
Logic Programming and Partial Deduction for

the Verification of Reactive Systems:
An Experimental Evaluation

(Abstract of ongoing work)

Michael Leuschel1 and Thierry Massart2

1 Department of Electronics and Computer Science
University of Southampton, e-mail: mal@ecs.soton.ac.uk

2 Département d’Informatique
University of Brussels (ULB), e-mail: tmassart@ulb.ac.be

Abstract. In earlier work it has been shown that finite state CTL model
checking of reactive systems can be achieved by a relatively simple in-
terpreter written in tabled logic programming. This approach is flexible
in the sense that various specification formalisms can be easily targeted
(e.g., Petri nets, CSP, ...). Moreover, infinite state CTL model checking
can be performed by analysing this interpreter using a combination of
partial deduction and abstract interpretation. It has also been shown
that this approach is powerful enough to decide coverability properties
of various kinds of Petri nets.
In this ongoing work, we are empirically evaluating these approaches
on various case studies of finite, parameterised and infinite systems. For
finite state systems, we show how our approach and tool compares to
standard tools for finite state model checking For parameterised or infi-
nite state model checking, we are comparing our results with, e.g., XMC,
Hytech.

1 Introduction

Recently there has been a lot of interest in applying logic programming tech-
niques to model checking. Table-based logic programming and set-based ana-
lysis can be used as an efficient means of performing explicit model check-
ing [RRR+97][CP98]. Due to the built-in support of logic programming for non-
determinism and unification, its also has a high potential both as a specification
language and a language to build verification prototypes. If the system to verify
is finite state, tabled logic programming environment can be used to automati-
cally do the model-checking.

However, finite state model checking is sometimes not sufficient, since most
software cannot be modelled directly by a finite state system. Moreover, dis-
tributed algorithms often have an unbounded number of instances. For these
reasons, there has recently been considerable interest in parameterised and infi-

nite model checking.



CTL Model Checking using Tabulation

A tabled logic programming systems such as XSB [SSW94] provides very efficient
datastructures and algorithms to tabulate calls, i.e., it remembers which calls
it has already encountered. This not only improves efficiency by avoiding the
recomputation of already computed results, it also enables one to write logic
programs in a more declarative style than using a “classical” Prolog system.

As was realised in [RRR+97] this enables one to use XSB as a basis to
write very efficient model checkers, with relatively little effort. This has lead
to the development of the XMC model checking system, whose performance is
comparable to that of SPIN (at least for certain examples).

We have shown in [LM99] that, through a translation of CTL [EE81] into mu-
calculus [Koz83] formulae using least and greatest fixpoints and into a further
translation of the greatest fixpoints into least one’s, the whole of CTL can be
encoded as a relatively simple tabled logic program. Contrary to [RRR+97] our
aim was not maximum efficiency, but writing a provably correct interpreter that
can be fed into existing tools for the analysis and optimisation of logic programs.1

One of the motivations is to use these analysis tools to perform infinite state
model checking, as detailed below. Also, our CTL interpreter is independent of
any underlying formalism. It only supposes that the successors of a state s can
be computed (through a predicate trans) and that the elementary proposition
of any state s can be determined (through a predicate prop). The interpreter can
thus be easily applied to many formalisms, by providing appropriate encodings of
trans and prop. An implementation of CTL as a (tabled) XSB Prolog program
is given in Figure 1.

In this work, we examine to what extent this very simple CTL interpreter
can be used on its own for finite state model checking. Our first experiments
seem to show that the efficiency is surprsingly good, for such a simple system.

For example, we managed to verify the mutual exclusion of the Reader-Writer
example ([ABC+95] resp. p154 and p.17) given by the Petri net (with an inhibitor
arc) in Figure 2. This example models a system with K processes (tokens initially
in place P1) which may request to read or write some file. To verify mutual
exclusion properties we can simply run our CTL interpreter together with the
encoding in Figure 3 (with K being instantiated various concrete values) in XSB-
Prolog.

The Figure 4 contains preliminary results for this example as well as two other
examples: a Central Server Model (CSM) and a Flexible Manufacturing System
(FMS) [CM97]. xtl refers to our CTL interpreter running on XSB-Prolog 2.4.
For the experiments we used a Macintosh Powerbook G3 with 320MB of RAM,
running at 300Mhz using OS X 10.1.2. Compared to other timings published in
the literature, our tools perform quite well, especially since they have not been
designed with efficiency in mind.

