
Generating inductive verification proofs
for Isabelle using the partial evaluator

Ecce

Helko Lehmann and Michael Leuschel
mal@ecs.soton.ac.uk

Declarative Systems and Software Engineering Group
Technical Report DSSE-TR-2002-2

September 2002

www.dsse.ecs.soton.ac.uk/techreports/

Department of Electronics and Computer Science

University of Southampton
Highfield, Southampton SO17 1BJ, United Kingdom

Generating inductive verification proofs for Isabelle using
the partial evaluator Ecce

Helko Lehmann and Michael Leuschel

Department of Electronics and Computer Science
University of Southampton

Highfield, Southampton, SO17 1BJ, UK
{hel99r,mal}@ecs.soton.ac.uk

Abstract. Ecce is a partial deduction system which can be used to automatically gen-
erate abstractions for the model checking of many infinite state systems. We show that to
verify the abstractions generated by Ecce we may employ the proof assistant Isabelle.
Thereby Ecce is used to generate the specification, hypotheses and proof script in Is-

abelle’s theory format. Then, in many cases, Isabelle can automatically execute these
proof scripts and thereby verify the soundness of Ecce’s abstraction. In this work we
focus on the specification and verification of Petri nets.

1 Introduction

In recent work it has been shown that logic programming based methods can be applied to model
checking of infinite state systems. One of the key issues of model checking of infinite systems
is abstraction [2]. Abstraction allows to approximate an infinite system by a finite one, and if
proper care is taken the results obtained for the finite abstraction will be valid for the infinite
system. However, an important question when attempting to perform infinite model checking in
practice is: How can one automatically obtain an abstraction which is finite, but still as precise
as required to check a particular dynamic property? A potential solution to this problem is
to apply existing techniques for the automatic control of (logic) program specialisation, [8]
and many others. The aim of program specialisation is to improve the efficiency of a program
by pre-evaluating it for particular parameters. In the context of logic programming program
specialisation is also called partial deduction. Similar to model checking of infinite systems, in
program specialisation in general and partial deduction in particular, one faces the following
(quite extensively studied) problem: To be able to produce efficient specialised programs, infinite
computation trees have to be abstracted in a finite but also as precise as possible way.

To apply partial deduction the system to be verified has to be modelled as a logic program
by means of an interpreter [6, 11]. Thereby, the interpreter describes how the states of the sys-
tem change by executing transitions. By applying partial deduction to the interpreter we expect
a finite abstraction of the possibly infinite state space of the system to be generated. This ab-
straction may then be used to verify system properties of interest. This approach proved to be
quite powerful as it was possible to obtain decision procedures for the coverability problem, if
“typical” specialisation algorithms, as for example implemented in the Ecce system [14, 12],
are applied to logic programs that encode Petri nets [10]. It is even possible to precisely mimic
well known Petri net algorithms (by Karp–Miller [7] and by Finkel [3]) when the program spe-
cialisation techniques are slightly weakened. The results of [10] refer to forward algorithms only,
i.e. algorithms which construct, beginning from some initial state, an abstract representation of
the whole reachability tree of a Petri net. However, for some classes of systems such exhaustive

algorithms are not necessary or even not precise enough to decide coverability [1, 4, 5]. In such
cases partial deduction may often be successfully applied as well [9], thereby mimicking well
known backward algorithms [4].

Technically, the dynamic system specified in the input for the partial deduction algorithm
can also be viewed as an inductive system describing the set of finite behaviours, i.e. the set
of finite paths. Thereby, the set of initial states form the inductive base and each transition
represents an inductive step. For the output of the partial deduction algorithm to be a sound
abstraction each of the states reachable by a path must be contained in a state representation of
the output. It is desirable to verify this property if we cannot ensure that the partial deduction
algorithm is correctly implemented. The goal of this work is to show that such proofs can be
generated and executed automatically. To this end we employ the partial deduction system
Ecce for the automatic generation of the theory and the proof scripts. The proof assistant
Isabelle [15] is used to execute the proof scripts.

If we can use Isabelle to verify the soundness of the output of the partial deduction method
we may also ask whether it is possible to generate the hypotheses automatically and thereby
use Isabelle directly as a model checker of infinite systems. To this end, similar to the partial
deduction system, Isabelle needs to perform some kind of abstraction while searching for a
proof of some dynamic property such as safety.

In this paper we focus on the specification and verification of Petri nets. This is due to their
simple representation as a logic program as well as in a Isabelle theory. The following section
describes how we can specify Petri nets in Isabelle. Then we discuss how such specifications
are generated using Ecceand how Ecce output can be translated into Isabelle. In Section 4
we demonstrate how proof scripts can be used in Isabelle for automatic theorem proving. In
Section 5 we demonstrate the complete verification process using an example specification. The
above mentioned automatic generation of hypotheses and some efficiency issues are discussed
in Section 6. The last section gives a conclusion and proposes some further work. All relevant
source code of the Ecce system can be found in the appendix.

2 Specification of Petri nets in Isabelle

The proof assistant Isabelle has been developed as a generic system for implementing logical
formalisms. Instead of developing an all new logic for our purposes we will use the specification
and verification methods realised by the implementation of Higher Order Logic (HOL) in Is-

abelle. HOL allows to express most mathematical concepts and, in contrast to, for example,
First Order Logic, it allows the specification of and the reasoning about inductively defined sets.
This latter feature is crucial for our purposes. Hence, strictly speaking, we will develop speci-
fications in Isabelle/HOL. Furthermore, the current Isabelle system provides the language
Isar for the specification of theories and the development of proof scripts. In this work we
will use Isar instead of Isabelle’s implementation language ML since Isar is much easier to
use as it hides most implementation details of Isabelle. However, the possibilities to develop
proof tactics using Isar only are very limited. Consequently we conjecture that for efficient
automatic theorem proving the use of Isar allone is insufficient (see also Section 7).

Isabelle allows specifications as part of theories. A theory can be thought of as a collection
of declarations, definitions, and proofs. Isabelle/HOL is a typed logical language where the base
types resemble those of functional programming languages such as ML. To specify new types
Isabelle provides type constructors, function types, and type variables. We will introdce the

particular concepts as we will use them and refer for additional information to the Isabelle/Isar
Reference Manual1.

Terms are formed by applying functions to arguments, e.g. if f is a function of type τ1 ⇒ τ2

and t a term of type τ1 then ft is a term of type τ2.

Formulas are terms of base type bool. Accordingly, the usual logical operators are defined
as functions whose arguments and domain are of type bool.

We specify the Petri net theory PN as a successor of the theory Main which is provided
by Isabelle/HOL. Main contains a number of basic declarations, definitions, and lemmas
concerning often required basic concepts such as lists and sets. Thereby, every part of the
theory Main becomes automatically visible in PN:

theory PN = Main:

To simplify the specification and to increase readability of the theory we define the type
state which corresponds to a notion in Petri net theory: A state or marking is a vector of
natural numbers representing the number of tokens on the places of a Petri net. The number of
dimensions of the vector corresponds to the number of places of the particular net. In Isabelle

we use the type constructor × to define the type state as a product over the base type nat:

types

state = "nat × nat ×...× nat"

Based on the type state we declare the functions paths, trans, and start. The function
start represents the initial state of the Petri net. Note that since we allow parameters in the
definition of state it actually may represent a set of initial states. The function trans describes
how the firing of a transition can change the state of a Petri net. The additional parameter of
type nat is used to refer to a particular transition of the net. The set of finite possible sequences
of transitons starting in the initial state is represented by paths. Note that the declaration of
trans and paths is independent of the particular considered Petri net.

consts

start :: "nat ⇒ ...⇒ nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

By assigning a unique number the transition names are defined as a of enumeration type.
Consequently, for each transition t we include a declaration of the following form:

consts

t :: "nat"

The initial state start is defined by a term term of type state:

defs

start def [simp]: "start list of variables ≡ term"

The optional [simp] controls the strategy of Isabelle’s built-in simplifier to apply this
definition whenever possible. For our purposes term will be always a tuple of terms built using
the unary successor function Suc, 0, and variables appearing in the list of variables (the number
of variables in this list must correspond to the number of parameters in the declaration of start.

1 Lawrence C. Paulson. The Isabelle Reference Manual. http://isabelle. in.tum.de/doc/ref.pdf.

The transition function is defined as a set of transitions of the Petri net. Thereby each
transition is represented as a tuple (x,y,n), where x and y are tuples of terms built by Suc

and variables of the corresponding list of variables. The term n is the name of the transition.

defs

trans def: "trans ≡ {(x,y,n).
(∃ list1 of variables. (x,y,n)= transition1

∨ (∃ list2 of variables. (x,y,n)= transition2

...

∨ (∃ listn of variables. (x,y,n)= transitionn}"

One of the important features of Isabelle/HOL is the possibility of inductive definitions.
We define paths inductively using the following two rules:

inductive paths

intros

zero: "[(start list of variables)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

The first rule defines all initial states to be paths. The second rule allows the construction
of new paths by extending an arbitrary path by a new state if there exists a transition from
the state at the head of the path to the new state.

Finally, each transition t is defined as follows, where n is a unique natural number:

defs

t def [simp]: "t ≡ n"

The following example shows the the specification of a Petri net according to this scheme.

Example 1. We encode the Petri net depicted below in Isabelle/HOL. The initial state is
defined by one token on each of the places p2 and p3, and the parameter A representing an
arbitrary number of tokens on place p1 (p1, p2, p3 correspond to the first, second, and third
dimension, respectively, of the state vector.

t1

t2

p1

p3

p4

p2

p5

t4

t3

B

theory PN = Main:

types

state = "nat × nat × nat × nat × nat"

consts

start :: "nat ⇒ state"

trans :: "(state × state × nat) set"

paths :: "(state list) set"

t1 :: "nat"

t2 :: "nat"

t3 :: "nat"

t4 :: "nat"

defs

start def [simp]: "start ≡ (B,(Suc 0),(Suc 0),0,0)"

trans def: "trans ≡ {(x,y,n).
(∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,(Suc B),C,(Suc D),E),t1))

∨ (∃ E D C B A. (x,y,n)=(((Suc A),(Suc B),(Suc C),D,E),

(A,B,(Suc C),D,(Suc E)),t2))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,(Suc D),E),

((Suc A),B,(Suc C),D,E),t3))

∨ (∃ E D C B A. (x,y,n)=((A,B,C,D,(Suc E)),

((Suc A),(Suc B),C,D,E),t4))}"

t1 def [simp]: "t1 ≡ 0"

t2 def [simp]: "t2 ≡ 1"

t3 def [simp]: "t3 ≡ 2"

t4 def [simp]: "t4 ≡ 3"

inductive paths

intros

zero: "[(start B)] ∈ paths"

step: "[[(y,z,n) ∈ trans; y#l ∈ paths]] =⇒ z#(y#l) ∈ paths"

2

3 Generating Isabelle theories using Ecce

Since we aim to verify the partial deduction results of Ecce, we have integrated the generation
of the Isabelle theory directly into Ecce. The generated Isabelle theory consists of three
parts:

1. the specification of the Petri net,
2. the specification of the coverability graph as generated by Ecce,
3. the lemma to be verified together with a proof script.

