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Abstract agent can affect relationships with others, and whether co-
_ o ) ) operation can emerge by identifying mutual service require-
In this paper, we develop decision making heuris-  ments are left unaddressed. To rectify this shortcoming, in

tics for rational agents using artefacts of cognition this paper we have designed agent decision making heuristics,
such as observation, learning and memory. Specif-  based on capabilities of individual cognition, that address
ically, we extend previous research in this area by  these fundamentaliissues. Specifically, cognitive abilities har-
incorporating essential aspects of multi-agentinter-  ness arich set of information about the environment that facil-

actions such as building behavioural models viaob-  jtate context analysis and allow for flexible behaviour. There-
servation, selectively choosing interaction partners  fore, we believe that decision mechanisms supported by cog-
and forming cooperating groups by identifying mu- nitive abilities are likely to lead to robust and flexible agent

tual capabilities. In particular, we demonstrate that ~ models that are suitable for deployment in complex, dynamic
cognitive capabilities enable agents to successfully  domains of practical importance.

identify matching partners and establish coopera-
tive groups in a community of selfish agents with
varying expertise.

To apply and evaluate the decision heuristics, we have sim-
ulated a generic setting where agents are required to complete
sets of tasks that require both expertise and resource to be fin-
ished. Not all agents have all the expertise and resource ca-
1 Introduction pabilities to complete any task. Hence, an agent searches for

service from those with the required capabilities. This service
Agent-based systems are increasingly being used in open e@an be sought from agents with whom interactions exist cur-
vironments such as the Semantic Web, the Grid and electroniently. Alternatively, agents can search for new acquaintances
commerce applications. Typically, agents deployed in sucli their current acquaintances cannot provide the required ser-
systems have different owners and act as self-interested enice. In so doing, the realistic constraint of each agent having
tities to achieve their corresponding goals. In such systems limited number of acquaintances is assessed. This is im-
it is not feasible to predict in advance all possible servicegportant because it is impractical for an agent to interact with
that agents would require in order to achieve their individualall the other agents in the domain. Also, we have designed
and collective goalfJennings, 2001 Also, it is not possible  agents that interact only with those that are capable of pro-
to enumerate a priori the contexts in which an agent mighviding the required service. Without this, a self-interested
need to interact with another for its service requirementsagent would stop interacting with them. During interactions,
Against this background, this paper develops a set of decisiothe agents observe, analyse, learn and memorize models of
heuristics that assist self-interested agents in finding the neother agents. With the above specifications and equipped with
essary service providers by interacting with a limited num-cognitive capabilities, our agents exhibit context-dependent
ber of known acquaintances. In particular, we demonstratbehaviour with respect to, whom to request assistance from,
that flexible strategies can be developed using elements afhether to acknowledge a request for assistance, whether to
cognition, such as memory and learning, that allow agents tgeek a new acquaintance, when to reveal information about
successfully identify matching partner agents and form stabl@ew acquaintances to other agents and whether it is “useful”
interacting groups in a population of self-interested agents. to continue interactions with a particular acquaintance. In this

Previous research has developed strategies of rational berork all the decisions are solely targeted towards improving
haviour for agents interacting in competitive multi-agentthe agent’s own utility: we do not consider inherently social
domains [Axelrod, 1984; Sandholm and Crites, 1995 agents that act towards the goal of the commul®gnzarasa
These works have typically focused on developing utility-et al,, 2001l. In this context, we show that the agents success-
maximizing decision strategies for agents playing idealizedully identify the capabilities of other agents and groups of
“games” such as the Prisoner’'s Dilemma. However, issuemutually cooperating partners emerge despite the constraint
such as whom to interact with, what information to revealof interacting with a limited number of acquaintances and all
to whom and when, whether and how interactions with onéeing self-interested entities.



This work advances the state of the art in the followingteractions are shown to yield improvements in utility earn-
ways: (a) strategies of rational decision making in a multi-ings. However, though this work dwells on adaptive agent
agent context are designed using artefacts of cognition andbehaviour, it does not address emergence of group structures
(b) agent decision strategies are shown to be effective in ideras an influence of the task environment and the individual ex-
tifying partners and in forming cooperative groups in a com-pertise of agents.
munity of selfish agents . Our work also builds upon certain design methodologies

The remainder of the paper is structured in the followingfrom the social network literature (e.dJin et al, 2001;
way. Section 2 discusses related research to establish the cdfautzet al, 1997). In these works, an entity is set to have a
text for our work. Section 3 describes the domain in which welimited number of direct acquaintances at any time. Also,
evaluate the agent decision strategies. Section 4 details fothe relationships between acquaintances weaken if interac-
mulations of the different decision heuristics. Subsequentlytions fail to occur. Entities get referred to prospective collab-
Section 5 outlines a brief summary of the simulation beforeorators via acquaintances which facilitates information dis-
Section 6 reports the experimental results. Finally, Section 8emination. In our work, we adapt these specifications to

concludes and presents proposals for future work. shape our simulation dynamics. Specifically, the social net-
work literature deals with abstract simulations of the growth
2  Related Work of a network from a random graph, and this is not concerned

with studying agent decision strategies as mechanisms for the

A key research issue in the field of multi-agent systemsemergence of group structures in a multi-agent system.
(MAS) is that of designing adaptive decision mechanismsthat The final strand of related work is that of cognitive sci-
support agent interactions in open environments. In additioence. This is mostly focused on explaining individual cog-
to MAS researchers proposing theoretical and computationalition and rational judgmentBetchel and Graham, 1998;
models of agents to explain such behaviour, useful resultforgas, 199 The first significant attempt to unite the
have also been obtained from social and cognitive sciencethreads of research in cognitive science, sociology and multi-
Both strands of work are discussed in this section. agent systems can be accredited to the work of [2001].

