
��������	�
��������
�����������	���������������
�����

m.c. schraefel
Dept. of Computer Science, U of Toronto

Toronto, ON, Canada
mc@dgp.toronto.edu

Yuxiang Zhu
Dept. of Computer Science, U of Toronto

Toronto, ON, Canada
yuxiang@dgp.toronto.edu

�����	���
Task analysis of how users collect information from within
Web pages indicates that while capturing information within-
Web-page is a common task, it is not a frequent one. Tool
support for this interaction is poor: users must move between
browsers for copying and editors for pasting content They
must also name the components captured and remember to
copy and add the URL from the source. These subtasks force
users away from their primary focus of information gathering
and into information management. Hunter Gatherer is a
browser-based tool designed to address the specific problems
of forced divided attention in information gathering smaller-
than-Web-page sized components.

����������Collections, Interaction Design, Hypertext, URLs

��� !"#
��!��
Task analysis carried out in a user study reported in [2]
indicates that users regularly need to deal with information
components from within Web pages. The studies found two
things: (1) that Web users want to be able to make collections
of information found from within Web pages, but that (2)
users only infrequently make such collections, in large part
because of poor interaction support for this activity. For
instance, bookmarks, referencing entire pages, often capture
more than the desired data; this forces users first to load and
then to sift through multiple pages to attempt to find the
desired material. Text editors cause users to shift attention
between the information gathering task in the browser and
information management task with the editor. In this process,
users often forget or neglect to label the collected component
with the title or URL of the source page, which degrades the
value of the collection over time.
The result of our work to date is Hunter Gatherer (HG) (Figure
1). Hunter Gatherer blends the transparency of bookmark
capture for component selection, with the support of an editor
for revising collections. The tool also automates the inclusion
of a contextual, editable header for each component, and grabs
the URL of the source page for that component so that users
can return to the source document at any time. By this process,
Hunter Gatherer lets users, rather than tools, determine which
information activity they wish to focus on: gathering,
management or contemplation of the collection.

"$%
 �&��!��!'���$��!!(�
First, Hunter Gatherer is a browser-based, server-side appli-
cation. By integrating HG with the browser we are able to
minimize the forced divided attention introduced by shifting
between browser and editor. As a server-side application, HG
does not require users to download additional software to
access the tool. This approach also lets us support multiple
operating systems and browsers simultaneously. Also, our
interest is in the potential impact of supporting within-Web-
page collection making on Web information practices. Multi-
ple OS support lets us deploy the tool over the widest possi-
ble user space.

Second, Hunter Gatherer does not copy data into a collection;
it creates references, based on pageURL+LocationWithin
ThePage for the components instead. We call this address an
Aggregated URL (AURL). Thus, a collection is built as a
string of AURLs. Which makes collections highly transport-
able: an AURL can be treated like a URL, to be bookmarked
or emailed. For instance, <http://[proxy server]
/examples/servlet/Collection_b?aurl=http%3a%2
f%2fwww%2eacm%2eorg%2fsigchi%2fchi2002%2fpape
rs%2ehtml%23P%231%231%23papers%20%20CHI%20200
2%7chttp%3a%2f%2fwww%2eacm%2eorg%2fsig-
chi%2fchi2002%2flocation%2ehtml%23P%233%231%2
3loca-
tion%20%20CHI%202002&pagetitle=Chi%20Info> is
a 2 component AURL.
Each user can view and non-destructively edit the collection,

Copyright is held by the author/owner(s).
CHI 2002, April 20-25, 2002, Minneapolis, Minnesota, USA.
ACM 1-58113-454-1/02/0004.

Figure 1. Hunter Gatherer collection (foreground) with text
and video components; List/Edit view for monitoring and
editing the collection in the background (upper left); sur-
rounding Web pages from which components have been
collected.

 Demonstrations CHI changing the world, changing ourselves

498

since editing only changes an AURL, and one user’s changes
to an AURL has no impact on someone else’s copy. In this
respect, Hunter Gatherer embodies a version of Nelson’s
Transclusions [1]: documents created by references to other
documents. By the same referencing mechanism of the
AURL, versions of collections can be readily shared while
working on a project, for instance by publishing the AURLs
in a collaborative Web page (like a WIKI), or sending them
via email to the appropriate parties. A more detailed discus-
sion of AURLs is in [3].