In this section we deal with the first two parts while the third part is discussed in Section 4.

3.1 Generating Petri net specifications from logic programs

The Isabelle theory generator integrated in Ecce assumes that the transitions of a Petri
net are specified by a set of clauses of a ternary predicate. The first parameter represents a
transition name, the second represents the set of states where the transition can be applied,
and the third how the state changes if the transition is executed. Technically, the second and
the third parameter of each clause are lists of the length corresponding to the number of
places. Relying on unification, conditions and changes can be easily expressed. For example,
the condition that at least two tokens are on place p3 in a Petri net with five places is expressed
by the term [X0,X1,s(s(X2)),X3,X4] (thereby s can be interpreted as the successor function
on natural numbers). Similarly, the state change can be expressed: the removal of one token on
place p3 and generation of two tokens on p1 is represented as [s(s(X0)),X1,s(X2),X3,X4].

The initial state is simply represented as a single clause where the last parameter must be
a list of the length corresponding to the number of places. Each element of the list can be
constructed using 0, the unary function s, and variables.

Example 2. The following logic program encodes the Petri net of Example 1.

trans(t1,[s(X0),s(X1),s(X2),X3,X4],[X0,s(X1),X2,s(X3),X4]).

trans(t2,[s(X0),s(X1),s(X2),X3,X4],[X0,X1,s(X2),X3,s(X4)]).

trans(t3,[X0,X1,X2,s(X3),X4],[s(X0),X1,s(X2),X3,X4]).

trans(t4,[X0,X1,X2,X3,s(X4)],[s(X0),s(X1),X2,X3,X4]).

start([B,s(0),s(0),0,0]).

2

The implementation of the theory generator is part of the file “code generator.pro” and can be
found in Appendix A. The generation is initiated by a call to the clause print specialised

program isa. In a user dialog the name of the file containing the Petri net specification, and
the names of the predicates representing transitions and initial state, respectively are deter-
mined. The Isabelle specification is generated by the subsequent calls of print isa header,
print isa type decl, print isa path decl(Data), and print isa path def(Data) in the
body of print specialised program isa. For example, the Isabelle theory of Example 1
has been generated from the logic program of Example 2.

3.2 Generating specifications of the coverability graph from logic programs

To use partial deduction techniques for model checking we need to specify also the verification
task as a logic program. To this end we may implement the satisfiability relation of some
temporal logic as a logic program. However, the generation of a coverability graph (by partial
deduction or other techniques) is not effective for all tasks that can be expressed with a powerful
temporal logic. However, one of the tasks where it is effective is the checking of safety properties.
To express safety properties we only require the definition of the EU operator of the temporal
logic CTL:

infinite_model_check(basic_safety,Formula) :- start(_,S),

Formula = sat(S,eu(true,p(unsafe))).

sat(E,p(P)) :- prop(E,P).

sat(E,eu(F,G)) :-

sat_eu(E,F,G).

sat_eu(E,_F,G) :-

sat(E,G).

sat_eu(E,F,G) :-

sat(E,F), trans(_Act,E,E2), sat_eu(E2,F,G).

Depending on the safety property we are interested in we define when a state is considered
to be unsafe. For example the clause prop([X0,X1,X2,s(X3),s(X4)],unsafe) defines a state
of a Petri net to be unsafe when there exist at least one token on each of the places p4 and p5.

Note that simply calling the clause infinite model check(basic safety,Formula) in Pro-
log would force the system to explore an infinite derivation. Due to the potentially infinite state
space of a Petri net also methods like tabeling would be in general insufficient to deal with this
problem.

Before we apply the partial deduction system Ecce we will first perform a preliminary
compilation of the particular Petri net and task. Thereby we will get rid of some of the inter-
pretation overhead and achieve a more straightforward equivalence between markings of the
Petri net and atoms encountered during the partial deduction phase. We will use the Logen

offline partial deduction system [13] to that effect (but any other scheme which has a similar
effect can be used). This system allows one to annotate calls in the original program as either
reducible (executed by Logen) or non-reducible (not executed and thus kept in the specialised
program).2 In our case we will annotate all calls to trans and start as reducible. After that,
the Logen system will (efficiently) produce a compiled version: As can be seen in Example 3,
the compilation gives us a predicate sat eu 2 with one argument each for the transition name
and the result, plus one argument per Petri net place. Observe that Logen (and Ecce as well)
adds two underscores and a unique identifier to existing predicate names. sat eu 2 contains
one clause per transition of the Petri net plus one fact (for the marking reached). The initial
marking is encoded in the one clause for ssat 0 which calls sat 1.

Example 3. Applying Logen to the Petri net specification of Example 2 and the above task
implementation generates the following clauses:

sat_eu__2(B,C,D,s(E),s(F)).

sat_eu__2(s(G),s(H),s(I),J,K) :-

sat_eu__2(G,s(H),I,s(J),K).

sat_eu__2(s(L),s(M),s(N),O,P) :-

sat_eu__2(L,M,s(N),O,s(P)).

sat_eu__2(Q,R,S,s(T),U) :-

sat_eu__2(s(Q),R,s(S),T,U).

sat_eu__2(V,W,X,Y,s(Z)) :-

sat_eu__2(s(V),s(W),X,Y,Z).

sat__1(B,C,D,E,F) :-

sat_eu__2(B,C,D,E,F).

2
Logen is offline: the control decisions have been taken beforehand (and are encoded in the annota-
tions).

ssat__0 :-

sat__1(B,s(0),s(0),0,0).

2

After this precompilation we can apply Ecce to the resulting program. To this end we aim
to specialise the predicate ssat 0. The result of applying Ecce to the program of Example 3
is given in Example 4:

Example 4.

ssat__0 :-

ssat__0__1.

/* ssat__0__1 --> [ssat__0] */

ssat__0__1 :-

sat__1__2(A).

/* sat__1__2(A) --> [sat__1(A,s(0),s(0),0,0)] */

sat__1__2(A) :-

sat_eu__2__3(A).

/* sat_eu__2__3(A) --> [sat_eu__2(A,s(0),s(0),0,0)] */

sat_eu__2__3(s(A)) :-

sat_eu__2__4(A).

sat_eu__2__3(s(A)) :-

sat_eu__2__5(A).

/* sat_eu__2__4(A) --> [sat_eu__2(A,s(0),0,s(0),0)] */

sat_eu__2__4(A) :-

sat_eu__2__3(s(A)).

/* sat_eu__2__5(A) --> [sat_eu__2(A,0,s(0),0,s(0))] */

sat_eu__2__5(A) :-

sat_eu__2__3(s(A)).

2

From the output of Ecce we generate an Isabelle theory representing the generated cov-
erability relation. Independent of the particular domain this relation is declared as a set of pairs
of states:

consts

coverrel:: "(state × state) set"

For each predicate name of a clause in the specialised program, which represents a set of
states we add a declaration of the form:

consts

name :: nat ⇒ ...⇒ nat ⇒ state"

Thereby the number of parameters of type nat corresponds to the number of variables in
the head of the clause. The definitions have the form:

defs

name def: "name list of variables ≡ term"

For our purposes term will be always a tuple of terms built using the unary successor function
Suc, 0, and variables appearing in the list of variables (the number of variables in this list must
correspond to the number of parameters in the declaration of name).

Finally, the coverability relation is defined as a set of pairs of states. In the specialised
program every clause of the form namem(argsm) :- namen(argsn) corresponds to such a
pair. Formally, in the Isabelle theory each pair is represented as a tuple (x,y), where x and
y are tuples of terms built by Suc and variables of the corresponding list of variables:

defs

coverrel def: "coverrel ≡
{(x,y). ∃ list1 of variables. x= state11 ∧ y= state12}

∪ {(x,y). ∃ list2 of variables. x= state21 ∧ y= state22}
...

∪ {(x,y). ∃ listm of variables. x= statem1 ∧ y= statem2}"

The theory generator of Appendix A produces automatically the specification of the cover-
ability relation from the specialised program. To this end the predicate names characterising the
coverability relation in the specialised program are determined by a user dialog (only the unspe-
cialised names have to be provided, e.g. in the above example sat 1 and sat eu 2). In the body
of print specialised program isa the calls to print isa cover decl and print isa cover

def generate the necessary declarations and definitions, respectively.

Example 5. The following theory was generated by the theory generator of Appendix A from
the program of Example 4:

consts

coverrel:: "(state × state) set"

sat 1 2 :: "nat ⇒ state"

sat eu 2 3 :: "nat ⇒ state"

sat eu 2 4 :: "nat ⇒ state"

sat eu 2 5 :: "nat ⇒ state"

defs

sat 1 2 def: "sat 1 2 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 3 def: "sat eu 2 3 A ≡ (A,(Suc 0),(Suc 0),0,0)"

sat eu 2 4 def: "sat eu 2 4 A ≡ (A,(Suc 0),0,(Suc 0),0)"

sat eu 2 5 def: "sat eu 2 5 A ≡ (A,0,(Suc 0),0,(Suc 0))"

coverrel def: "coverrel ≡ {(x,y). ∃ A. x=(sat 1 2 A)

∧ y=(sat eu 2 3 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 4 A)}
∪ {(x,y). ∃ A. x=(sat eu 2 3 (Suc A))

∧ y=(sat eu 2 5 A)}

∪ {(x,y). ∃ A. x=(sat eu 2 4 A)

∧ y=(sat eu 2 3 (Suc A))}
∪ {(x,y). ∃ A. x=(sat eu 2 5 A)

∧ y=(sat eu 2 3 (Suc A))}"

2

4 Proof Scripts

In this section we demonstrate how we can prove theorems using Isabelle/Isarand how we can
write proof scripts for automatic execution. Thereby we focus only on some of the “execution
style” proof commands of Isabelle/Isar. These commands can be considered to be the classical
way of writing Isabelle proofs although the actual Isabelle proof methods are wrapped
within the Isar language. Note however that Isar allows also a more “mathematical style”
notation of proofs than the one we use here (see the Isabelle/Isar Reference Manual for details).

Furthermore we discuss only the proof methods we are going to apply in order to solve the
verification task of Ecce. Keep in mind that Isabelle/Isar provides a much wider range of
methods.

The proof mode of Isabelle/Isar is initiated by executing a lemma. When entering the
proof mode Isabelle/Isar generates a single pending subgoal consisting of the lemma to be
proven. The list of subgoals can be altered, mainly by executing proof methods. Proof methods
are executed using the proof command apply. Thereby the list of subgoals defines the proof
state. The proof mode can be left by executing done in the case that there are no pending
subgoals (the proof state is the empty list of subgoals, in which case Isabelle/Isar prints No
subgoals!).