Azoulay-Schwartz and Krauf2001] have developed a His work emphasises the application of the theories of cog-
game theoretic approach for strategy selection where agemitive science in agent-based applications. Understanding
pairs repetitively interact by asking and responding towell the issues of individual cognition would enable agent re-
gueries. However, in their work, agents do not evaluate theearchers to model agent behaviour more accurately in open
consequences of decisions on their relationships with otheznvironment settings. In our work, we demonstrate that cog-
agents, neither do they take decisions based on their currenttive knowledge empowers an agent with the reasoning capa-
relationships with others. Multiple self-interested agents in-bility that helps selecting the appropriate actions to maximize
teracting to form coalitions have been studied in the work ofits self-interest.
Lerman et. a[200d. However, in their work, agents do not
employ cognitive abilities to recog_nise behayiours pf qther Domain and Agent Roles
agents, nor do they adapt their action selection during inter-
actions. Learning another agent’s strategy and analysing paéte start by describing a generic setting in which agents ex-
experience to take interaction decisions are employg8én, ecute tasks which require certain levels of expertise and re-
2004. However, assumptions such as any agent can intesource, not all of which are available to all agents. This set-
act with any other constrain the scalability of his strategiesting can be mapped to several domains of practical interest
Also, agents do not model environment characteristics andith appropriate elaboration and refinement, viz., peer-to-
do not employ future lookahead to predict the behaviour ofpeer networks, supply chain networks, etc. This lack of all
another agent. We remove all these restrictions in our workthe required expertise and resource provides an agent with
Castelfranchi and Falcorié994 advocate trust-based inter- the incentive to locate other agents with the required capabil-
action mechanisms for multi-agent collaboration. Althoughities and acquire “benefit” by receiving assistance on tasks.
they use a different mechanism, their work is related to ouiThis, in turn, saves time and resource (required for complet-
approach in that it is inspired by the notion of using cogni-ing the task) by handing the task over to the assisting agent.
tion for autonomous decision making. Yu et.[2003 simu-  In this context, an agent can decide to initiate an interaction
late a social network for information access in a multi-agenby asking for assistance for a task from an acquaintance with
scenario. They use referrals to search for matching expertisghom it has interacted in the past and has estimates of the lat-
and show that learning improves the network quality whichter’s behaviour. Alternatively, it can attempt to discover new
is a measure of how close in the network are agent-pairs withcquaintances in the hope that this will improve the quality of
matching expertise. In our work, since agents are solely selfassistance it can get on tasks. The agentwho receives requests
interested, they deliberate on the consequences of such der assistance takes the decision to accept or deny based on
cisions in terms of the cost incurred. Each such decision ifactors such as its estimates of the requester’s capabilities,
facilitated by their individual cognition and directed towards expected future “usefulness” of the requester, estimate of task
improving their own utility. Agents with both individual and cost, and the extent to which its current acquaintances cater
societal decision-making components are studiefHogg  to its requirements. Thus, for example, the probability of giv-
and Jennings, 2001 Here, learning others’ behaviour and ing service increases if the agent evaluates that the requester
employing a meta-level reasoning to adapt strategies of inean potentially provide service in the future, if the cost of



the requested service is low or if it believes that serving the Against this background, brief descriptions of the two es-
particular requester does not affect its relations with other acsential components of the agent cognitive model are given

guaintances (see Section 4 for more details).

request apparently contradicts selfish behaviour because the
agent serving incurs cost in terms of time and resource spent
for the service. However, a selfish agent can potentially serve
if it evaluates a high future prospect of receiving help from the
agent requesting service. Also, the fact that serving an agent
earns an agent some “goodwill”, helps to get reciprocated by
receiving service in future. So, we identify that agents can
act in two distinct roles; that of an interaction initiatorrer
guesterand that of a servicprovider. Some practical issues
concerning such multi-agent interactions are described in the
following paragraphs.

Due to communication and computational constraints, it is
not possible for an agent to keep track of or interact with ev-
ery other agent in a large system. We have, therefore, limited
the maximum number of acquaintances that an agent can in-
teract with at any time to a certain fixed percentage of the
total number of agents. For assistance on an assigned task,

an agent seeks help from these acquaintances (also described

as its “neighbours” hereafter). Alternatively, when searching
for a new agent, instead of depending on some ad-hoc pro-
tocol (such as, randomly seeking) of finding an agent in the
entire population, the seeker can request a referral from one
of its neighbours — a referral request. If acknowledged, this

below.

However, at first glance, it seems that agreeing to serve 8Task environment: We consider an agent's model of the

task environment to consist of estimates of how the ex-
pertise and resource requirements of tasks vary with
time. In our simulations, each task can have one of two
possible required expertise types and one of two possi-
ble required resource types; hence, a task can have one
of 4 different types (designating the two expertise types
as expl and exp2, and the two resource types as resl
and res2, the 4 different task types can be (exp1l, resl),
(exp1l, res2), (exp2, resl) and (exp2, res2)). Also, we as-
sume a fixed probability distribution over the task types
as per Table 1. It shows the probabilities of occurrences
of different task types at each time instance (for exam-
ple, row 1 shows the probabilities with which task types
1, 2, 3 and 4 can occur at time instantrrent_time

mod 1). The expertise and resource components of each
task type are shown within parentheses under the corre-
sponding task type box. This probability pattern repeats
itself after everyF' time instances, which is the task type
periodicity. We assume a task type periodicity of 4 time
instances. To keep the simulation simple, we have pro-
vided the agents with perfect information about this task
distribution?.

referral request would provide the requesting agent with the Capability models: An agent records the expertise and re-

reference of another which was not present in its neighbour-
hood. However, a referral can be an agent that the requester
already knows, in which case, the latter denies from accept-
ing the referral. Depending on the capability of the referred
agent, an agent can get new acquaintances with better service
capabilities than the current ones. In this way an agent can,
potentially, extend its neighbourhood size beyond the initial
set and locate better matching partners.

