, where

requiredi is the set of task types in whichi lacks exper-
tise and resource, and the boolean variablecondi(x) is
true if there is at least one agent ini’s neighbours thati
estimates to have the capability for task typex. Thus, the
“state” value is 1 for an agent having a neighbour with
the matching capabilities for each task type in which it
lacks required capabilities. Hence, the closer the value
of an agent’s “state” is to1, the more successful (better)
it has been in locating complementary partners.

Group size and composition: We measure the agent “con-
nectedness” in the emerged groups. The metrics of inter-
est are (a) average size of the group (or, number of neigh-
bours) of an agent of each capability type, and (b) aver-
age number of agents of different capability types (group
composition) in groups of each agent type. Group size
measurements help analyse how the connectedness of
agents depend on the constraint of having a limited num-
ber of acquaintances. Also, it correlates group size with
“state” values of agents. Group composition analysis
shows any relation that exists between the size of part-
nerships of different agent types and their capabilities.

In the following subsections, we report experimental re-
sults and explain our observations. A total of 50 agents are
used in all experiments. Only agent types1 and3 are used
(Section 3 explains agent types). These agent types differ in
the size of their capability sets (type1 has capability in one
task type while type3 has capabilities in three task types).
This allows us to study the effects on the results, if any, due
to heterogeneous capability sets of agents. The exact task
types in which an agent has expertise and resource are as-
signed randomly in the initialization routine. At the start of
a simulation, agents are connected randomly to one another
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Figure 1: Agent type 1 “states”

with the number of connections for each agent bounded by
the maximum allowable neighbour size. For a given random
initial configuration, each simulation is repeated for 10 runs.
A simulation run spans 1500 time steps (details of one time
step is described in Section 5). All results reported are aver-
aged over experiments conducted for 10 such random initial
configurations, hence, over a total of 100 runs.

6.1 Agent States
We measured agent states by increasing the maximum num-
ber of neighbours an agent can have (allowable neighbour
size), from 10% to 70% in steps of 10. A maximum neigh-
bour size ofx% means that an agent can interact with (or,
have as neighbours) at mostx% of the total agent popula-
tion. For each value of allowable neighbours, the proportions
of type1 and type3 agents were varied from(20%; 80%) to
(80%; 20%) in steps of 10%. Figures 1 and 2 show the varia-
tion of agent states with changing composition of type1 and
type3 agents, respectively, for different values of maximum
neighbours.

Observation 1: Agent states improve with increase in the
number of allowable neighbours.
In both Figures 1 and 2, we note that, with increase in the
maximum neighbour size, the agents attain better state values.
With maximum neighbour size =70%, a type3 agent gets a
state value of almost0:8, which indicates a very close match
of its requirements and the capabilities of its neighbours. This
indicates that with more available neighbours to interact with,
agents using cognition-based decision strategies are able to
locate better matching partners. The state values of agents
using random decisions are found to be always zero. These
agents do not interact with others using strategies similar to
the cognitive agents. Hence, they fail to recognise helpful
partners. This in turn leads to their having poor (zero) state
values.

However, we observed that increasing the neighbour size,
the communication cost increases. We recorded the total
number of requests (graph not provided) an agent makes for
all service requirements over a simulation run. From this, we
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Figure 2: Agent type 3 “states”

found that the average number of requests made in one simu-
lation run increased almost linearly from about 2500 to close
to 22500 as the neighbour size was increased from 10% to
70% with a total 50 agents and with 50% of each agent type
(1 and3).