We also did a few preliminary tests using the logen partial evaluation system
[JL96,LJ99] to specialise xtl for the particular system and formula at hand.

1 These tools work best on declarative programs, and hence the full XMC system is
probably not as amenable to analysis and optimisation by most existing tools.



/* A Model Checker for CTL fomulas written for XSB-Prolog */

:- table sat/2.

sat(_E,true).

sat(_E,false) :- fail.

sat(E,p(P)) :- prop(E,P). /* elementary proposition */

sat(E,and(F,G)) :- sat(E,F), sat(E,G).

sat(E,or(F,_G)) :- sat(E,F).

sat(E,or(_F,G)) :- sat(E,G).

sat(E,not(F)) :- tnot(sat(E,F)).

sat(E,en(F)) :- trans(_Act,E,E2),sat(E2,F). /* exists next */

sat(E,an(F)) :- tnot(sat(E,en(not(F)))). /* always next */

sat(E,eu(F,G)) :- sat_eu(E,F,G). /* exists until */

sat(E,au(F,G)) :- sat(E,not(eu(not(G),and(not(F),not(G))))),

sat_noteg(E,not(G)). /* always until */

sat(E,ef(F)) :- sat(E,eu(true,F)). /* exists future */

sat(E,af(F)) :- sat_noteg(E,not(F)). /* always future */

sat(E,eg(F)) :- tnot(sat_noteg(E,F)). /* exists global */

/* we want gfp -> negate lfp of negation */

sat(E,ag(F)) :- sat(E,not(ef(not(F)))). /* always global */

:- table sat_eu/3. /* tabulation to compute least-fixed point using XSB */

/* exists until */

sat_eu(E,_F,G) :- sat(E,G).

sat_eu(E,F,G) :- sat(E,F), trans(_Act,E,E2), sat_eu(E2,F,G).

:- table sat_noteg/2. /* tabulation to compute least-fixed point */

sat_noteg(E,F) :- sat(E,not(F)).

sat_noteg(E,F) :- findall(E2,trans(_A,E,E2),Succs), sat_noteg2(Succs,F).

sat_noteg2([],_).

sat_noteg2([S1|T],F) :- sat_noteg(S1,F), sat_noteg2(T,F).

Fig. 1. CTL interpreter

E.g., for the CSM case study this improves the runtime from 0.40 s to 0.28 s
for 8 processes, from 1.64 to 1.05 s for 12 processes and from 4.55 to 4.53 for
16 processes. We will discuss the effect of specialisation in more detail at the
workshop. We also plan to present a full empirical study on more case studies
and comparing with other existing systems (all running on the same machine).
For example, further experiments of finite state model checking will be done
using a simplified CSP interpreter based upon [Leu01] and the results will be
compared to fdr [Ros99,For].2

2 The interpreter of [Leu01] has to be simplified (no complicated synchronisations will
be allowed) so that the use of co-routining is prevented, which is not supported by
XSB.



Infinite state model-checking

The method presented above, will not work for infinite state or parameterised
model-checking, as during the execution of the CTL interpreter infinitely many
different call patterns will arise. To (partially) solve this undecidable problem,
we have used existing techniques for the automatic control of logic program

specialisation [Leu99].
Now, an important question when attempting infinite state model checking in

practice is: How can one automatically obtain an abstraction which is finite, but
still as precise as required? A partial solution to this problem can be obtained by
using existing techniques for the automatic control of logic program specialisation

[Leu99]. First successful steps in that direction have been taken in [GL99,LM99],
using the tools logen [JL96,LJ99] and ecce [LDS96,LMDS98].

[LL00b] gave a first formal answer about the power of the approach and
showed that when we encode ordinary Petri nets as logic programs and use
existing program specialisation algorithms, we can decide the so-called “cover-
ability problems” (which encompass quasi-liveness, boundedness, determinism,
regularity,...). This was achieved by showing that the Petri net algorithms by
Karp–Miller [KM69] and Finkel [Fin93], which proceed forward, can be exactly
mimicked. In [LL00a] we discuss how partial deduction can mimic backward
algorithms as well. We prove that the backward algorithms scheme defined in
[AČJT96,FS98,FS99] to solve the coverability problem of Well Founded Transi-
tion Systems as e.g. reset Petri nets , can also be mimicked by our environment.