Note that all proof methods described below only transform the first subgoal of the proof
state. For finding a proof this may be inconvenient. Therefore, Isabelle/Isar provides com-
mands to change the order of the subgoals. However, our aim in this paper is the automatic
execution of proof scripts, not their interactive development.

4.1 Rewriting

To rewrite a subgoal using existing definitions and lemmas automatically we may execute Is-

abelle’s simplifier: apply(simp). For the simplifier to automatically attempt to use new defin-
tions and lemmas they have to be accompanied by the option [simp]. Such defined simplification
rules are then applied from left to right. However, we have to take care if we define simplification
rules in such a way as they may slow the simplifier down considerably or even cause it to loop.
Instead of defining a general simplification rule we may also use the simplifier to only apply
certain, explicitely stated definitions. E.g., the execution apply(simp only: r def) causes to
rewrite using the definition of r only.

4.2 Introduction and Elimination

Based on reasoning using natural deduction there are two types of rules for each logical symbol,
such as ∨: introduction rules which allow us to infer formulas containing the symbol (e.g. ∨),

and elimination rules which allow us to deduce consequences of a formula containing the symbol
(e.g. ∨).

In Isabelle an introduction rule is usually applied by apply(rule r). Assume r being a
rule of the form:

P1, . . . , Pn

Q

where Q is a formula containing the introduced logical symbol while the formulas P1,. . . ,Pn

in the premise do not. Then, if r is applied as introduction rule the current first subgoal is
unified with Q and replaced by the properly instantiated P1,. . . ,Pn.

An elimination rule is usually applied using apply(erule r). Assume r being a rule of the
above form and the current first subgoal of the form A1, . . . , Am =⇒ S. Then, if r is applied as
elimination rule S is unified with Q and some Ai is unified with P1. The old subgoal is replace
by n− 1 new subgoals of the form A1, . . . , Ai−1, Ai+1, . . . , Am =⇒ Pk with 2 ≤ k ≤ n.

In our verification proofs we will use explicitely only the elimination rules disjE for dis-
junction and paths.induct for induction over the length of paths.

4.3 Automatic Reasoners

Most classical reasoning of even simple lemmas can require the application of a vast amount
of rules. To simplify this task Isabelle provides a number of automatic reasoners. Here we
will make use of blast which is the most powerful of Isabelle’s reasoners. Additionally, we
will employ clarify which performs obvious transformations which do not require to split
the subgoal or render it unprovable. The method clarify and the explicit application of the
elimination rule disjE (see above))) was necessary to tune the proof process. This tuning was
necessary to complete the verification proofs of even very small Petri nets using the available
computing resources.

Additionally to the two classical reasoners we also employ the simplifier simp as an automatic
proof tool as it can also handle some arithmetics. Furthermore, for some cases in our verification
task simp succeeded faster than blast if it was able to eliminate a subgoal at all.

4.4 Scripts

To improve the handling of large proofs and to allow a higher flexibility of a proof proof scripts
can be extended by the following operators:

– method1,...,methodn: a list of methods represents their sequential execution;
– (method): mainly used to define the scope of another operator;
– method?: executes method only if it does not fail,
– method1|...|methodn: attempts to execute methodk only if each methodi with i < k

failed;
– method+: method is repeatedly executed until it fails.

For our verification task the lemma and proof script are generated automatically by the
theory generator of Appendix A (by calls to print isa lemma and print isa proofscript

in the body of print specialised program isa). The execution of the script in the example
below is illustrated in the next section.

Example 6. The following lemma and script corresponds to the one automatically generated by
Ecce for the Petri net specification of Example 1:

lemma "l ∈ paths =⇒ ∃ y. ((hd l),y) ∈ coverrel"

apply(erule paths.induct)

apply(simp only: start_def

coverrel_def)

apply(simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def)

apply(simp)

apply(blast)

apply(simp only:trans_def)

apply(clarify)

apply(((erule disjE)?,

simp only: coverrel_def,

simp,

((erule disjE)?,

simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def,

simp|blast)+)+)

2

5 Verifying Ecce

In this section we illustrate the automatic verification of the Ecce output by the Isabelle

system. To this end the theory, lemma and proof script as generated by Ecce for the Petri
net of Example 1, are executed (the complete input consists of the Isabelle specifications of
Example 1, Example 5, and lemma and proof script of Example 6).

Example 7. For the line of the theory starting with lemma:

lemma "l ∈ paths =⇒ ∃ y. ((hd l),y) ∈ coverrel"

Isabelle switches to the proof mode and creates a subgoal for the proposition of the
lemma. Some very basic simplifications are performed (here the brackets surrounding (hd l)

are removed):

goal (lemma, 1 subgoal):

l ∈ paths =⇒ ∃ y. (hd l, y) ∈ coverrel

1. l ∈ paths =⇒ ∃ y. (hd l, y) ∈ coverrel

As the lemma makes a proposition for all paths and the set of paths is inductively defined, it
is a reasonable approach to attempt induction as a proof method. For every inductively defined
concept Isabelle automatically generates the appropriate induction axiom, e.g. for paths this
axiom is called paths.induct. We apply this axiom as an elimination rule (i.e. erule):

apply(erule paths.induct)

Accordingly Isabelle eliminates the above lemma by two subgoals. The first subgoal represents
the initial induction condition. In our case the subgoal claims that for any substitution of A the
lemma holds for the path consisting only of the initial marking. The second lemma represents
the induction step. Here it claims, that whenever the lemma holds for some path then it also
holds for the path extended by an additional transition.

1.
∧
A. ∃ y. (hd [start A], y) ∈ coverrel

2.
∧
l n y z.

[[(y, z, n) ∈ PN.trans; y # l ∈ paths;

∃ ya. (hd (y # l), ya) ∈ coverrel]]
=⇒ ∃ ya. (hd (z # y # l), ya) ∈ coverrel

To solve the first subgoal we apply the definitions of the initial state and the coverabil-
ity relation using Isabelle’s simplifier. Restricting the simplifier to apply certain definitions
only makes it often significantly faster and can prevent loops. However, less steps are handled
automatically.

apply(simp only: start_def

coverrel_def)

As expected, Isabelle unfolds the given definitions. Since the second subgoal stays unchanged
if simp is applied we do not represent it here.

1.
∧
A. ∃ y. (hd [(A, Suc 0, Suc 0, 0, 0)], y)

∈ {(x, y). ∃ A. x = sat 1 2 A ∧ y = sat eu 2 3 A} ∪
{(x, y). ∃ A. x = sat eu 2 3 (Suc A) ∧ y = sat eu 2 4 A} ∪
{(x, y). ∃ A. x = sat eu 2 3 (Suc A) ∧ y = sat eu 2 5 A} ∪
{(x, y). ∃ A. x = sat eu 2 4 A ∧ y = sat eu 2 3 (Suc A)} ∪
{(x, y). ∃ A. x = sat eu 2 5 A ∧ y = sat eu 2 3 (Suc A)}

2. . . .

Again, we have to unfold definitions, in this case the state descriptions.

apply(simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def)

1.
∧
A. ∃ y. (hd [(A, Suc 0, Suc 0, 0, 0)], y)

∈ {(x, y).

∃ A. x = (A, Suc 0, Suc 0, 0, 0) ∧
y = (A, Suc 0, Suc 0, 0, 0)} ∪

{(x, y).

∃ A. x = (Suc A, Suc 0, Suc 0, 0, 0) ∧
y = (A, Suc 0, 0, Suc 0, 0)} ∪

{(x, y).

∃ A. x = (Suc A, Suc 0, Suc 0, 0, 0) ∧
y = (A, 0, Suc 0, 0, Suc 0)} ∪

{(x, y).

∃ A. x = (A, Suc 0, 0, Suc 0, 0) ∧
y = (Suc A, Suc 0, Suc 0, 0, 0)} ∪

{(x, y).

∃ A. x = (A, 0, Suc 0, 0, Suc 0) ∧
y = (Suc A, Suc 0, Suc 0, 0, 0)}

2. . . .

Note that the above subgoal does not contain any further definitions specific to our theory.
Hence, we may attempt to simplify the subgoal using the built-in simplifier:

apply(simp)

The resulting subgoal is a disjunction of three states potentially matching the intial state. The
simplification was successful in two ways: 1) Two pairs have been eliminated since the first
element of the first three pairs in the coverability relation (see previous subgoal) are equivalent.
None of the second elements of the pairs is relevant to prove the claim, hence the new subgoal
does not refer to these elements.

1.
∧
A. ∃ a aa ab ac b.

a = A ∧ aa = Suc 0 ∧ ab = Suc 0 ∧ ac = 0 ∧ b = 0 ∨
A = Suc a ∧ aa = Suc 0 ∧ ab = 0 ∧ ac = Suc 0 ∧ b = 0 ∨
A = Suc a ∧ aa = 0 ∧ ab = Suc 0 ∧ ac = 0 ∧ b = Suc 0

2. . . .

The remaining subgoal can be verified by using Isabelle’s automatic proof tactic blast:

apply(blast)

Here blast succeeds in proving the first subgoal and we continue with the induction step:

1.
∧
l n y z.

[[(y, z, n) ∈ PN.trans; y # l ∈ paths;

∃ ya. (hd (y # l), ya) ∈ coverrel]]
=⇒ ∃ ya. (hd (z # y # l), ya) ∈ coverrel

As a first step, we unfold the definition of the transition function using Isabelle’s simplifier:

apply(simp only:trans_def)

The resulting subgoal contains a disjunction of possible transitions. When a path is extended
by any of these transitions it has still to comply with the lemma.

1.
∧
l n y z.

[[(y, z, n)

∈ {(x, y, n).

(∃ E D C B A.

(x, y, n) =

((Suc A, Suc B, Suc C, D, E), (A, Suc B, C, Suc D, E), t1)) ∨
(∃ E D C B A.

(x, y, n) =

((Suc A, Suc B, Suc C, D, E), (A, B, Suc C, D, Suc E), t2)) ∨
(∃ E D C B A.

(x, y, n) =

((A, B, C, Suc D, E), (Suc A, B, Suc C, D, E), t3)) ∨
(∃ E D C B A.