In addition to seeking assistance or referrals from neigh-
bours, an agent can renege interactions with an existing
neighbour. As self-interested entities, agents rate their inter-
actions with neighbours in proportion to the assistance (and
hence, to the amount of benefit earned) they receive from the
latter. The “relationship” (based on help requests/responses)
is stronger for higher benefit earned from such interactions
and vice versa. An agent tends to interact more with a neigh-
bour from which it receives greater service assistance than
from another in order to maximize the utility earned via in-
teractions. This process leads to the cumulative strengthe
ing of the relationships between some agents and weakeni
of others, and finally, reneging on some neighbours. How-

source requirements of another agent when the latter re-
guests assistance for a certain task type. This informa-
tion is used to build estimates of the task types in which
the requester requires assistance from other agents
These estimates are utilised by agents to compute the
dependence of its acquaintances on its own capabilities
and are important in decisions described in Section 4.5.
Additionally, an agent learns the capabilities of a service
provider when it receives assistance from the latter. In
this work, the agents employ reinforcement learning to
build such estimates (see Section 4 for details).

There are four possible capability types that an agent can
have — having expertise and resource of either one, two,
three or all four task types. Thus, we label an agent as
type; (i € {1,2,3,4}) wherei is the cardinality of its
capability set.

Having described the task and agent capability models that
@gents develop, we show in the next section how these models
r?gre utilised by agents in their decision making processes.

ever, an erratic task environment, with frequent changes i Cognition-based Decision Strategies

capability requirements for agents, can prevent long-standin
stable relationships from developing. In this work, we have
used a task environment where task requirements are time
riodic, with a short period compared to the total time agent
interact in the simulation so that they have sufficient time to
learn the task arrival pattern and use the information in their

fh this section we formalise the agent decision strategies that
are designed by incorporating the cognitive models discussed
P Section 3. However, we note that our formulations are but

Pne possible way of characterising the behaviour of agents in

\We believe this is reasonable and does not affect our results and

decision strategies (see Section 4 for details). Lastly, we noteonclusions in a significant way.
that agents give lesser importance to past interactions (i.e., *We assume that an agent does not attempt to reveal false infor-

interaction ratings decay over time).

mation.



Table 1: Probability distribution of task types over time

Task types(exp,res)
2 3

frequency with which it received benefit in the past frgm
with the frequency of incurring cost due fo The higher the
frequency of the first type compared to the latter, the greater
is the likelihood of getting help fromi. Lastly, in addition
to computing how many timeg had assisted in the past,

Time 4
(t%F)| (e=1,r=1) (e=1,r=2) (e=2,r=1) (e=2,r=2
1 0.4 0.3 0.2 0.1
2 0.1 0.4 0.3 0.2
3 0.2 0.1 0.4 0.3
4 0.3 0.2 0.1 0.4

computeshow muchy had been “useful” in past interactions
by helpingi, allowing: to save cost (discussions on task cost
later). The morg has been useful in the past, the greater is
the likelihood thati would get assistance again frgm In-
tuitively, the last two factors help use its past experiences

in deriving the chances of receiving help from a neighbour.
this context. The parameters that agents take into considerXoW, we present formal definitions of each of these factors
tion for building their decision heuristics and the way they are2nd @ logical way of putting them together for the agents to
combined to generate formal behavioural specifications ar§°MpPute the likelihood metric.
not claimed to be unique. Moreover, we do not claim they are Match: For a task of typer, requiring expertise and re-

optimal. Instead, our goal is to lay out a generic behavioural
model motivated by cognitive capabilities.

In Section 3, we have identified two behavioural roles that
an agent can adapt to — that of a service requester and a
provider. As a requester, an agent can either:

e request assistancérom a neighbour (see Section 4.1),
or,

e request referral with the motivation of finding a new
neighbour from whom it can gain improved quality of
assistance on task types in which it lacks expertise (see
Section 4.2), or,

e accept or deny a referraldepending on whether it al-
ready knows the acquaintance or it was reneged on ear-
lier (Section 4.3).

As a service provider an agent can either decide to,
e grant or deny serviceassistance (Section 4.4), or,
e grant or deny referral request (Section 4.5).

The decision taenege on an acquaintanceformalised
in Section 4.6, can be taken by any agent and is not an ac-
tion that corresponds to either the requester or the provider
roles. In the following discussion, each of the above actions
are elaborated and the influence of the cognitive models on
action selection explained.

4.1 Requester Action: Request Assistance

Agenti requests its neighboyito execute a task on its behalf
when its own expertise and resources do not match with the
task’s requirements. In more detailcomputes the “likeli-
hood” of receiving help from each of its neighbours and polls
a neighbour f) with a probability in proportion to the com-
puted likelihood for that neighbour. To this end, we have in-
corporated the following factors in the decision process of
First,: assesses how much the requirements of itsrzesich

with the capabilities ofj. It believes that ifj has the match-

ing capability for a task, then the likelihood of getting assis-
tance increases becausés more likely to help for a task it
has expertise on and hence, incurs less cost (relation between
capability match and task cost is explained later). Second,
from its previous interactions witfy ¢ computes the number

of times it was helped by as opposed to it helpedor was
denied assistance by From these numbers, it compares the

source types, andr, respectively, an agent’s capabil-
ities “match” with the task requirements if it has both
e; andr, in its capability set. We say the “match”
value is “high” in this case and “low”, otherwise. To
compute the matchnfatch;(x, j)) of the requirements

of task typer with the capabilities ofj, 7 uses its own
estimates F) of j's expertise and resource capabilities,
updated using reinforcement learning techniglst-

ton and Burto, 1998 EY | + (1 — a)E} + aR, where

t refers to the interaction number,is the task typeq

is the learning rate anf is the immediate reward (the
value of resource or expertise with which the helping
agent executes the task). Whgassists for task type

x, the latter updates its estimates®) of j's capabili-

ties for that task type. Since a task is composed of both
an expertise and a resource type, separate estimates of
both aspects are kept to match an acquaintance’s capa-
bility with a given task. In our formulation, we say that a
match is “high” (=) if both the estimated expertise and
resource values are close to the required values of the
task (within a permissible errof, (=10) %), and “low”

(=1), otherwise. A learning rate of5 is used.