Observation 2: The state of type 1 agents decreases with
increase in their numbers, while that of type 3 agents remains
unchanged.
For the same maximum neighbour size, a decrease in the state
value is observed for type1 agents, as their proportion in the
population increases (see Figure 1). The state values of type
3 agents, on the contrary, remain almost unaffected by the
changing composition (Figure 2). Type1 agents require as-
sistance for 3 different task types in which they lack expertise
and resource. To attain a high state value, they require assis-
tance in most of the required task types. But, agents receive
cooperation only if they can reciprocate (see decision strategy
in Section 4.4). Type1 agents have scarce resource and exper-
tise to be potential service providers. However, when they are
a minority in the population compared to type3 agents, they
can find a few type3 agents that contribute significantly to
improve their state values (note graph when type1’s are mi-
nority). On the contrary, as type1 increases in the population,
they are able to form more partnerships with agents of their
own type than with type3 (result in Section 6.2 shows this).
A coalition with its own type is not as beneficial for a type1
agent as is that with type3. In a type1 - type1 partnership,
only 1 of its 3 required capabilities are satisfied compared to
all 3 in a type1 - type3 partnership. Hence, type1 agent states
decrease with an increase in their numbers. Type3 agents,
however, require assistance for only one task type and can be
potential cooperators in several task types. These factors en-
able them to find cooperating neighbours (mainly of its own
type) and thus, maintain a stable state value independent of
their number in the population.

6.2 Group Characteristics
In addition to studying how well are the agents, using cogni-
tive decision strategies, able to locate matching partners, we



are interested to know how many agents and of what type
form groups.

Observation 3: Average group size of an agent type in-
creases with increase in the number of agents of that type.
Table 2 shows the average group size of type1 and type3
agents. Simulations were run using a moderate value (30%)
of the maximum neighbour size and changing the proportion
of the agent types in the population. It is observed that with
an increase in their numbers, both agent types form larger
groups. This implies that the connectedness of an agent is
directly related to the number of agents of its type in the pop-
ulation. However, we observe a negative correlation between
the group size and the state values of type1 agents. As a
majority in the population, they form larger groups but have
lower state values (see Figure 1) than when they are less in
number. With an increase in number, type1 agents form
groups with more agents of their own type than type3 (see
discussion on group composition), which does not help to in-
crease the states of these agents (explained previously in state
results). Table 2 also reveals that type1 agents have slightly
larger groups than an equal proportion of type3 agents. This
is due to the difference in the sizes of capability sets of the
two agent types. A type1 agenti has capability in only one
task type. It can, hence, find several other type1 agents that
have one matching capability type out of the 3 that it requires
and can therefore maintain partnerships through mutual coop-
eration. Thus, although a type1 - type1 partnership does not
result in a significant state improvement of the agents forming
the partnership, they are more in number than type3 - type3
partnerships. We believe that the differences in group sizes
would be more pronounced if the capability types in which
agents differ increase in number, i.e, with more heterogeneity
in agent types.

Observation 4: In a population of agents with hetero-
geneous capability sets, larger partnerships form between
agents of the same type.
Table 3 summarizes how many type1 and type3 agents are
present on an average in groups of an average type1 and an
average type3 agent. It shows that an agent forms more coali-
tions with agents of its own type than with others. The size
of partnerships between similar agents increases with an in-
crease in their numbers. This skewness about which agent
type to make partnerships with is because partnerships are
based on utility-generating interactions: a type3 agent (that
has a greater set of capabilities than a type1) is more likely to
revoke a type1 partner (which has exactly 1 capability type)
from its neighbourhood when it recognises the poorer coop-
eration capability of the latter compared to the agents of its
own type5. However, we see type3 agents have more type
1 partners when the number of the latter type becomes domi-
nant in the population (Table 3: row corresponding to(70; 30)
and column of group composition of agent type3). A type1
agent develops partnerships with other type1 agents that have
its missing capability type. Such partnerships increase with
increase in the number of type1 in the population.

We note that this behaviour of agents to preferentially

5It is unlikely that a type1 agent has the exact matching capabil-
ity that a type3 requires.