The question we want to answer in this work is the practical performance
of this approach. We have already applied our tools to the earlier mentioned
parametric examples: a Central Server Model (CSM), a Reader-Writer model and
a Flexible Manufacturing System (FMS). However, this time we have proven the
safety of these models for any value of the parameter, and we have done so fully
automatically. As can be seen in Figure 4 (in the ecce column) these timings
are again quite good, especially for a system that has initially been developed for
another purpose. One can also see that already for relatively small values of the
parameter, infinite state model checking is more efficient than the (incomplete)
finite state model checking.

Also note that we managed to apply it to an example (Reader-Writer) with
an inhibitor arc, for which Karp–Miller [KM69] and Finkel [Fin93] are not ap-
plicable. Indeed, the advantage of our approach is that it is always applicable,
as long as we can provide a suitable logic programming encoding (however, we
will not always obtain a decision procedure).

At the workshop we plan to compare our tools (on more examples) with, e.g.,
XMC and Hytech [HH95].

References

[ABC+95] Marco Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Frances-
chinis. Modelling with Generalized Stochastic Petri Nets. John Wiley &
Sons, 1995.



[AČJT96] Parosh Aziz Abdulla, Kārlis Čerāns, Bengt Jonsson, and Yih-Kuen Tsay.
General decidability theorems for infinite-state systems. In Proceedings,
11th Annual IEEE Symposium on Logic in Computer Science, pages 313–
321, New Brunswick, New Jersey, 27–30 July 1996. IEEE Computer Society
Press.

[CM97] Gianfranco Ciardo and Andrew S. Miner. Storage alternatives for large
structured state spaces. In Computer Performance Evaluation, volume 1245
of Lecture Notes in Computer Science. Springer, 1997.

[CP98] Witolds Charatonik and Andreas Podelski. Set-based analysis of reactive
infinite-state systems. In B. Steffen, editor, Tools and Algorithms for the
Construction and Analysis of Systems, LNCS 1384, pages 358–375. Springer-
Verlag, March 1998.

[EE81] E.M. Clarke and E.A. Emerson. Design and Synthesis of Synchronization
Skeletons using Branching Time Temporal Logic. In D. Kozen, editor, Pro-
ceedings of the Workshop on Logics of Programs, volume 131 of Lecture Notes
in Computer Science, pages 52–71, Yorktown Heights, New York, May 1981.
Springer-Verlag.

[Fin93] A. Finkel. The minimal coverability graph for Petri nets. Lecture Notes in
Computer Science, 674:210–243, 1993.

[For] Formal Systems (Europe) Ltd. Failures-Divergence Refinement — FDR2
User Manual.

[FS98] A. Finkel and P. Schnoebelen. Fundamental structures in well-structured
infinite transition systems. In Proceedings of LATIN’98, LNCS 1380, pages
102–118. Springer-Verlag, 1998.

[FS99] A. Finkel and P. Schnoebelen. Well-structured transition systems every-
where ! Theoretical Computer Science, 1999. To appear.

[GL99] Robert Glück and Michael Leuschel. Abstraction-based partial deduction
for solving inverse problems – a transformational approach to software ver-
ification. In Proceedings of the Third International Ershov Conference on
Perspectives of System Informatics, LNCS 1755, pages 93–100, Novosibirsk,
Russia, 1999. Springer-Verlag.

[HH95] T. A. Henzinger and P.-H. Ho. HYTECH: The Cornell HYbrid TECHnology
tool. Hybrid Systems II, LNCS 999:265–293, 1995.

[JL96] J. Jørgensen and M. Leuschel. Efficiently generating efficient generating
extensions in Prolog. In Olivier Danvy, Robert Glück, and Peter Thiemann,
editors, Partial Evaluation, International Seminar, LNCS 1110, pages 238–
262, Schloß Dagstuhl, 1996. Springer-Verlag.

[KM69] R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Com-
puter and System Sciences, 3:147–195, 1969.

[Koz83] Dexter Kozen. Results on the propositional mu-calculus. Theoretical Com-
puter Science, 27:333–354, 1983.

[LDS96] Michael Leuschel and Danny De Schreye. Logic program specialisation: How
to be more specific. In H. Kuchen and S.D. Swierstra, editors, Proceedings of
the International Symposium on Programming Languages, Implementations,
Logics and Programs (PLILP’96), LNCS 1140, pages 137–151, Aachen, Ger-
many, September 1996. Springer-Verlag.