Interaction frequency: “Beneficial” interaction frequency

for i with 7 is the ratio of the number of timeseceived
assistance (the benefactor) frgitto the total number
of interactions between the two. Analogously,“non-
beneficial” interaction frequency with is the ratio of
the number of timeg helped; and was denied assis-
tance byj to the total number of interactions. At time
t, i computes time-discounted frequencies from its inter-
action record withy over a finite past time period?):

P L.
ZT:l 7T|cond(z, J T)
linteractions|f’

Freet(j )

The boolean variableond(i,j,T) is “true” if ¢ and

j interacted at timel'. Here, cat can be one of
the two frequency types, beneficial or non-beneficial.
T corresponds to absolute time — 7') in the past.
linteractions|f’ denotes the total number of interac-
tions betweer andj in a time of P units in the past and

~ is the discount factor (a value 619 is used). For ben-
eficial frequency; computes the numerator using inter-
actions where it was the benefactor. For non-beneficial



frequency, interactions whefeeither helped or was de- 4.2 Requester Action: Request Referral

nied assistance frogare used. A value oP = 10 is An agent seeks a new acquaintance if services on task types
used which is sufficient to allow consider interactions for V\?hich it lacks ex ertiqse are not available from exigtp-)
with j for all task types (since task types repeat every 4 . P . .
time instances). ing acquaintances. In more detail, each agent penodma_l[y
_ - ) checks, using its own learned models of neighbour capabili-
Rating: Utility earned and cost incurred frophare repre-  ties, whether its current neighbours have the matching exper-
sented inv’s ratings ofj. i ups its “beneficial” rating of  tise and resource capabilities for all of its task requirements.
j at that time by an amount equal to the cdstsaved, We say the “state” of an agent is “fit” if it has at least one
if either : receives help frony or from another agent matching neighbour for each of the task types it requires as-
thatj referred to;. However, ifi serves;j’s request, it sistance for. This implies that the agent can potentially re-
reduces the “non-beneficial” rating gfat that time by  ceive service from its neighbours on all task types in which it
an amount equal to the cost incurred. Alternatively, if jacks the abilities. If there is at least one task type in which it
i is denied assistance by ¢ reduces its non-beneficial |acks the required capabilities and does not have a neighbour
rating of j by a fixed positive “penalty” (8.5). Ratings  with those capabilities, its “state” is “not fit". An agent with
are maintained for interactions over a finite past time pestate “not fit’ requests a randomly chosen neighbour to reveal
riod P. To compute the likelihood metri¢,calculates  one of the latter’s existing neighbours. The motivation for
at timet the cumulative, time-discounted ratings of its seeking a new neighbour is to increase the chance of locat-

neighbourj, ing an agent with the required capabilities. We observe that
P precise measurement of an agent’s state is possible by having

C_ratings® (j,t) « Z — accurate models of its neighbour capabilities._ S_uch accurate

= information would help an agent to take decisions that are

. o . relevant, rather than random referral requests that incur un-
wherezr denotes a saving at tini€ in the past in case pecessary communication costs.

of beneficial rating dat = beneficial), or a cost incurred

at time 7" in the past in case of non-beneficial rating 4 3  Requester Action: Accept/Deny Referral

(cat = non-beneficial). We note that all agents initially ' ) ) N

have zero values for both types of ratings of their neigh-An agent accepts a referralonly if the following conditions
bours. The beneficial ratings (and hence, the cumulativ&old for bothi anda: (a) either did not have the other agent as
beneficial rating) are, therefore, positive real numbersa neighbour before (and reneged in the past), and (b) the cur-
Similarly, non-beneficial ratings (thus, cumulative non- rent neighbourhood of both contains less than the maximum
beneficial rating) are negative real numbers. number of neighbours an agent can have at any time.

For: to compute at time, the likelihood of receiving help

from 5 on a task of type:, we develop the following method.
An agent; while deciding whether or not to acknowledge a

llkethOOdl({; t). - (matCh’(a’t’j )_+ ,C‘thfl '(‘7 1) service request from ageptconsiders the following factors.
#fri(j,t)) + (Corating; (4, 1) * fri (4,1))- First, i evaluates the cost it will incur to execute the task for

Here, “+" superscriptis used for beneficial frequency and ratyvhichj requests assistance. The greater the cost incurred by

ing categories, “” for non-beneficial. This measure ensure%' the less likely it.WOSUId be tZ ;‘elﬁ' Seco_g(;," similar to the
that the the higher the match of the current task withesti- ~ 9€CISION process in Section 4.1, the providalso uses its

mates ofj’s capabilities (or, lower the estimated task cost for?ssessmepts ((j)f‘prtewc,),u? mteriactltorli vy'li(mhg ‘;')r.‘lFtera?t'on .
j) and the savings earned frghgnote:C'_rating™ > 0),and  requency”and *rating”) to evaluate the probability of grant-

the lower the cost incurred due fan the past(_rating~ < N9 Service to the provider. Thus, the greater the frequency of
0), the greater is the likelihood of receiving help frgm beneficial interactions in the past and the more utility earned