�����	���������
��)����

���������	
����������	

There are two steps to collect a component within a Web
page in Hunter Gatherer: (1) select the component to be col-
lected (hold the option key, click and drag over the area to be
collected) and (2) with that component selected, press the
“a” key. The component is then added to the collection. The
user can continue to add components in this manner. Any
component that can be displayed in a Web page can be added
to a collection, from images to applets.
The selection and add process is relatively transparent. It
does not require the user, after adding a component, to shift
attention from the browser to an editor application, paste con-
tent into that application’s file, go back to the browser, copy
the URL, go back to the editor, paste the URL, add a note to
contextualize the component, save the file, go back to the
browser and refocus on hunting for the next component. The
user simply identifies a component to be added; the system
automatically adds the URL for the source page of the com-
ponent, and creates a title for each component based on key-
words from the component and the title of the source page. In
this way, users can focus attention on a task until they decide
to shift that focus to a different task.

���������	
����������	

On adding a component to a collection, a small window, the
List view, opens. This window displays a list of the compo-
nents in the collection letting the user monitor the growth of a
collection. Figure 1 shows the List view partially visible be-
hind the main browser window, making the state of the cur-
rent collection peripherally available. At any time, the user
can bring the List window to the foreground to focus on the
collection.
If the user wishes to move task focus from adding compo-
nents, to the collection, to dealing with the collection itself,
they have two ways of doing this: from the List view they can
rename a component, sort components in the collection, de-
lete components from the list, give the collection a title and
create an AURL to share the collection. Double clicking a
title in the List view will also render just that single compo-
nent. By choosing “preview” in the List view, users can ren-
der the collection and edit it directly in that page.
On choosing preview, a new browser window opens, display-
ing each of the components represented by the List in the

order in which they are displayed in the List. Each component
when rendered in the Collection view contains the title repre-
senting it from the List view and also contains the URL for
the original page. At any time, the user can click that link to
open the source page for that component, regaining the origi-
nal context of that component. Likewise, any links within the
captured component act like regular Web links: click on them
and they will do what they were programmed to do, whether
to open a new page or download a tune.

��	�	��������������	�������'�����
Throughout the collection making process with Hunter Gath-
erer, users can move from information gathering to informa-
tion management and information sharing. The user can re-
turn to the collection at any point either for reference or to
edit it further by loading its AURL into a browser’s Location
field. In other words, the user determines which part of the
collection making activity they wish to foreground or keep in
the background or have peripherally available at all times.

$*�(#���!��!*$ *�$��

As reported in [2], we evaluated Hunter Gatherer in both a
lab experiment and field study. The experiment showed that
Hunter Gatherer was significantly more efficient than Micro-
soft Word for selecting, adding and sorting components into
collections. The field study indicated that participants found
the tool useful, and that they wished to continue to use the
tool after the 4 week trial. Participants in both cases reported
ways they would like to see the tool improved – such as being
able to remove parts of collected components from within the
Collection view – and we have implemented these revisions.

!�
(#%�!�%���"�'#�# $��! ��
The success and ongoing improvements of the tool give us
two benefits. First, we have a model for a novel way of inter-
acting transparently with Web pages. Second, the tool that
can be widely distributed to a heterogeneous user community
in order to evaluate the larger question of affect of tool use on
information practice. We plan to deploy Hunter Gatherer in a
longitudinal study next to let us consider how being able to
treat Web content as smaller-than-page-sized units affects
interaction expectations with information resources.

 $'$ $�
$%�
1. Nelson, T. H.. A Literary Structure with Two Fundamen-

tally Different Means of Connection.
http://www.sfc.keio.ac.jp/%7Eted/XUsurvey/xuDation.html.

2. schraefel, m.c. Modjeska, David, Wigdor, Daniel and
Yuxiang Zhu. Hunter Gatherer: Interaction Support for
Within-Web-page Collection Making. Tech Report,
CSRG-437, DCS, U of Toronto, 2001.

3. Zhu, Yuxiang. Web-based Interaction Design and Sup-
port for Within-Page Collections. Masters Thesis, Dept.
of Computer Science, U of Toronto, 2001.

minneapolis, minnesota, usa • 20-25 april 2002 Demonstrations

499