(x, y, n) =

((A, B, C, D, Suc E), (Suc A, Suc B, C, D, E), t4))};
y # l ∈ paths; ∃ ya. (hd (y # l), ya) ∈ coverrel]]

=⇒ ∃ ya. (hd (z # y # l), ya) ∈ coverrel

Some simple non-destructive transformations can be achieved with the automatic proof
tactic clarify:

apply(clarify)

In our case the quantifier for ya in the premise has been pulled to the front and the variables
representing tuples are split:

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[(a, aa, ab, ac, b) # l ∈ paths;

(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, Suc B, C, Suc D, E), t1)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, B, Suc C, D, Suc E), t2)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, Suc D, E), (Suc A, B, Suc C, D, E), t3)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, D, Suc E), (Suc A, Suc B, C, D, E), t4));

(hd ((a, aa, ab, ac, b) # l), ah, ai, aj, ak, bb) ∈ coverrel]]
=⇒ ∃ y. (hd ((ad, ae, af, ag, ba) # (a, aa, ab, ac, b) # l), y)

∈ coverrel

Using the elimination rule disjE we split the disjunction:

apply(erule disjE)

Thereby we perform a case distinction to prove the claim for each possible transition. Isabelle

generates a new subgoal for the first transition. In the second subgoal the first transition has
been eliminated from the disjunction.

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[(a, aa, ab, ac, b) # l ∈ paths;

(hd ((a, aa, ab, ac, b) # l), ah, ai, aj, ak, bb) ∈ coverrel;

∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, Suc B, C, Suc D, E), t1)]]

=⇒ ∃ y. (hd ((ad, ae, af, ag, ba) # (a, aa, ab, ac, b) # l), y)

∈ coverrel

2.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[(a, aa, ab, ac, b) # l ∈ paths;

(hd ((a, aa, ab, ac, b) # l), ah, ai, aj, ak, bb) ∈ coverrel;

(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, B, Suc C, D, Suc E), t2)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, Suc D, E), (Suc A, B, Suc C, D, E), t3)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, D, Suc E), (Suc A, Suc B, C, D, E), t4))]]
=⇒ ∃ y. (hd ((ad, ae, af, ag, ba) # (a, aa, ab, ac, b) # l), y)

∈ coverrel

Similar to the case of the initial we unfold the definition of the coverability relation and
perform some simplifications.

apply(simp only: coverrel_def, simp)

The simplifier has substituted the set representation by a disjunction in both, the premise and
the conclusion. Furthermore, only the relevant parts of the transition (with the name t1) are
kept:

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[a = Suc ad ∧
(∃ B. aa = Suc B ∧

ab = Suc af ∧ ae = Suc B ∧ ag = Suc ac ∧ ba = b ∧ n = 0);

(Suc ad, aa, ab, ac, b) # l ∈ paths;

(∃ A. (Suc ad, aa, ab, ac, b) = sat 1 2 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 A) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧
(ah, ai, aj, ak, bb) = sat eu 2 4 A) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧
(ah, ai, aj, ak, bb) = sat eu 2 5 A) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 4 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A)) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 5 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A))]]

=⇒ ∃ a aa ab ac b.

(∃ A. (ad, ae, af, ag, ba) = sat 1 2 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 4 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 5 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 4 A ∧

(a, aa, ab, ac, b) = sat eu 2 3 (Suc A)) ∨
(∃ A. (ad, ae, af, ag, ba) = sat eu 2 5 A ∧

(a, aa, ab, ac, b) = sat eu 2 3 (Suc A))

2. . . .

We have to show that for every pair covering a path the path extended by transition t1 is
covered by some pair of the coverability relation in the conclusion. Hence, we apply again the
elimination rule disjE on the disjunction in the premise of the subgoal.

apply((erule disjE)?)

Thereby we perform a case distinction on the possible pairs of the coverability relation and
generate a new subgoal for the first pair while this pair is removed from the second subgoal:

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[a = Suc ad ∧
(∃ B. aa = Suc B ∧

ab = Suc af ∧ ae = Suc B ∧ ag = Suc ac ∧ ba = b ∧ n = 0);

(Suc ad, aa, ab, ac, b) # l ∈ paths;

∃ A. (Suc ad, aa, ab, ac, b) = sat 1 2 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 A]]

=⇒ ∃ a aa ab ac b.

(∃ A. (ad, ae, af, ag, ba) = sat 1 2 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 4 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 5 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 4 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 (Suc A)) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 5 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 (Suc A))

2.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[a = Suc ad ∧
(∃ B. aa = Suc B ∧

ab = Suc af ∧ ae = Suc B ∧ ag = Suc ac ∧ ba = b ∧ n = 0);

(Suc ad, aa, ab, ac, b) # l ∈ paths;

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧
(ah, ai, aj, ak, bb) = sat eu 2 4 A) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧
(ah, ai, aj, ak, bb) = sat eu 2 5 A) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 4 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A)) ∨

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 5 A ∧
(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A))]]

=⇒ ∃ a aa ab ac b.

(∃ A. (ad, ae, af, ag, ba) = sat 1 2 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧

(a, aa, ab, ac, b) = sat eu 2 4 A) ∨
(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧

(a, aa, ab, ac, b) = sat eu 2 5 A) ∨
(∃ A. (ad, ae, af, ag, ba) = sat eu 2 4 A ∧

(a, aa, ab, ac, b) = sat eu 2 3 (Suc A)) ∨
(∃ A. (ad, ae, af, ag, ba) = sat eu 2 5 A ∧

(a, aa, ab, ac, b) = sat eu 2 3 (Suc A))

3. . . .

Again, we unfold the definitions of the state representations:

apply(simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def)

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[a = Suc ad ∧
(∃ B. aa = Suc B ∧

ab = Suc af ∧ ae = Suc B ∧ ag = Suc ac ∧ ba = b ∧ n = 0);

(Suc ad, aa, ab, ac, b) # l ∈ paths;

∃ A. (Suc ad, aa, ab, ac, b) = (A, Suc 0, Suc 0, 0, 0) ∧
(ah, ai, aj, ak, bb) = (A, Suc 0, Suc 0, 0, 0)]]

=⇒ ∃ a aa ab ac b.

(∃ A. (ad, ae, af, ag, ba) = (A, Suc 0, Suc 0, 0, 0) ∧
(a, aa, ab, ac, b) = (A, Suc 0, Suc 0, 0, 0)) ∨

(∃ A. (ad, ae, af, ag, ba) = (Suc A, Suc 0, Suc 0, 0, 0) ∧
(a, aa, ab, ac, b) = (A, Suc 0, 0, Suc 0, 0)) ∨

(∃ A. (ad, ae, af, ag, ba) = (Suc A, Suc 0, Suc 0, 0, 0) ∧
(a, aa, ab, ac, b) = (A, 0, Suc 0, 0, Suc 0)) ∨

(∃ A. (ad, ae, af, ag, ba) = (A, Suc 0, 0, Suc 0, 0) ∧
(a, aa, ab, ac, b) = (Suc A, Suc 0, Suc 0, 0, 0)) ∨

(∃ A. (ad, ae, af, ag, ba) = (A, 0, Suc 0, 0, Suc 0) ∧
(a, aa, ab, ac, b) = (Suc A, Suc 0, Suc 0, 0, 0))

2. . . .

3. . . .

To resolve the remaining subgoal we can rely on the automatic proof tactic blast of Isabelle.

apply(blast)

Here, blast has successfully removed the first subgoal:

1.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[a = Suc ad ∧
(∃ B. aa = Suc B ∧

ab = Suc af ∧ ae = Suc B ∧ ag = Suc ac ∧ ba = b ∧ n = 0);

(Suc ad, aa, ab, ac, b) # l ∈ paths;

(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧

(ah, ai, aj, ak, bb) = sat eu 2 4 A) ∨
(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 3 (Suc A) ∧

(ah, ai, aj, ak, bb) = sat eu 2 5 A) ∨
(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 4 A ∧

(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A)) ∨
(∃ A. (Suc ad, aa, ab, ac, b) = sat eu 2 5 A ∧

(ah, ai, aj, ak, bb) = sat eu 2 3 (Suc A))]]
=⇒ ∃ a aa ab ac b.

(∃ A. (ad, ae, af, ag, ba) = sat 1 2 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 4 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 3 (Suc A) ∧
(a, aa, ab, ac, b) = sat eu 2 5 A) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 4 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 (Suc A)) ∨

(∃ A. (ad, ae, af, ag, ba) = sat eu 2 5 A ∧
(a, aa, ab, ac, b) = sat eu 2 3 (Suc A))

2.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[(a, aa, ab, ac, b) # l ∈ paths;

(hd ((a, aa, ab, ac, b) # l), ah, ai, aj, ak, bb) ∈ coverrel;

(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, B, Suc C, D, Suc E), t2)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, Suc D, E), (Suc A, B, Suc C, D, E), t3)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, D, Suc E), (Suc A, Suc B, C, D, E), t4))]]
=⇒ ∃ y. (hd ((ad, ae, af, ag, ba) # (a, aa, ab, ac, b) # l), y)

∈ coverrel

The above steps of performing a case distinction on the premise, unfolding the state defini-
tions and attempting to apply blast can be automatised using the script below. Thereby the
symbol + denotes the iteration of the sequence of proof commands within preceding brackets
until the sequence fails. For the last case of the case distinction the application of the elimi-
nation rule disjE is not necessary and will fail. Consequently, we apply this rule only if it is
possible, denoted by ?. Finally, although blast is often more powerful than simp, it is also
slower. By writing simp|blast we attempt first to prove the subgoal by simplification. Only if
simp fails to resolve the goal we attempt the slower blast method.

apply(((erule disjE)?,

simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def,

simp|blast)+)

Applying this script resolves the whole first subgoal concerning transition t1:

2.
∧
l n a aa ab ac b ad ae af ag ba ah ai aj ak bb.

[[(a, aa, ab, ac, b) # l ∈ paths;

(hd ((a, aa, ab, ac, b) # l), ah, ai, aj, ak, bb) ∈ coverrel;

(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((Suc A, Suc B, Suc C, D, E), (A, B, Suc C, D, Suc E), t2)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, Suc D, E), (Suc A, B, Suc C, D, E), t3)) ∨
(∃ E D C B A.

((a, aa, ab, ac, b), (ad, ae, af, ag, ba), n) =

((A, B, C, D, Suc E), (Suc A, Suc B, C, D, E), t4))]]
=⇒ ∃ y. (hd ((ad, ae, af, ag, ba) # (a, aa, ab, ac, b) # l), y)

∈ coverrel

Now we can also apply the steps required to prove the lemma for transition t1 in a similar
fashion to the remaining transitions. The following proof script attempts precisely this. Again,
the elimination rule disjE is not applicable for the last transition. Hence, we perform a test
using ? before applying this method in the first line.

apply(((erule disjE)?,

simp only: coverrel_def,

simp,

((erule disjE)?,

simp only: sat__1__2_def

sat_eu__2__3_def

sat_eu__2__4_def

sat_eu__2__5_def,

simp|blast)+)+)

For our example all cases could be verified, hence Isabelle answers:

No subgoals!

2

Consequently, the coverability relation generated by Ecce for the Petri net of Example 1 covers
indeed all states reachable by any path (under the condition that the theory generated by the
automatic theory generator as implemented in Ecce is correct).