An agenti uses a standard Boltzmann exploration function’°™ /. the higher is the chance of helping In addition to

e : ; N . the above; also looks ahead into its own future task require-
to compute the probability of asking neighbgiat timet : ments and computes how likely jgo help on those. Specif-

eXP(w) ically, i's probability of helping; increases if it evaluates
> . p(likeliho?dg(ht))’ 1) as a prospective future helper by comparjigjcapabilities
kEneighbours; K with its own future task requirements. To this end, we note
where, K is an exploration constant with value 0.8 and that agents requir(aT _precise models of both the task_environ—
neighbours; refers to the current set of neighbours iof ment anq of capabilities of other agents. Inf[he following, our
Equation 1 guarantees that the probability of asking help fronformulations of the above factors are described together with
a neighbour increases with increasing value oftkelihood e method of combining them into a decision strategy.

metric of that neighbour and vice versa. Task cost(C?) that agent would incur to execute a task

3We assume that the cost of doing a task is “high3)(# an of typez. If it has the desired expertise and resource
agent lacks matching capability for the task. “High” cost is used as ~ capabilities as demanded by the task, it incurs a “low”
an equivalence to the agent’s inability to complete that task; costis ~ cost, otherwise, a “high” cost (similar to the previous
“low” (= 1), otherwise. discussion on capability match).

4.4 Provider Action: Grant/Deny Assistance

Prit(ask)

(3




Interaction frequency with j. The “beneficial” and “non-

As more interactions occur ageintan improve its cogni-

beneficial” interaction frequency computations are thetive models ofj’s capabilities and, hence, can compute the

same as discussed in Section 4.1.

Rating of  for j. “Beneficial” and “non-beneficial” rat-
ing calculations are similar to what have been defined i
Section 4.1.

above probability function in a more precise manner.

4.5 Provider Action: Grant/Deny Referral

n\:irst, we summarize ageiis deliberations as they relate to

deciding to provide a reference of an agertb requesting

Future expected usefulness:Since: has the knowledge of agent;. Being self-interested,reveals a referral only if that
how the task types vary with time (see Table 1) and itaction earns it some utility. Therefore, the first condition that

has the estimates gfs expertise and resource capabili-

1 verifies is whether it has any dependence on the requester

ties for different task types (developed via learning dur-; 4 |n case it does not, its rational choice is to igngie

ing interactions withy), it can compute the match gk
capabilities with its future service requirements. Thus,
computes the future prospectpét timet as:

Ty Yay matchi(x, j) x Pr(z,T)
7]

Here, T countsF' time instants {' is the periodicity of
the task environment).Pr(z,T"), whereT' = (t +
T)Y%F, is the probability of task type occurring at time
(t+T) in the future (corresponds to (timeZ= task type
= z) in Table 1). M is the total number of task types.
¢From Table 1, we see that the valuesodnd M are
both four.

Agenti uses a sigmoidal probability function,

1

1+ exp(V_Th)’

T

proi(j,t) <

Pr + (2

to determine the probability (Pr) of acceptifg service re-

request: since it does not foresee any service assistance from
j, itis not inclined to acknowledge the latter’s requests. In
casei depends o, it then considers whethgrhas a de-
pendence on the prospective refereacét evaluates this by
comparing the requirement estimateg afith the capability
estimates ofi. The reason being, if has a dependence on

a, then it is likely to receive assistance frarmand thus, as-
sign the referring agent,(in this case) a positive beneficial
rating (see discussion @ating in Section 4.1). This, in turn,
would assist in obtaining future assistance from If ¢ de-

tects no dependencepbna, it does not refer, because in so
doing it would not earn any future expected utility (positive
rating) from;j. On the contrary, if confirms that the above
two dependences exist, it subsequently computes if there is a
chance of losing utility by getting reneged on by eitheor

j or both. Agents renege on interactions with those acquain-
tances that fail to serve their requests or are less capable of
service compared to other acquaintances. The latter situation
can arise if an agent gets referred to a new acquaintance hav-

quest. This form is inspired from the Fermi function and hasng high match and thus, reneges on some of its previous ac-

been used in setting$en, 2002; Jiret al,, 2001 where the

quaintances. Sa,checks whether the condition arises where

probability of choosing an action is thresholded around soméithera or j, being new acquaintances, might stop interacting

value T'h of a control variablel”. The probability takes a

with it. The above factors are evaluated sequentially by the

value of 0.5 when the control variable is equal to the threshdeciding agent, and are enumerated in the following.

old. The transition of the probability function around the

pointV = Th can be made more or less skewed by adjust-

ing the shaping parameter We propose a novel method that
agent; uses to comput¥.

V.« (CF = CuratingT(j,t) % fr7(j,)
_(pTOi (]7 t) + C-ratzngj' (]7 t) * fT:r (]7 t))

Such a formulation ensures that the probability of providing

service toj increases with:
lower task costs fof,

lower cost incurred from interactions wighin the past
(lower non-beneficial rating and frequency values),

higher prospect of as future service provider, and,

higher savings earned from interactions wiih the past
(higher beneficial rating and frequency values).