Table 2: Average group size (50 agents, max neighbour 30%)

(type1 %, type3 %)Type 1 groupsType 3 groups
(30,70) 3.38 6.04
(40,60) 5.03 5.68
(50,50) 5.73 5.65
(60,40) 6.85 4.54
(70,30) 7.08 4.31

Table 3: Average group composition (50 agents, max neigh-
bour 30%)

Type 1 groups Type 3 groups
(type1 %, type3 %)Type 1 Type 3 Type 1 Type 3

(30,70) 1.88 1.95 0.8 5.2
(40,60) 3.34 1.69 1.12 4.6
(50,50) 4.2 1.5 1.5 4.12
(60,40) 5.9 1 1.5 3
(70,30) 6 0.9 2.1 2.2

make partners requires accurate agent models, developed us-
ing cognition-supported decision mechanisms. Agents de-
signed with random decision strategies quickly renege on
all neighbours. Since they do not employ observation-based
modelling of agent capabilities, they are unable to detect the
benefit of interacting with any agent. Thus, measurement of
group characteristics is not realisable for such agents.

6.3 Reneging and Referral Patterns
In addition to computing agent state values and their con-
nectedness at the end of the simulations, we are interested in
studying their behaviour in course of the simulation. Specif-
ically, we note how their decisions to renege on neighbours
and ask or provide referrals vary over time.

Observation 5: Frequency of reneging neighbours de-
creases and finally stops during the simulation. Referral re-
quests continue while granting references stop over time.
Declining to interact with a neighbour or ask and/or grant re-
ferrals are important decisions that determine the final state
and group structure of agents. In our experiments, we have
observed a decay in the rate at which neighbours are reneged
on with time. The reason being, even though agents do not
always find partners with all matching capabilities, they are
able to locate those with some matching capabilities to con-
tinue assisting each other and hence, maintain partnerships.
The regularity in the task environment is an important in-
fluence in this context. With an erratic task environment,
long lasting interactions that would allow agents to recognise
the capabilities of each other for different task types simply
would not have occurred.

We make an additional observation that agents continue re-
ferral requests during the entire simulation period. Relating
to the decision mechanism described in Section 4.2, we infer
that an agent continues requesting referrals since all of its task
requirements are not satisfied from the available expertise of
its current neighbours (it has not achieved a perfect state value



of 1). However, revealing reference information ceases. This
is because, since agents have neighbours from whom they re-
ceive assistance in one or more of their task requirements, re-
ferral becomes too “costly” — following the decision mech-
anism described in Section 4.5. This, in turn, means agents
refrain from granting referrals because they evaluate a finite
risk of losing neighbours by so doing.

6.4 Other Observations
It is observed that the learned values of neighbour expertise
and resource estimates converge to their true values at the end
of the simulation. Also, we make a note that in the decision
related to asking for help (Section 4.1), a constant value is
used for the exploration factorK. In our simulations, agent
neighbourhoods are dynamic structures; hence, adjusting the
exploration factor to encourage exploitation would lead to
a complete lack of exploration of new neighbours obtained
through referrals. Without sufficient interactions with new
neighbours agents would fail to build accurate estimates of
their capabilities which are necessary for effective decision
making.

7 Conclusions and Future Work
In this paper, we have presented a set of novel decision mech-
anisms for a self-interested cognitive agent that interacts with
other cognitive agents having different expertise types in a
time-periodic task environment under some practical con-
straints. Using simulations, we have demonstrated that ele-
ments of cognition such as memory and learning help agents
to successfully detect matching partners and form groups un-
der such constraints. We also showed that, the utility earned
from services of group members depends on capabilities of
agents and the maximum allowable number of agents they can
interact with. In this context, group size depends on the num-
ber of agents in the population. In addition, a given agent type
is found to have a higher preference to form partnerships with
others of its own type. That agents are able to receive service,
and hence, earn utility, from group members of matching ca-
pabilities indicates the effectiveness of the decision strategies
under the specified conditions.

Some of the interesting areas of future investigation are,
(a) adding a random component to the task environment and
designing decision strategies that help agents to appropriately
adapt to such changes; (b) studying the effects of “multi-hop”
referrals, where if a neighbour does not grant a referral re-
quest, it can pass it on for further evaluation to other neigh-
bours; and, (c) applying and evaluating the decision mech-
anisms in problems such as multi-agent coordination using
task delegation among self-interested agents.
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