6 Automatic Generation of Hypotheses

Instead of defining the coverability as a relation as illustrated in Subsection 3.2 we may view
the coverability graph as an inductive definition of a set of states which covers the actual state
space of the Petri net. For our example a corresponding Isabelle/Isar definition could look
as follows:

consts

coverstates:: "state set"

inductive coverstates

intros

zero : "(sat 1 2 A) ∈ coverstates"

step1 : "[[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 4 A) ∈ coverstates"

step2 : "[[∃ A. (sat eu 2 3 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 5 A) ∈ coverstates"

step3 : "[[∃ A. (sat eu 2 4 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 3 A) ∈ coverstates"

step4 : "[[∃ A. (sat eu 2 5 (Suc A)) ∈ coverstates]] =⇒
(sat eu 2 3 A) ∈ coverstates"

Similarly, instead of using the concept of paths, we may directly specify the set of reachable
states inductively in Isabelle/Isar. For our example the following specification would fit the
purpose:

consts

reachstates:: "state set"

inductive reachstates

intros

zero : "(start B) ∈ reachstates"

step1 : "[[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒
(A,(Suc B),C,(Suc D),E) ∈ reachstates"

step2 : "[[∃ A B C D E. ((Suc A),(Suc B),(Suc C),D,E) ∈ reachstates]] =⇒
(A,B,(Suc C),D,(Suc E)) ∈ reachstates"

step3 : "[[∃ A B C D E. (A,B,C,(Suc D),E) ∈ reachstates]] =⇒
((Suc A),B,(Suc C),D,E) ∈ reachstates"

step4 : "[[∃ A B C D E. (A,B,C,D,(Suc E)) ∈ reachstates]] =⇒
((Suc A),(Suc B),C,D,E) ∈ reachstates"

Then, the lemma to be verified to show the soundness of the coverability relation is

lemma "x ∈ reachstates =⇒ x ∈ coverstates"

However, lets assume that the specification of coverstates is unknown and has to be
generated by Isabelle. To this end we may attempt to prove the following lemma:

lemma "∃ coverstates. x ∈ reachstates =⇒ x ∈ coverstates"

Thereby it is not important to find a proof, since there are many sets which fulfill this
criterion (e.g. the (minimal) set reachstates and the (maximal) set of all states). Instead it
is important to find a proof, which generates the induction steps of the above specification of
coverstates as (or as parts of) subgoals. In other words, the question is whether Isabelle’s
proof methods can imitate the behaviour of Ecce (or other model checkers for Petri nets).

The most important elements of Ecce’s partial deduction method to generate the cover-
ability graph are: coverability test, unfolding, whistling, abstraction. The coverability test can
easily be defined in Isabelle/Isar, e.g.:

[[x∈ state; y∈ state; x≤y]] =⇒ covers(y,x)

where ≤ is defined as an order on the set of states. We may also check whether a set of
states is covered by another set of states, e.g.:

∀ B. ∃ A. covers((0,0,0,A,0),(0,0,0,(Suc B),0))

Similarly, we may define whistling for two states (state sets) or even for the states on a path
(a whistle blows if a newly encontered state is (in some sense) bigger than any of its predecessors
on the path, thereby it indicates a potentially infinite growth).

The unfolding corresponds in Isabelle simply to the rewriting of a subgoal using a defini-
tion, in case of Petri nets the definition of the transition function.

The most difficult element to imitate seems to be the abstraction. Given a certain subgoal
Isabelle’s proof method has to replace this subgoal by a more general one. E.g., if unfolding of
a transition has led to a subgoal containing the state (0,0,0,(Suc 0),0) and the whistle has
blown due to a preceding state of the form (0,0,0,0,0), then we have to replace the subgoal
by a new one containing a state of the form (0,0,0,A,0) (where A is all quantified). The only
proof rule which is capable of introducing an all quantified variable in Isabelle/Isar is spec:

∀x.P

P [t/x]

And indeed, by applying spec as an introduction rule we may indeed introduce perform a
generalisation. For example, assume the following subgoal:

1. "(0,0,0,0,0) ∈ coverstates"

Executing apply(rule spec) and backtracking (using the proof command back) generates
as the 30th possibility (out of 38):

1. ∀ x. (0, 0, 0, x, 0) ∈ coverstates

However, we did not succeed yet in implementing a complete proof script using this rule as
the search for the appropriate alternative subgoal has to be controlled by the proof script. Within
the execution oriented proof style we have focused on Isabelle/Isar does not seem to provide
enough control without implementing new proof tactics on Isabelle’s ML-implementation
level.

7 Conclusion and Further Work

In this work we have shown that verification of Ecce output using the proof system Isabelle

can be achieved for small nets. The execution of the proof script of Section 5 on a Pentium II/400
needed about 90s and the underlying PolyML required 80MB of memory. However, as further
experiments with a net containing 14 places and 13 transitions reveiled, more specific proof
methods have to be employed as the use of the method blast required more than the available
200MB of main memory and therefore had to be canceled. One way of tuning the proof process
further is by restricting the number of rules potentially applied by blast. However, while rules
can easily be removed from and added to the list of simplification rules in Isabelle/Isar, a
similar simple manipulation of the “blast rules” without rewriting underlying Isabelle proof
tactics seems not possible. An indirect way of restricting the search space of blast could also
be to derive the theory PN not from Main but from (sets of) more basic theories.

A way of improving the readability of the proof script could be to employ the mathematical
proof style instead of the execution oriented style. In the mathematical proof style higher-order
pattern matching can be used to control the proof. This may also increase the flexibility of

the proof significantly, in particular if the results have to be generalised for other specifications
than those of Petri nets.

Finally, for Isabelle to automatically generate the coverability relation from the specifi-
cation of the Petri net we believe that it is necessary to implement a new proof rule/proof
method at Isabelle’s implementation level which allows to automatically backtrack over po-
tential hypotheses which are more general than the subgoal to be shown. Another option worth
exploring might be to attempt to define a proof scheme using the higher-order pattern matching
of Isabelle/Isar, which performs the abstraction on proof level: E.g., if a state description
matches a certain pattern we attempt to prove a lemma concerning a similar pattern where a
constant is replaced by some variable.

References

1. P. A. Abdulla, K. Čerāns, B. Jonsson, and Y.-K. Tsay. General decidability theorems for infinite-
state systems. In 11th IEEE Symposium on Logic in Computer Science, pages 313–321, 1996.

2. E. M. Clarke and J. M. Wing. Formal methods: State of the art and future directions. ACM
Computing Surveys, 28(4):626–643, December 1996.

3. A. Finkel. The minimal coverability graph for Petri nets. Lecture Notes in Computer Science,
674:210–243, 1993.

4. A. Finkel and P. Schnoebelen. Fundamental structures in well-structured infinite transition systems.
In Proceedings of LATIN’98, LNCS 1380, pages 102–118. Springer-Verlag, 1998.

5. A. Finkel and P. Schnoebelen. Well-structured transition systems everywhere! Theoretical Com-
puter Science, 1999. To appear.

6. R. Glück and M. Leuschel. Abstraction-based partial deduction for solving inverse problems –
a transformational approach to software verification. In Proceedings of the Third International
Ershov Conference on Perspectives of System Informatics, LNCS 1755, pages 93–100, Novosibirsk,
Russia, 1999. Springer-Verlag.

7. R. M. Karp and R. E. Miller. Parallel program schemata. Journal of Computer and System
Sciences, 3:147–195, 1969.

8. M. Leuschel. Logic program specialisation. In J. Hatcliff, Torben Æ. Mogensen, and Peter Thie-
mann, editors, Partial Evaluation: Practice and Theory, LNCS 1706, pages 155–188, Copenhagen,
Denmark, 1999. Springer-Verlag.

9. M. Leuschel and H. Lehmann. Coverability of Reset Petri Nets and other Well-Structured Transi-
tion Systems by Partial Deduction. In J. Lloyd, editor, Proceedings of the International Conference
on Computational Logic (CL’2000), LNCS 1861, London, UK, 2000. Springer-Verlag.

10. M. Leuschel and H. Lehmann. Solving Coverability Problems of Petri Nets by Partial Deduction.
In Maurizio Gabbrielli and Frank Pfenning, editors, Proceedings of PPDP’2000, pages 268–279,
Montreal, Canada, 2000. ACM Press.

11. M. Leuschel and T. Massart. Infinite state model checking by abstract interpretation and program
specialisation. In Annalisa Bossi, editor, Logic-Based Program Synthesis and Transformation.
Proceedings of LOPSTR’99, LNCS 1817, pages 63–82, Venice, Italy, September 1999.

12. Michael Leuschel. The ecce partial deduction system and the dppd library of benchmarks. Ob-
tainable via http://www.ecs.soton.ac.uk/~mal, 1996-2002.

13. Michael Leuschel, Jesper Jørgensen, Wim Vanhoof, and Maurice Bruynooghe. Offline specialisation
in prolog using a hand-written compiler generator. Theory and Practice of Logic Programming,
page 52pp, 2003. To appear.

14. Michael Leuschel, Bern Martens, and Danny De Schreye. Controlling generalisation and polyvari-
ance in partial deduction of normal logic programs. ACM Transactions on Programming Languages
and Systems, 20(1):208–258, January 1998.

15. L. C. Paulson. Isabelle: A Generic Theorem Prover, volume 828 of Lecture Notes in Computer
Science. Springer, 1994.

Appendix A: Isabelle theory generator for Ecce (code generator.pro)

/* the location of the last written isabelle theory */

:- dynamic last_isa_file/1.

last_isa_file(’~/demo/ecce.gtree.thy’).

/* the location of the last read file containing transition clauses */

:- dynamic last_trans_file/1.

last_trans_file(’~/ecce/ecce_examples/petri-nets/basicME.P’).

/* the last clause name representing transitions */

:- dynamic last_trans_pred/1.

last_trans_pred(trans).

/* the last clause name representing the initial state */

:- dynamic last_initial_pred/1.

last_initial_pred(start).

/* the last clause names of the specialised original clauses */

:- dynamic last_cover_pred/1.

last_cover_pred([sat__1,sat_eu__2]).

/* global clauses to represent the size of a state vector and the arguments of

the clause representing the initial state

*/

:- dynamic last_state_size/1.

:- dynamic last_initial_args/1.

/* some convenient global variables to simplify the printing */

:- dynamic trans_print_started/0.

:- dynamic cover_print_started/0.

:- dynamic trans_print_N/1.

