THE DESTIGH OF AN HIERARCIHICAL CIRCHUIT-LEVEL SIMULATOR

M Zwolinski and K G Nichols

Department of Electronies, University of Southampton, United Kingdom

1. INTRODUCTION

The 1inereasing size and complexity of VLST
circuits developed in the past few years and
of those that will be developed in the
forseeable future, means that existing cire-
uit-level simulators, designed for the anal-
ysis of much smaller circuits, are no longer
adequate (e.g. SPICE [1], ASTAP [2] etec.).
This preoblem cannot be overcome by simply
running these simulators on larger and faster
computers. The simulator described in this
paper, although still under development, has
been designed to overcome the limitations
imposed by the data structures and algorithms
of such simulators,

One of the major drawbacks of existing simu-
lator programs is that they have
traditionally been written in FORTRAN. While
FORTRAN is undoubtedly an excellent language
for purely numerical operations, it lacks
many of the subtleties present in more modern
block-structured languages such as Pascal.
For example, the only data structures allowed
in FORTRAN are arrays, whereas dynamically
allocatable data types are available in e.g.
Pascal. Thus, flexibe tree and 1list strue-
tures may be defined, which, for example,
allows a network Jacobian matrix to be set up
and solved without the constraints and inef-
ficiencies imposed by array bounds. Furt-
hermore, FORTRAN, unlike modern block-struct-
ured languages does not permit recursion,
which, as will be seen, is of particular imp-
ortance in this simulator. Moreover, we have
tried to apply the concept of functional pro-
gramming, as described by Henderson [3], to
our design, Briefly, this means that subpro-
grams return one result from a number of arg-
uments without altering the values of global
variables. This ideal can produce large
inefficiencies that are wunacceptable in a
cireuit simulator, so some compromises have
had to be made.

Our simulator 1is specifically designed for
the analysis of hierarchically partitioned
circuits. The reasons for partitioning a
circuit and the theoretical justification for
30 doing will be explained in Section 2.
Section 3 shows how the features of a block-
structured language are applied to the anal-
ysis of a partitioned ecircuit. Section I
considers the use of individual timesteps for
each subeircuit, how the concept of 1latency
can be applied and how the analysis of the
circuit with respect to time can be
controlled. Lastly, section 5 extends the
concept of an hierarchically partitioned
eircuit to include mixed-mode analysis.

2. CIRCUIT PARTIONING THEORY

Partitioning a ecircuit intoe a number of
hierarchically nested subcircuits will not,
in itself, reduce the computational effort
needed to analyse the circuit. This is espe-
cially true in competition with conventional

simulators using sparse matrix techniques.
In a VLSI ecircuit, it is likely that at any
given time, a few node voltages will be
changing relatively quickly while the
majority of node voltages remain fairly
constant. By partitioning a eircuit, the
more active nodes will be confined to a few
subcircuits. Thus, if each subeircuit is
allowed to have its own timestep, it can be
analysed only as often as it needs to be.
The analysis of such a circuit is  considered
further in Section U4, Further savings in
computation can be made if various subcire-
uits are analysed at a logic level, as will
be discussed in Section 5.

From the point of wview of a VLSI circuit
designer, partitioning a circuit means that a
repeated structure need only be desecribed
once. However, the partitioning must be done
manually, although this should not be a
serious problem, since the design of a cire-
uit would normally proceed in a top-down
manner, in which functional blocks are
continually refined.

Formulation and Solution of Partitioned
Lircuit Equations

The equations for a general nonlinear ecircuit
can be expressed as:

Flx,y, &) =0 (H

where y = y(x) and x is a vector of ecircuit
variables (voltages and currents). After
discretisation in time, these equations are
reduced to the form:

g(x,) =0 @
where xﬁ'x(trP ¥

Equation (2) is solved numerically using the
Newton-Raphson formula, i.e. by solving:

T 1= Mo Mg (e €

"
where jg is the Jacobian at the m-th itera-
tion at tnﬁquation (3) is equivalent to

Jmmei=pm (4

where F 1is the vector of excitations. In
practice, J and F are built with the aid of
companion models, e.g. Calahan, Chapter 3
[4]1.

The network equations, equivalent to equation

(4), for one subcircuit are shown in equation
(5), which is an extension of the torn node
technique of Linardis and Nichols [5]. Equa-
tion (5) is formulated using the modified no-
dal analysis of Ho et al [6], thus allowing
branch currents to be included as circuit
variables whereas the equivalent equation in
[5] is formulated with nodal analysis. k

(22l )= )6 6



where v is the vector of node voltages at the
external {torn) nodes of the subeirecuit; i is
the vector of currents flowing into the torn
nodes from the rest of the circuit; Yy, Ap .,
Ay and Ay form the Jacobian matrix of the
subeircuit and I and F are excitation
vectors.

By means of Gausian elimination, the equa-
tions of a subeircuit as given by equation
(5) may be transformed to equation (6) (in
which the iteration superseripts are omitted
for clarity)

Y ~AAZAD v=(T-A, B F) +i (6

which represents a number of Norton circuits
(or macromodels) which are equivalent to the
external characteristics of the subeirecuit
and in whiech the internal circuit wvariables,
X, have been supressed.