We have used avalue of 1 and se€f'h = 0. We note that the

terms in the first pair of parentheses are comparable to those
in the second pair. Also, the provider agent has a small pos-

itive helping probability when it is completely neutral (i.e.,

when it has no cognitive models of either the environment or

¢ i depends or: As described before, considers refer-
ring only if it estimates a dependence of its task require-
ments with the capabilities gf

j depends om: i considers referring if it estimates that
j depends oru’s expertise. The motivation is (stated
earlier),; earns positive rating fromevery time the ref-
erenceun helpsj, which allows: to receive help fromy

in the future. Thus; aims to maximize the utility earned
(rating fromy) from its action of referring: to 5.

i does not losg as neighbour by referring to j: An
agentm reneges on a neighbour if m does not re-
ceive service from it. This can happen under two cir-
cumstances: (%) does not have the capabilities to serve
m on tasks in whichn requires assistance, or, (2)has

too many other neighbours on whom its dependences are
much stronger than om and hencey: does not interact
with n often enough to be able to detect the latter as a
beneficiary.

Sincei considers referring only if it depends gnit en-
sures that the referral would not engender the latter of

“The “dependence” of an agenton another agenf consists of

other agents’ capabilities and the rating and frequency term@e set of task types in whicks own requirements match witfis

in the control variable all have values of zero).

capabilities as estimated hy



the above two situations whejegets a more beneficial - K tasks assigned to each of a random set of agents.

neighbour and stops interactions with It achieves this e o cemploteny:
by referring only if, (a)j's dependence o is a proper - All agents who do not have required expertise
subset of’s dependence onor, (b) J's dependence on et s s o
a is completely uncorrelated witfis dependence on feduester's expertise and resource requiremens.
In either situationsj would not potentially renege an . Rreo(;lLIJees;er eucp',d?esocangﬂﬁy model of provider.
after being referred agent - I?r?;h Orti?rj-ester and provider assigns ratings to

e If ¢ detects thayj depends om andj does not renege " Al agents evaluate state” and decide [0 request
on: as a consequence of referral, then it refete j if - Provider takes referral decision.
it estimates that it does not depend @nOtherwise, it . 'Affegg“:rf{:rcﬁgzﬁp}zr’ it ffgﬁg;'ﬁg'f;"vn»eighbm

considers the following.

e Since: evaluates dependence @it can ensure itisnot @ Experimental Results
getting reneged on by in the future following similar
reasons as applied to the case of not logingherefore,

1 refersa to j if, (a) a’s dependence oy is a proper
subset of:'s dependence onor, (b)a’s dependence on
j is completely uncorrelated witti's dependence on
The reason being similar to that described in the thir
criterion above.

Our goal is to study whether and to what extent can agents
locate partners with matching capabilities in the specified do-
main (Section 3) using the decision heuristics described in
Section 4. These observations are compared with those where

gagents adopt random decision strategies as opposed to using
cognition-based strategies. The following metrics are chosen
for comparison.

4.6 Reneging on Interactions with a Neighbour Agent state: In the agent groups that emerge out of the
Interacting with a neighbour involves computation costs to simulations, we measure the proportion of an agent’s

evaluate and update their behavioural models and commu-  expertise and resource requirements that match with its
nication overhead. Hence, a selfish agent decides to revoke neighbours’ (group members) capabilities. We compute

interactions with those acquaintances that fail to provide its ' creamineq, Heondi(@)

required services. The following discussion formally estab-  the “state” of an agent —=— "= » Where

lishes an agent's decision to renege on a neighbour. required; is the set of task types in whigHacks exper-
In our formulation, an agent maintains a record of the tise and resource, and the boolean variabled; (x) is

number of times it has requested assistance from a neighbour  true if there is at least one agentiis neighbours that
j for each of the task types in which it lacks expertise. The  estimates to have the capability for task typ&hus, the
higher the number of times such requests failed, the higheris  “state” value is 1 for an agent having a neighbour with

the likelihood that would renege on interacting with We the matching capabilities for each task type in which it
let our agents use the decay functiem(—x; x 3) to update lacks required capabilities. Hence, the closer the value
the current “strength” of the relationship betweemd; (this of an agent’s “state” is t@, the more successful (better)
form of the equation is inspired from the work on evolution it has been in locating complementary partners.

of social networkgJin et al, 2001). Here,; is the number  Groyp size and composition: We measure the agent “con-
of failed requests made bito ; for tasks of typef and/j is nectedness” in the emerged groups. The metrics of inter-
the decay factor. Whenevereceives help from on typet, est are (a) average size of the group (or, number of neigh-
it sets the decay function to 1. An agent revokes interactions bours) of an agent of each capability type, and (b) aver-
with its neighbour if the decay funqtion fa]ls belovy a thresh- age number of agents of different capability types (group
old (of 0.3) for QII task types that it requires aSS|stance_for. composition) in groups of each agent type. Group size
Thus, by adjusting the value df, the agents can have dif- = measurements help analyse how the connectedness of
fergnt punishing tendenmg—zs for neighbours who do not assist agents depend on the constraint of having a limited num-
— in the current formulation, we selegt = 0.1204 which ber of acquaintances. Also, it correlates group size with
implies that an agentwould renege op if ; fails to help: “state” values of agents. Group composition analysis
on 10 successive requests (Sirep(—10 x 0.1204) ~ 0.3) shows any relation that exists between the size of part-
on tasks of each type in whicHacks expertise. nerships of different agent types and their capabilities.