/* this calls all other clauses required for printing an isabelle theory,

includes:

1. User dialogs

2. Declaration of new clause database (transitionsystem)

3. Load transitions

4. Write theory

5. Undeclare database (transitionsystem)

*/

print_specialised_program_isa :-

dialog_isa(last_trans_file,’read transitions from file’),

dialog_isa(last_trans_pred,’predicate describing transitions’),

dialog_isa(last_initial_pred,’predicate describing initial state’),

dialog_isa(last_cover_pred,’list of predicates describing coverability

(names in unspecialised program)’),

dialog_isa(last_isa_file,’write theory to file’),

last_trans_file(TF),

Data=transitionsystem,

declare_database(Data),

see(TF),read_database(Data),seen,

last_initial_pred(IP), /* only the last argument is considered to be a state */

claus(Data,_,P,_),P=..[IP|Args],last_el(Args,Arg),

assert(last_initial_args(Arg)),

length_list(Arg,NS),assert(last_state_size(NS)),

last_isa_file(IF),

tell(IF),

print_isa_header,

print_isa_type_decl,

print_isa_path_decl(Data),

print_isa_path_def(Data),

print_isa_cover_decl,

print_isa_cover_def,

print_isa_lemma,

print_isa_proofscript,

told,

clear_database(Data),

undeclare_database(Data),

retract(last_initial_args(_)),

retract(last_state_size(_)).

/* creates generic dialog, prints string S, removes and adds new clause P(T)

depending on user input T,

P,S must be instantiated

*/

dialog_isa(P,S):-

C=..[P,L],C,

beginner_print(’Type a dot (.) and hit return at the end.’),

beginner_nl,

print(S),print(’ (l for ’),print(L),print(’) =>’),

read(N),

((N=l) -> (T = L); (T = N,retract(C),CN=..[P,T], assert(CN))).

/* prints theory header */

print_isa_header:-

print(’theory PN = Main:’),nl,nl.

/* prints type declaration of "state" depending on size of state */

print_isa_type_decl:-

print(’types’),nl,

nl,

print(’ state = "’),

last_state_size(N),

print_isa_prod(N,’nat’,’ \\<times> ’),

print(’"’),nl,nl.

/* prints type declarations for predicate "paths", the predicate representing

transitions, and the predicate representing the initial state(s),

Data must be instantiated by appropriate clause database

*/

print_isa_path_decl(Data):-

print(’consts’),nl,

nl,

print(’ paths:: "(state list) set"’),nl,

nl,

last_trans_pred(T),

printtdecl(Data,T),

nl,

print(’ ’),print(T),

print(’:: "(state \\<times> state \\<times> nat) set"’),nl,nl,

last_initial_pred(I),last_initial_args(IP),

collect_vars_isa(IP,V),sort(V,V2),length_list(V2,NI),

print(’ ’),print(I),print(’ :: "’),

print_isa_prod(NI,’nat’,’ \\<Rightarrow> ’),

(NI \== 0 -> print(’ \\<Rightarrow> ’); true),print(’state"’),nl,nl.

/* prints definitions for "paths", the predicate representing transitions,

Data must be instantiated by appropriate clause database

*/

print_isa_path_def(Data):-

print(’defs’),nl,

nl,

last_trans_pred(T),

printtdef(Data,T),

nl,

last_initial_pred(I),last_initial_args(IP),

print(’ ’),print(I),print(’_def [simp]: "’),print(I),

collect_vars_isa(IP,V),sort(V,V2),length_list(V2,NI),

numbervars(V2,0,_),printvlist_isa(V2), print(’ \\<equiv> ’),

print_state_isa(IP),print(’"’),nl,

nl,

print(’ ’),print(T),print(’_def: "’), print(T),

print(’ \\<equiv> {(x,y,n). ’),

print_trans_isa(Data,T),

print(’}"’),nl,

nl,

print(’inductive paths’),nl,

print(’intros’),nl,nl,

print(’ zero: "[(’),print(I),(NI \== 0 -> print(’ ’); true),

printvlist_isa(V2),print(’)] \\<in> paths"’),nl,

print(’ step: "\\<lbrakk> (y,z,n) \\<in> ’),print(T),

print(’; y#l \\<in> paths \\<rbrakk> \\<Longrightarrow> z#(y#l)

\\<in> paths"’),

nl,nl.

/* prints type declarations for predicate "coverrel" and the predicates used to

represent the coverability relation

*/

print_isa_cover_decl:-

print(’consts’),nl,

nl,

print(’ coverrel:: "(state \\<times> state) set"’),nl,

nl,

last_cover_pred(List),

member(L,List),

cg_filter_goal(_NodeID,[Goal|R],_MSVGoal,FGoal),

Goal=..[L|_],

numbervars(FGoal,0,NrOfVars),

N2 is NrOfVars + 26,

numbervars([Goal|R],N2,_), /* these are redundant arguments */

print(’ ’),

filter_print_atom_name_isa(FGoal),

print(’ :: "’),

print_isa_prod(NrOfVars,’nat’,’ \\<Rightarrow> ’),

print(’ \\<Rightarrow> state"’),

nl,

fail.

print_isa_cover_decl:- nl.

/* prints definitions for the predicates used to represent the coverability

relation

*/

print_isa_cover_def:-

print(’defs’),nl,

nl,

last_cover_pred(List),

member(L,List),

cg_filter_goal(_NodeID,[Goal|R],MsvGoal,FGoal),

Goal=..[L|_],

numbervars(FGoal,0,NrOfVars),

N2 is NrOfVars + 26,

numbervars([Goal|R],N2,_), /* these are redundant arguments */

print(’ ’),

filter_print_atom_name_isa(FGoal),

print(’_def: "’),

filter_print_atom_isa(FGoal),

MsvGoal=[C|_],

print(’ \\<equiv> ’),

C=..[_|A],

print_state_isa(A),

print(’"’),

nl,

fail.

/* prints definition for predicate "coverrel" to represent the coverability

relation

*/

print_isa_cover_def:-

nl,nl,

print(’ coverrel_def: "coverrel \\<equiv>’),

spec_clause(SpecClauseNr,FGoal,Body),

SpecClauseNr\==filter_comment,

last_cover_pred(List),

member(L,List),

cg_filter_goal(_NodeID,[Goal|_],_MsvGoal,FGoal),

Goal=..[L|_],

(cover_print_started -> print(’\\<union> ’);

assert(cover_print_started)),

print_isa_coverel(FGoal,Body),

fail.

print_isa_cover_def :-

cg_filter_goal(_NodeID,_Goal,_MsvGoal,FGoal),

not(spec_clause(_SpecClauseNr,FGoal,_Body)),

print_isa_coverel(FGoal,[fail]),

fail.

print_isa_cover_def:- print(’"’),nl,nl,retract(cover_print_started).

/* prints lemma to be verified */

print_isa_lemma :-

print(’lemma "l \\<in> paths \\<Longrightarrow> \\<exists> y.

((hd l),y) \\<in> coverrel"’),

nl.

/* prints proofscript */

print_isa_proofscript :-

print(’ apply(erule paths.induct)’),nl,

print(’ apply(simp only: ’),

last_initial_pred(IP),print(IP),print(’_def’),nl,

print(’ coverrel_def)’),nl,

print(’ apply(simp only:’),print_coverpred,

print(’)’),nl,

print(’ apply(simp)’),nl,

print(’ apply(blast)’),nl,

print(’ apply(simp only: ’),

last_trans_pred(TP),print(TP),print(’_def)’),nl,

print(’ apply(clarify)’),nl,

print(’ apply(((erule disjE)?,’),nl,

print(’ simp only: coverrel_def,’),nl,

print(’ simp,’),nl,

print(’ ((erule disjE)?,’),nl,

print(’ simp only:’),print_coverpred,

print(’,’),nl,

print(’ simp|blast)+)+)’),nl.

/* slightly modified atom printing for isabelle,

note: does not produce correct output for Non-atoms

*/

filter_print_atom_isa(’:’(Module,Pred)) :- !,

filter_print_atom_isa(Module),print(’:’),

/* this is not the proper output for isa */

filter_print_atom_isa(Pred).

filter_print_atom_isa(X) :- X=’$VAR’(_),!,

print_red(X). /* this is not the proper output for isa */

filter_print_atom_isa(Atom) :-

Atom =.. [Pred],!,

print_faithful_functor(Pred).

filter_print_atom_isa(Atom) :-

Atom =.. [Pred|Args],

Args = [_|_],!,

print_faithful_functor(Pred),

print(’ ’),

l_filter_print_isa(Args).

filter_print_atom_isa(Atom) :- print_atom(Atom).

/* slightly modified atom name printing for isabelle */

filter_print_atom_name_isa(Atom) :-

Atom =.. [Pred],!,

print_faithful_functor(Pred).

filter_print_atom_name_isa(Atom) :-

Atom =.. [Pred|Args],

Args = [_|_],!,

print_faithful_functor(Pred).

filter_print_atom_name_isa(Atom) :- print_atom(Atom).

/* slightly modified argument list printing for isabelle */

l_filter_print_isa([H|T]) :-

filter_print_arg_isa(H),

l_filter_print1_isa(T).

l_filter_print1_isa([]).

l_filter_print1_isa([H|T]) :-

print(’ ’),

filter_print_arg_isa(H),

l_filter_print1_isa(T).

/* slightly modified argument printing for isabelle

note: does not produce correct output for generic variables

*/

filter_print_arg_isa(X) :- var(X),!,

print_red(X).

filter_print_arg_isa(X) :- X=’$VAR’(_),!,

print_red(X). /* this is not the proper output for isa */

filter_print_arg_isa(X) :-

print_faithful_isa(X). /* print_green */

/* slightly modified argument printing for isabelle

note: does not produce correct output for generic variables

*/

print_faithful_isa(X) :- var(X),!,print_red(X).

print_faithful_isa(X) :- X=’$VAR’(_),!,

/* this is not the proper output for isa */

print_red(X). /* remove to faithfully print $VAR variables */

print_faithful_isa(Struct) :-

Struct =.. [_F],!,

print_faithful_functor(Struct).

print_faithful_isa([H|T]) :- !,

print(’(’),

print_faithful_isa(H),

print(’#’),

print_faithful_isa(T),print(’)’).

print_faithful_isa(Struct) :-

Struct =.. [s,Arg1], !,

print(’(’),

print(’Suc ’),

print_faithful_isa(Arg1),

print(’)’).

print_faithful_isa(Struct) :-

Struct =.. [F,Arg1|Args],

print(’(’),

print_faithful_functor(F),

print_faithful_isa(Arg1),

l_print_faithful_isa(Args,63),

print(’)’).

/* slightly modified argument list printing for isabelle

note: does not produce correct output for more than 62 elements

*/

l_print_faithful_isa([],_).

l_print_faithful_isa([H|T],Nr) :-

print(’ ’),

((Nr>1, Nr\==[])

-> (print_faithful_isa(H), Nr1 is Nr - 1,

l_print_faithful_isa(T,Nr1)

)

; (print(’xtra(’), /* this is not the proper output for isa */

print_faithful_isa(H),

l_print_faithful_isa(T,63),

print(’)’)

)

).