[Leu99] Michael Leuschel. Logic program specialisation. In John Hatcliff, Torben Æ.
Mogensen, and Peter Thiemann, editors, Partial Evaluation: Practice and
Theory, LNCS 1706, pages 155–188, Copenhagen, Denmark, 1999. Springer-
Verlag.



[Leu01] Michael Leuschel. Design and implementation of the high-level specification
language csp(lp) in prolog. In I. V. Ramakrishnan, editor, Proceedings of
PADL’01, LNCS 1990, pages 14–28. Springer-Verlag, March 2001.

[LJ99] Michael Leuschel and Jesper Jørgensen. Efficient specialisation in Prolog
using a hand-written compiler generator. Technical Report DSSE-TR-99-6,
Department of Electronics and Computer Science, University of Southamp-
ton, September 1999.

[LL00a] Michael Leuschel and Helko Lehmann. Coverability of reset petri nets and
other well- structuredtransition systems by partial deduction. In Computa-
tional Logic - CL 2000, First International Conference, London, UK, 24-28
July, 2000, Proceedings, volume 1861 of Lecture Notes in Computer Science.
Springer, 2000.

[LL00b] Michael Leuschel and Helko Lehmann. Solving coverability problems of
Petri nets by partial deduction. In Maurizio Gabbrielli and Frank Pfenning,
editors, Proceedings of PPDP’2000, pages 268–279, Montreal, Canada, 2000.
ACM Press.

[LM99] Michael Leuschel and Thierry Massart. Infinite state model checking by ab-
stract interpretation and program specialisation. In Annalisa Bossi, editor,
Logic-Based Program Synthesis and Transformation. Proceedings of LOP-
STR’99, LNCS 1817, pages 63–82, Venice, Italy, September 1999.

[LMDS98] Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling gen-
eralisation and polyvariance in partial deduction of normal logic programs.
ACM Transactions on Programming Languages and Systems, 20(1):208–258,
January 1998.

[Ros99] A. W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall,
1999.

[RRR+97] Y. S. Ramakrishna, C. R. Ramakrishnan, I. V. Ramakrishnan, Scott A.
Smolka, Terrance Swift, and David S. Warren. Efficient model checking using
tabled resolution. In O. Grumberg, editor, Proceedings of the International
Conference on Computer-Aided Verification (CAV’97), LNCS 1254, pages
143–154. Springer-Verlag, 1997.

[SSW94] K. Sagonas, T. Swift, and D. S. Warren. XSB as an efficient deductive data-
base engine. In Proceedings of the ACM SIGMOD International Conference
on the Management of Data, pages 442–453, Minneapolis, Minnesota, May
1994. ACM.



Fig. 2. Petri net of a Reader-Writer system with K processes

trans(t1,[s(X1),X2,X3,X4,X5,X6,X7],[X1,s(X2),X3,X4,X5,X6,X7]).

trans(t2,[X1,s(X2),X3,X4,X5,X6,X7],[X1,X2,s(X3),X4,X5,X6,X7]).

trans(t3,[X1,s(X2),X3,X4,X5,X6,X7],[X1,X2,X3,s(X4),X5,X6,X7]).

trans(t4,[X1,X2,s(X3),X4,s(X5),X6,X7],[X1,X2,X3,X4,s(X5),s(X6),X7]).

trans(t5,[X1,X2,X3,s(X4),s(X5),0,X7],[X1,X2,X3,X4,X5,0,s(X7)]).

trans(t6,[X1,X2,X3,X4,X5,s(X6),X7],[s(X1),X2,X3,X4,X5,X6,X7]).

trans(t7,[X1,X2,X3,X4,X5,X6,s(X7)],[s(X1),X2,X3,X4,s(X5),X6,X7]).

Fig. 3. Petri net example encode in logic programming



Case Study Parameter Value xtl ecce

CSM 2 0.01 s -
4 0.05 s -
6 0.20 s -
8 0.40 s -
12 1.64 s -
16 4.55 s -
32 55.03 s -
∞ - 4.44 s

FMS 1 0.03 s -
2 1.25 s -
3 71.69 s -
∞ - 55.10 s

Reader-Writer 2 0.00 s -
4 0.01 s -
6 0.04 s -
8 0.10 s -
12 0.49 s -
16 1.67 s -
32 55.96 s -
∞ - 1.49 s

Fig. 4. Preliminary results of our verification experiments