In the following section we summarily describe the simula- ] - )
tion of agent interactions where the above decision strategies [N the following subsections, we report experimental re-

are used by agents. sults and explain our observations. A total of 50 agents are
used in all experiments. Only agent typeand3 are used
5 Simulation and Interaction Dynamics (Section 3 explains agent types). These agent types differ in

. . . . . _the size of their capability sets (tygehas capability in one
Our domain simulations can be summarized in the following o type while type has capabilities in three task types).
steps. This allows us to study the effects on the results, if any, due
¢ Agents are assigned their capability sets and the initialo heterogeneous capability sets of agents. The exact task
random neighbours. types in which an agent has expertise and resource are as-
e While simulation continues folV time steps, at each signed randomly in the initialization routine. At the start of
time step: a simulation, agents are connected randomly to one another
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Figure 1: Agent type 1 “states” Figure 2: Agent type 3 “states”

with the number of connections for each agent bounded bfound that the average number of requests made in one simu-
the maximum allowable neighbour size. For a given randomiation run increased almost linearly from about 2500 to close
initial configuration, each simulation is repeated for 10 runsto 22500 as the neighbour size was increased from 10% to
A simulation run spans 1500 time steps (details of one tim&0% with a total 50 agents and with 50% of each agent type
step is described in Section 5). All results reported are avertl and3).

aged over experiments conducted for 10 such random initial Observation 2: The state of type 1 agents decreases with

configurations, hence, over a total of 100 runs. increase in their numbers, while that of type 3 agents remains
unchanged.
6.1 Agent States For the same maximum neighbour size, a decrease in the state

We measured agent states by increasing the maximum nurialue is observed for typeagents, as their proportion in the
ber of neighbours an agent can have (allowable neighboutopulation increases (see Figure 1). The state values of type
size), from 10% to 70% in steps of 10. A maximum neigh-3 agents, on the contrary, remain almost unaffected by the
bour size ofz% means that an agent can interact with (or,changing composition (Figure 2). Typgeagents require as-
have as neighbours) at mas¥ of the total agent popula- Sistance for 3 different task types in which they lack expertise
tion. For each value of allowable neighbours, the proportion@nd resource. To attain a high state value, they require assis-
of type 1 and type3 agents were varied frof20%,80%) to  tance in most of the required tgsk types. But, agents receive
(80%, 20%) in steps of 10%. Figures 1 and 2 show the varia-cooperation only if they can reciprocate (see decision strategy
tion of agent states with changing composition of typend  in Section 4.4). Typé agents have scarce resource and exper-
type 3 agents, respectively, for different values of maximumtise to be potential service providers. However, when they are

neighbours. a minority in the population compared to typegents, they
Observation 1: Agent states improve with increase in the can find a few type3 agents that contribute significantly to
number of allowable neighbours. improve their state values (note graph when tyjseare mi-

In both Figures 1 and 2, we note that, with increase in théority). On the contrary, as typeincreases in the population, -
maximum neighbour size, the agents attain better state valug§ey are able to form more partnerships with agents of their
With maximum neighbour size 2%, a type3 agent gets a own type than with typ& (result in Section 6.2 shows this).
state value of almost.8, which indicates a very close match A coalition with its own type is not as beneficial for a type
of its requirements and the capabilities of its neighbours. Thig@gent as is that with typs. In a typd - typel partnership,
indicates that with more available neighbours to interact withonly 1 of its 3 required capabilities are satisfied compared to
agents using cognition-based decision strategies are able & 3 in atypd - type3 partnership. Hence, typeagent states
locate better matching partners. The state values of agen@i¢crease with an increase in their numbers. Ty@gents,
using random decisions are found to be always zero. Thedeowever, require assistance for only one task type and can be
agents do not interact with others using strategies similar t@otential cooperators in several task types. These factors en-
the cognitive agents. Hence, they fail to recognise helpfupble them to find cooperating neighbours (mainly of its own
partners. This in turn leads to their having poor (zero) statdype) and thus, maintain a stable state value independent of
values. their number in the population.

However, we observed that increasing the neighbour size .
the communication cost increases. We recorded the totd-2 Group Characteristics
number of requests (graph not provided) an agent makes fon addition to studying how well are the agents, using cogni-
all service requirements over a simulation run. From this, weive decision strategies, able to locate matching partners, we



are interested to know how many agents and of what typ
form groups.

Observation 3: Average group size of an agent type in-

%’able 2: Average group size (50 agents, max neighbour 30%)

creases with increase in the number of agents of that type. (typel %, type3 %) Type 1 groupsType 3 groups
Table 2 shows the average group size of typend type3 (30,70) 3.38 6.04
agents. Simulations were run using a moderate value (30%) (40,60) 5.03 5.68
of the maximum neighbour size and changing the proportion (50,50) 5.73 5.65
of the agent types in the population. It is observed that with (60,40) 6.85 4.54
an increase in their numbers, both agent types form larger (70,30) 7.08 431

groups. This implies that the connectedness of an agent is
directly related to the number of agents of its type in the pop-
ulation. However, we observe a negative correlation betweemable 3: Average group composition (50 agents, max neigh-
the group size and the state values of typagents. As a bour 30%)
majority in the population, they form larger groups but have

lower state values (see Figure 1) than when they are less in Type 1 groups _Type 3 groups

number. With an increase in number, typeagents form (typel %, type3 %) Type 1) Type 3| Type 1/ Type 3
groups with more agents of their own type than typésee (30,70) 1.88 | 1.95) 0.8 5.2
discussion on group composition), which does not help to in- (40,60) 3.34| 169 | 112 46
crease the states of these agents (explained previously in state (50,50) 4.2 1.5 15 | 412
results). Table 2 also reveals that typagents have slightly (60,40) 5.9 1 1.5 3
larger groups than an equal proportion of tyjagents. This (70,30) 6 0.9 2.1 2.2

is due to the difference in the sizes of capability sets of the

two agent types. A typé agent; has capability in only one

task type. It can, hence, find several other tymgents that make partners requires accurate agent models, developed us-

have one matching capability type out of the 3 that it requiredng cognition-supported decision mechanisms. Agents de-

and can therefore maintain partnerships through mutual coogigned with random decision strategies quickly renege on

eration. Thus, although a tyde- type1 partnership does not all neighbours. Since they do not employ observation-based

result in a significant state improvement of the agents formingnodelling of agent capabilities, they are unable to detect the

the partnership, they are more in number than /pé&ype 3 benefit of interacting with any agent. Thus, measurement of

partnerships. We believe that the differences in group sizegroup characteristics is not realisable for such agents.