/* prints a single subset of the coverability relation,

Head, Body must be instantiated

*/

print_isa_coverel(Head,Body) :-

collect_vars_isa([Head|Body],V),

sort(V,V2),

print(’{(x,y). \\<exists> ’),

numbervars(clause(Head,Body),0,_),

printvlist_isa(V2), print(’. ’),

print(’x=’),print(’(’),

filter_print_atom_isa(Head),print(’)’),

NewBody = Body, /* remove_redundant_calls(Body,NewBody,[]), */

print_isa_coverel2(NewBody),

newlinebreak,

fail.

print_isa_coverel(_Head,_Body).

/* prints a the goal state description of a subset of the coverability

relation,

Arg must be instantiated

*/

print_isa_coverel2([]) :- print(’.’).

print_isa_coverel2([Call|T]) :-

print(’ \\<and> ’),print(’y=’),print(’(’),

print_call_isa(Call),

print_body1_with_nl_isa(T),print(’)’),

print(’}’).

/* note that the second clause does not produce isabelle output */

print_body1_with_nl_isa([]).

print_body1_with_nl_isa([Call|T]) :-

print(’, ’),nl,

print(’ ’),

print_call(Call),

print_body1_with_nl_isa(T).

/* prints a predicate or function call, note that negative literals are not

supported in this version for isabelle

Call must be instantiated by a call

*/

print_call_isa(Call) :-

(is_negative_literal(Call,NegatedAtom)

-> (print_bold(’\\+(’),print_atom(NegatedAtom),print_bold(’)’))

/* this does not print properly for isa */

; ((nonvar(Call),infix_predicate(Call),Call =.. [Pred,Arg1,Arg2])

-> (filter_print_atom_isa(Arg1),print(’ ’),print(Pred),print(’ ’),

filter_print_atom_isa(Arg2))

; filter_print_atom_isa(Call)

)

).

/* filters the list of Arg1 to obtain only the variables in Arg2

Arg1 must be instantiated by a list

*/

collect_vars_isa([],[]).

collect_vars_isa([H|T],[H|L]) :- var(H), collect_vars_isa(T,L).

collect_vars_isa([H|T],L) :- nonvar(H), H =.. [_|N],

collect_vars_isa(N,L1),

collect_vars_isa(T,L2),

appendl_isa(L1,L2,L).

/* append two lists

Arg1, Arg2 must be instantiated by lists

*/

appendl_isa([],L2,L2).

appendl_isa([H|T],L2,[H|L]) :- appendl_isa(T,L2,L).

/* prints a list as space seperated sequence

Arg must be a list

*/

printvlist_isa([]).

printvlist_isa([H]) :- print(’ ’), print(H).

printvlist_isa([H1|[H2|T]]) :- print(’ ’), print(H1), printvlist_isa([H2|T]).

/* prints sequence (ES)^(N-1)E

N,E,S must be instantiated, N to a number

*/

print_isa_prod(0,_,_).

print_isa_prod(1,E,_) :- print(E).

print_isa_prod(N,E,S) :- N>1, M is N-1,

print(E), print(S),

print_isa_prod(M,E,S).

/* calculates length of list if Arg1 is instantiated,

generates list of length Arg2 if Arg1 is uninstantiated

*/

length_list([],0).

length_list([_|T],N) :- (ground(N)-> (N>0,M is N-1);true),

length_list(T,M), N is M+1.

/* picks the last element of a list

Arg1 must be instantiated by list

*/

last_el([],[]).

last_el([A],A).

last_el([H|[H1|T]],A) :- last_el([H1|T],A).

/* prints a state vector, including variables and conversion of function

s(X) into (Suc X)

X must be instantiated to list

*/

print_state_isa(X) :- print(’(’), print_state_isa1(X), print(’)’).

print_state_isa1([]).

print_state_isa1([H]) :- print_state_isa2(H).

print_state_isa1([H1|[H2|T]]) :-

print_state_isa2(H1), print(’,’),

print_state_isa1([H2|T]).

print_state_isa2(X) :- var(X), print(X).

print_state_isa2(X) :- atomic(X), print(X).

print_state_isa2(X) :- X=’$VAR’(_),!,print(X).

print_state_isa2(S) :-

nonvar(S),

S =.. [s,Arg1], !,

print(’(’),

print(’Suc ’),

print_state_isa2(Arg1),

print(’)’).

/* print transition relation

Data must be instantiated to clause database, T to clause name

*/

print_trans_isa(Data,T) :-

TH=..[T,N,S1,S2],

claus(Data,_,TH,_),

(trans_print_started -> print(’\\<or> ’); assert(trans_print_started)),

appendl_isa(S1,S2,S),

collect_vars_isa(S,V),

sort(V,V2),

print(’(\\<exists> ’),

numbervars(TH,0,_),

printvlist_isa(V2), print(’. ’),

print(’(x,y,n)=(’),

print_state_isa(S1),print(’,’),

print_state_isa(S2),print(’,’),

print(N),

print(’))’),

nl,

fail.

print_trans_isa(_,_) :- retract(trans_print_started).

/* print transition number definition

Data must be instantiated to clause database, T to clause name

*/

printtdef(Data,T) :-

TH=..[T,N,_,_],

claus(Data,_,TH,_),

(trans_print_N(Num) ->

(retract(trans_print_N(Num)),M is Num+1,assert(trans_print_N(M)));

M is 0, assert(trans_print_N(M))),

print(’ ’),print(N),print(’_def [simp]: "’), print(N),

print(’ \\<equiv> ’),print(M),print(’"’),nl,

fail.

printtdef(_,_) :- retract(trans_print_N(_)).

/* print transition name declaration

Data must be instantiated to clause database, T to clause name

*/

printtdecl(Data,T) :-

TH=..[T,N,_,_],

claus(Data,_,TH,_),

print(’ ’),print(N),print(’ :: "nat"’),nl,

fail.

printtdecl(_,_).

/* print space seperated list of cover predicate definition names */

print_coverpred:-

last_cover_pred(List),

member(L,List),

cg_filter_goal(_NodeID,[Goal|_],_MsvGoal,FGoal),

Goal=..[L|_],

print(’ ’),filter_print_atom_name_isa(FGoal),print(’_def’),

fail.

print_coverpred.

Appendix B: Multiple clause databases for Ecce
(bimtools/claus database.pro)

/* --- */

/* (C) COPYRIGHT MICHAEL LEUSCHEL 1995,1996,1997 */

/* --- */

/* New version by Helko Lehmann 2002 */

/* extended to allow the use of multiple clause databases

simultaneously

*/

/* ------------------- */

/* DATABASE OF CLAUSES */

/* ------------------- */

/* file: claus_database.pro */

:- multifile pre_condition/1, post_condition/1, type/2.

:- dynamic pre_condition/1, post_condition/1, type/2.

:- ensure_consulted(’bimtools/makeflat.pro’).

:- ensure_consulted(’bimtools/makeiff.pro’).

/* -- */

/* REPRESENTING THE PROGRAM TO BE SPECIALISED */

/* -- */

/* new predicate to store database names */

:- dynamic declared_database/1.

declared_database(compat).

:- dynamic claus/4.

:- dynamic next_free_clause_nr/2.

:- dynamic mode_declaration/6.

/* mode(Nr,p(In,Any,Out),[In],[Any],[Out]). */

:- dynamic next_free_mode_nr/2.

next_free_clause_nr(compat,N) :- next_free_clause_nr(N).

next_free_mode_nr(compat,N) :- next_free_mode_nr(N).

claus(compat,A,B,C) :- claus(A,B,C).

/* declare a new database */

declare_database(Name) :- Name \== compat,

(declared_database(Name)

-> true

; (assert(declared_database(Name)),

assert(next_free_clause_nr(Name,1)),

assert(next_free_mode_nr(Name,1)))).

/* undeclare a database */

undeclare_database(Name) :- Name \== compat,

(declared_database(Name)

-> (clear_database(Name),

retract(declared_database(Name)),

retract(next_free_clause_nr(Name,1)),

retract(next_free_mode_nr(Name,1)))

; true).

/* new versions extended by database parameter

fails if database undeclared

*/

print_claus_database_status(Name) :-

declared_database(Name),

print(’database name: ’),print(Name),nl,

next_free_clause_nr(Name,Nr),

Total is Nr - 1,

print(’clauses stored in database: ’),print(Total),nl,

next_free_mode_nr(Name,MNr),

((MNr > 1)

-> (MT is MNr - 1,

print(’mode declarations: ’),print(MT),nl)

; (true)

),

(claus(Name,_,_,[])

-> true

; print(’database contains *no* facts’)),nl.

/* -------------- */

/* clear_database */

/* -------------- */

/* reset the clause database to empty */

cd(Name) :- clear_database(Name).

/* succeeds even if database undeclared */

clear_database(Name) :-

Name \== compat,retract(claus(Name,_Nr,_Head,_Body)),fail.

clear_database(Name) :-

Name \== compat,retract(next_free_clause_nr(Name,_X)),fail.

clear_database(Name) :-

Name \== compat,

retract(mode_declaration(Name,_Nr,_Call,_In,_Any,_Out)),fail.

clear_database(Name) :-

Name \== compat,retract(next_free_mode_nr(Name,_X)),fail.

clear_database(Name) :-

Name \== compat,

assert(next_free_clause_nr(Name,1)),

assert(next_free_mode_nr(Name,1)).

/* ------------- */

/* read_database */

/* ------------- */

/* reads clauses from standard input and asserts them as claus/4 facts */

/* be sure to issue ?-see(’FILE’) before using the call and ?-seen after

*/

/* fails if database undeclared */

read_database(Name) :-

declared_database(Name),

next_free_clause_nr(Name,Nr),

read_database(Name,Nr,NewNr),

(Name = compat

-> (retract(next_free_clause_nr(Nr)),

assert(next_free_clause_nr(NewNr)))

; (retract(next_free_clause_nr(Name,Nr)),

assert(next_free_clause_nr(Name,NewNr)))

),

Delta is NewNr - Nr,

Total is NewNr - 1,

print(’clauses read: ’),print(Delta),nl,

print(’clauses stored: ’),print(Total),nl,

next_free_mode_nr(Name,MNr),

((MNr > 1)

-> (MT is MNr - 1,

print(’mode declarations stored: ’),print(MT),nl)

; (true)

).

read_database(Name,Nr,Res) :-

((read(RTerm),not(RTerm = end_of_file),

transform_dcg_term(RTerm,DTerm),

transform_clause(DTerm,Term))

-> (Term =.. [Functor|Args],

((Functor=(’:-’))

-> (/* we have a clause */

((Args = [Head,BodyCommaList])

-> (comma_to_list(BodyCommaList,BodyList),

add_clause(Name,Nr,Head,BodyList),Nrp1 is Nr + 1)

; (treat_query(Name,Args), Nrp1 = Nr)

)

)

; ((Functor=(’-->’))

-> (/* we have a DCG rule */

expand_term(Term, ’:-’(Head,BodyCommaList)),

comma_to_list(BodyCommaList,BodyList),

add_clause(Name,Nr,Head,BodyList),Nrp1 is Nr + 1

)

; (/* we have a fact */

(special_fact(Term) /* e.g. unfold annotations */

-> (treat_special_fact(Term), Nrp1 = Nr)

; (add_clause(Name,Nr,Term,[]),Nrp1 is Nr + 1)

)

)

)

),

read_database(Name,Nrp1,Res)

)

; (Res = Nr)

).