would be more pronounced if the capability types in which .

agents differ increase in number, i.e, with more heterogeneit-3 Reneging and Referral Patterns

in agent types. In addition to computing agent state values and their con-
Observation 4: In a population of agents with hetero- nectedness at the end of the simulations, we are interested in

geneous capability sets, larger partnerships form betweestudying their behaviour in course of the simulation. Specif-

agents of the same type. ically, we note how their decisions to renege on neighbours
Table 3 summarizes how many typeand type3 agents are and ask or provide referrals vary over time.
present on an average in groups of an averagetygp®l an Observation 5: Frequency of reneging neighbours de-

average typ8 agent. It shows that an agent forms more coali-creases and finally stops during the simulation. Referral re-
tions with agents of its own type than with others. The sizequests continue while granting references stop over time.
of partnerships between similar agents increases with an ifdeclining to interact with a neighbour or ask and/or grant re-
crease in their numbers. This skewness about which agefferrals are important decisions that determine the final state
type to make partnerships with is because partnerships aend group structure of agents. In our experiments, we have
based on utility-generating interactions: a typagent (that observed a decay in the rate at which neighbours are reneged
has a greater set of capabilities than a typs more likelyto  on with time. The reason being, even though agents do not
revoke a typd partner (which has exactly 1 capability type) always find partners with all matching capabilities, they are
from its neighbourhood when it recognises the poorer coopable to locate those with some matching capabilities to con-
eration capability of the latter compared to the agents of itdinue assisting each other and hence, maintain partnerships.
own type®. However, we see typ& agents have more type The regularity in the task environment is an important in-
1 partners when the number of the latter type becomes domituence in this context. With an erratic task environment,
nantin the population (Table 3: row corresponding, 30) long lasting interactions that would allow agents to recognise
and column of group composition of agent tyj)e A typel the capabilities of each other for different task types simply
agent develops partnerships with other ty@gents that have would not have occurred.
its missing capability type. Such partnerships increase with We make an additional observation that agents continue re-
increase in the number of tyddn the population. ferral requests during the entire simulation period. Relating
We note that this behaviour of agents to preferentiallyto the decision mechanism described in Section 4.2, we infer
that an agent continues requesting referrals since all of its task
®Itis unlikely that a typel agent has the exact matching capabil- requirements are not satisfied from the available expertise of
ity that a type3 requires. its current neighbours (it has not achieved a perfect state value



of 1). However, revealing reference information ceases. Thi§Betchel and Graham, 19p&V. Betchel and G. Graham, ed-
is because, since agents have neighbours from whom they re- itors. A companion to congnitive sciencBlackwell, Ox-
ceive assistance in one or more of their task requirements, re- ford, UK, 1998.

ferral becomes too “costly” — following the decision meCh'{Castelfranchi and Falcone, 1996. Castelfranchi and
anism described in Section 4.5. This, in turn, means agents R Faicone. Principle,s of trust for mas: Cognitive
rgfrain fro_m gra_nting referrals beqause they evaluate a finite autonomy, social importance, and quantification. In
risk of losing neighbours by so doing. Proceedings of the Third International Conference on

6.4 Other Observations Multi-Agent Systems (ICMAS)ages 72—-79, 1998.

It is observed that the learned values of neighbour expertisé-orgas, 19911 J. P. Forgas, editoEmotion and social judge-
and resource estimates converge to their true values at the endmMent Permagon Press, New York, 1991.
of the simulation. Also, we make a note that in the decisionHogg and Jennings, 20D1.. M. Hogg and N. R. Jennings.
related to asking for help (Section 4.1), a constant value is Socially intelligent reasoning for autonomous agents.
used for the exploration factdy. In our simulations, agent IEEE Transactions on Systems, Man and Cybernetics -
neighbourhoods are dynamic structures; hence, adjusting the Part A 31(5):381-399, 2001.
exploration factor to encourage exploitation would lead tcg
a complete lack of exploration of new neighbours obtained ¢ \ijding complex software system&ommunications
through referrals. Without sufficient interactions with new .

. > ; X of the ACM 44(4):35-41, 2001.
neighbours agents would fail to build accurate estimates of . .
their capabilities which are necessary for effective decisiodJinetal, 2001 M. Jin, M. Girvan, and M. E. J. Newman.

Jennings, 2001N. R. Jennings. An agent-based approach

making. The structure of growing social network&hys. Rev. E
64,026118:381-399, 2001.
7 Conclusions and Future Work [Kautzet al, 1997 H. Kautz, B. Selman, and M. Shah. Re-

In this paper, we have presented a set of novel decision mech- ferralweb: Combining social networks and collaborative
anisms for a self-interested cognitive agent that interacts with _ filtering. Communications of the ACMO0(3):63-65, 1997.
other cognitive agents having different expertise types in §Lerman and Shehory, 20DX. Lerman and O. Shehory.
time-periodic task environment under some practical con- Coalition formation for large-scale electronic markets. In
straints. Using simulations, we have demonstrated that ele- Proceedings of the Fourth International Conference on
ments of cognition such as memory and learning help agents Multi-Agent Systems (ICMAS)ages 167—174, 2000.
der Such congiraints. We also Showed hat, the iy camel anzarasat al, 2001 P. Panzarasa, N. R. Jennings, and
: ' y T.J. Norman. Social mental shaping: modelling the impact
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pabilities indicates the effectiveness of the decision strategigsen, 200 S. Sen. Believing others: pros and comstifi-

under the specified conditions. cial Intelligence 142:179-203, 2002.
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