/* add a clause to the database */

add_new_clause(Name,Head,Body) :-

(Name = compat

-> (retract(next_free_clause_nr(Nr)),

NewNr is Nr + 1,

assert(next_free_clause_nr(NewNr)),

assert(claus(Nr,Head,Body)))

; (retract(next_free_clause_nr(Name,Nr)),

NewNr is Nr + 1,

assert(next_free_clause_nr(Name,NewNr)),

assert(claus(Name,Nr,Head,Body)))

).

treat_query(Name,[mode(ModedCall)]) :-

!,add_new_mode(Name,ModedCall).

treat_query(_Name,[op(Priority,Infix,Op)]) :-

!,op(Priority,Infix,Op).

treat_query(_Name,Query) :-

print(’### encountered query’),nl,

print(’### ’), print(Query),nl.

/* add_new_clause(q__u__e__r__y,Query). */

/* add a mode declaration to the database */

add_new_mode(compat,ModedCall) :- !,

retract(next_free_mode_nr(Nr)),

NewNr is Nr + 1,

assert(next_free_mode_nr(NewNr)),

ModedCall =.. [P|MArgs],

make_mode_declaration(MArgs,VArgs,InArgs,AnyArgs,OutArgs),!,

VCall =.. [P|VArgs],

debug_print(mode(VCall,InArgs,AnyArgs,OutArgs)),debug_nl,

assert(mode_declaration(Nr,VCall,InArgs,AnyArgs,OutArgs)).

add_new_mode(Name,ModedCall) :-

retract(next_free_mode_nr(Name,Nr)),

NewNr is Nr + 1,

assert(next_free_mode_nr(Name,NewNr)),

ModedCall =.. [P|MArgs],

make_mode_declaration(MArgs,VArgs,InArgs,AnyArgs,OutArgs),!,

VCall =.. [P|VArgs],

debug_print(mode(VCall,InArgs,AnyArgs,OutArgs)),debug_nl,

assert(mode_declaration(Name,Nr,VCall,InArgs,AnyArgs,OutArgs)).

add_clause(Name,Nr,Head,BodyList) :-

Head =.. [Predicate|Args],

length(Args,Arity),!,

(dont_assert(Predicate,Arity)

-> (true)

; (strip_body(BodyList,StrippedBodyList),

(Name = compat

-> assert(claus(Nr,Head,StrippedBodyList))

; assert(claus(Name,Nr,Head,StrippedBodyList)))

)

).

/* other predicates */

/* transform elements seperated by commas into a real prolog list */

comma_to_list(Com,Lst) :-

((nonvar(Com),Com =.. [’,’ , Arg1 , Arg2])

-> (comma_to_list(Arg1,L1),

comma_to_list(Arg2,L2),

append(L1,L2,Lst)

)

; (var(Com) -> (Lst = [call(Com)]) ; (Lst = [Com]))

).

make_mode_declaration(X,[],[],[],[]) :- var(X),!,

print(’### error in mode declaration’),nl.

make_mode_declaration([],[],[],[],[]) :- !.

make_mode_declaration([’i’|T],[V|VT],[V|IT],AT,OT) :- !,

make_mode_declaration(T,VT,IT,AT,OT).

make_mode_declaration([’-’|T],[V|VT],[V|IT],AT,OT) :- !,

make_mode_declaration(T,VT,IT,AT,OT).

make_mode_declaration([’o’|T],[V|VT],IT,AT,[V|OT]) :- !,

make_mode_declaration(T,VT,IT,AT,OT).

make_mode_declaration([’+’|T],[V|VT],IT,AT,[V|OT]) :- !,

make_mode_declaration(T,VT,IT,AT,OT).

make_mode_declaration([’?’|T],[V|VT],IT,[V|AT],OT) :- !,

make_mode_declaration(T,VT,IT,AT,OT).

make_mode_declaration([_X|T],[V|VT],IT,[V|AT],OT) :-

print(’### error in mode declaration’),nl,

make_mode_declaration(T,VT,IT,AT,OT).

/* ================== */

/* transform_clause/2 */

/* ================== */

:- dynamic make_iff_when_reading_clauses/1.

make_iff_when_reading_clauses(off).

transform_clause(Clause,TClause) :-

make_iff_when_reading_clauses(on),!,

makeflat(Clause,FClause),

makeiff(FClause,TClause).

transform_clause(Clause,Clause).

/* ------------------------------------ */

/* set_make_iff_when_reading_clauses/0 */

/* ------------------------------------ */

set_make_iff_when_reading_clauses :-

print(’Transform clauses into prop-iff form when reading in:’),nl,

print(’on: ’),nl,

print(’off:’),nl,

print(’Current choice: ’),

make_iff_when_reading_clauses(Cur),

print(Cur),nl,

print(’choice =>’),

read(NewValue),

((not(NewValue=on),not(NewValue=off))

-> (print(’Illegal value, assuming off’),nl,

set_make_iff_when_reading_clauses(off))

; (set_make_iff_when_reading_clauses(NewValue))

).

/* ----------------------------------- */

/* set_make_iff_when_reading_clauses/1 */

/* ----------------------------------- */

set_make_iff_when_reading_clauses(_NewVal) :-

retract(make_iff_when_reading_clauses(_Cur)),

fail.

set_make_iff_when_reading_clauses(NewVal) :-

asserta(make_iff_when_reading_clauses(NewVal)).

/* ================== */

/* ============================= */

:- dynamic using_ml_typechecker/1.

/* Using Michael Leuschel Type Checker */

/* Should be set to true if the object program uses the type

checker

*/

/* developed by Michael Leuschel */

using_ml_typechecker(yes).

dont_assert(pre_condition,1) :- using_ml_typechecker(yes).

dont_assert(post_condition,1) :- using_ml_typechecker(yes).

dont_assert(type,2) :- using_ml_typechecker(yes).

strip_body([],[]).

strip_body([H|T],Res) :-

strip_literal(H,SH),

strip_body(T,ST),

append(SH,ST,Res).

strip_literal(X,[X]) :- var(X),!.

strip_literal(’C’(X,Y,Z),[’=’(X,[Y|Z])]). /* for DCGs */

strip_literal(’\+’(X),[not(SX)]) :-

strip_literal(X,[SX]).

strip_literal(not(X),[not(SX)]) :-

strip_literal(X,[SX]).

strip_literal(when(_Condition,X),[SX]) :-

strip_literal(X,[SX]).

strip_literal(prepost_call(X),[X]) :- using_ml_typechecker(yes),!.

strip_literal(prepost_mnf_call(X),[X]) :- using_ml_typechecker(yes),!.

strip_literal(mnf_call(X),[X]) :- using_ml_typechecker(yes),!.

strip_literal(verify_pre(_X),[]) :- using_ml_typechecker(yes),!.

strip_literal(verify_post(_X),[]) :- using_ml_typechecker(yes),!.

strip_literal(X,[X]).

/* ============================= */

:- dynamic using_special_facts/1.

using_special_facts(yes).

/* special facts: unfold annotations */

special_fact(X) :- var(X),!,fail.

treat_special_fact(Fact) :-

var(Fact),!,fail.

treat_special_fact(Fact) :-

assert(Fact).

/* ===================== */

/* for backwards compatibility */

:- dynamic claus/3.

:- dynamic next_free_clause_nr/1.

:-dynamic mode_declaration/5.

/* mode(Nr,p(In,Any,Out),[In],[Any],[Out]). */

:- dynamic next_free_mode_nr/1.

next_free_clause_nr(1).

next_free_mode_nr(1).

print_claus_database_status :- print_claus_database_status(compat).

cd :- clear_database.

clear_database :-

retract(claus(_Nr,_Head,_Body)),fail.

clear_database :-

retract(next_free_clause_nr(_X)),fail.

clear_database :-

retract(mode_declaration(_Nr,_Call,_In,_Any,_Out)),fail.

clear_database :-

retract(next_free_mode_nr(_X)),fail.

clear_database :-

assert(next_free_clause_nr(1)),

assert(next_free_mode_nr(1)).

rd :- read_database.

read_database :- read_database(compat).

read_database(Nr,Res) :- read_database(compat,Nr,Res).

add_new_clause(Head,Body) :- add_new_clause(compat,Head,Body).

treat_query(A) :- treat_query(compat,A).

add_new_mode(ModedCall) :- add_new_mode(compat,ModedCall).

add_clause(Nr,Head,BodyList) :- add_clause(compat,Nr,Head,BodyList).

Appendix C: Added and changed clauses in Ecce front-end
(front end.pro)

action(87) :- /* W for Write to Isabelle file */

print_specialised_program_isa,

front_end.

action(104) :- /* h for help */

print(’ ECCE 1.1’),nl,

print(’ The Partial Evaluator based on Characteristic Atoms and

Global Trees’),

nl,nl, print(’’),

print_claus_database_status,nl,

print(’ Command Summary:’),nl,

expert_print(’ b: execute Benchmark (from special file)’),expert_nl,

print(’ c: Clear clause database’),nl,

print(’ e: set dEbugging on/off’),nl,

print(’ f: choose File for output’),nl,

print(’ h: Help (also ?)’),nl,

print(’ i: Insert specialised program into clause database’),nl,

expert_print(’ k: execute benchmarK Set(from special file)’),

expert_nl,

print(’ l: List clause database’),nl,

print(’ o: turn type checking Off’),nl,

print(’ p: Partially evaluate an atom or goal’),nl,

print(’ r: Read clauses into database’),nl,

print(’ s: Set Parameters’),nl,

print(’ v: set user expert leVel on/off’),nl,

print(’ w: Write specialised program to file’),nl,

print(’ W: Write specialised program as Isabelle theory file’),nl,

print(’ x: eXit (also a and q)’),nl,

print(’ ----------------------------------- ’),nl,

expert_print(’ a: toggle treatment of open predicates’),expert_nl,

print(’ d: Determinate (post-)unfolding’),nl,

expert_print(’ g: print Global tree’),expert_nl,

expert_print(’ j: generate ic-checking code’),expert_nl,

print(’ m: Msv analysis’),nl,

print(’ n: eNable abstract partial deduction’),nl,

expert_print(’ t: iff clause Transformation’),expert_nl,

expert_print(’ u: manual Unfold’),expert_nl,

expert_print(’ y: redundant argument filtering (RAF) analYsis’),

expert_nl,

expert_print(’ z: FAR (reversed RAF) analysis’),expert_nl,

front_end.