Equation (6) may now be used to embed a sub-
circuit macromodel into the equations of
another subcircuit and the torn node
currents, i, for all the subcircuits embedded
within one other sum to zero. This leads to
a recursive linearisation and solution alg-
orithm for the entire circuit at a time t .

Starting at the deepest level of nesting,
i.e. those subeircuits that have no further
subcircuits embedded within them, each sub-
eircuit's equations are linearised using eq-
vation (7).

Al Mi=f m—AMMy,© )

The torn node voltages, v, are assumed to be
correct during this dinner iteration loop.
When sufficient convergence has been
achieved, each subcircuit's equations are
reduced to the form of eguation (6) and inecl-
uded in the equations of the embedding sub-
circuit.

This linearisation, reduction and substitu-
tion is repeated for the equations of each
subcircuit until a linear set of equations is
obtained for the main circuit (i.e. that sub-
circuit which is not embedded in any other).
Beginning with the main cireuit, the internal
variables, x, are calculated from equation
(7) and recursively back-substituted into the
equations of each subcircuit as torn node
voltages, v. Hence the circuit variables of
every subcircuit are calculated.

The entire algorithm 1is now repeated until
convergence is reached for every variable, x,
of every subeircuit.

At each iteration of this outer loop, new
values of v for each subeircuit are calcu-
lated. Therefore, it is not essential that
absolute convergence is obtained in the
linearisation of each subecircuit. Indeed,
future research may show that one iteration
loop is sufficient for each set of subcircuit
equations.

3. IMPLEMENTATION _ OF AN __ HIERARCHICAL
CIRCUIT-LEVEL SIMULATOR IN A BLOCK STRUCTURED

CANGUAGE.

E_ecursion

In order to exploit fully the concept of a
circuit consisting entirely of nested sub-
circuits, each subcircuit should be treated
in exactly the same way as any other, The
action of the simulator should not depend
upon a subecircuit's position in the structure

of the ecircuit. It is possible to implement
an analysis program satisfying this eriterion
as an iterative algorithm, but a better solu-
tion is the use of a recursive algorithm.
Thus the analysis procedure iz invoked by
itself once for each subcircuit.

Data structure of an Hierarchically

Partitioned Cirouit

The subecirecuit data structure for a recursive
simulator algorithm should contain pointers
to the subeircuit's immediate neighbours but
should not contain any reference to the sub-
cireuit's position in the overall circuit
structure.

Each subeircuit is embedded within exactly
one other subcircuit. Therefore, the sub-
circuit structure has one pointer to the em-
bedding subcircuit. There 1is, however, no
upper or lower 1limit to the number of sub-
circuits that may be nasted within a given
subeircuit. In order to avoid imposing
limits and to avoid wasting storage, a list
of nested subeircuits is used in preference
to an array of pointers. Each member of the
list may have a list of embedded subcircuits
which leads to a binary tree structure.

A simple example of the ftree structure is
shown in figure (1).

A recursive Pascal-like procedure to move

through suech a data structure is shown below,

where the ‘'child' of a subeircuit is the

first member in a list of embedded subcire-

uits, and the ‘'brother' of a subeircuit is

the next subeircuit in the same list as the

current subeircuit.

procedure search (subeirecuit pointer);

begin

if subcircuitpointer ". <c¢hild < > nil then
search (subecirecuitpointer *. ehild);

if subeircultpointer “. brother < > nil then
search (subeircuitpointer *. ©brother)

end ;

The procedure would initially be invoked by:-

search (maincircuit);

This depth-first search procedure is the out-
line of the forward elimination and back-su-
bstitution phases described in Section 2.
Circuit Analysis

Data Structures and Algorithms

In addition +to the data structure described
for nesting subeircuits, further structures
are required for the internal representation
of subeircuits. It has been decided to store
circuit elements as linearised companion mo-
dels rather than as complex devices. This
transformation is performed by a prepro-
cessing program. The preprocessor accepts a
free-format circuit description, which allows
comments to be mixed in with kKeywords and
data. A certain amount of circuit integrity
checking is done and the nodes of each sub-
ecircuit are renumbered so as to reduce the
number of infills, i.e. zero locations in the
subeireuit Jacobian, which become non-zero
when the network equations are solved, [6].



The preprocessor then writes the new version
of the circuit to an intermediate file.

The major advantage of this approach, in
which network elements are stored as com-
panion models is to reduce the dependence of
the simulator upon device models. Hence, new
models may be added with comparative ease.
To calculate the instantaneous values of com-
panion models, however, each model must incl-
ude symboliec information as to what the model
represents. Furthermore, each model needs a
list of parameters from which ics
instantaneous value is calculated. Thus, the
dependence of the simulator upon device types
is limited to one group of procedures, in
which the symbols identifying each model are
interpreted. The parameters associated with
each model are substituted for the symbols in
order to evaluate the companion model. To
add a new model to the simulator therefore
requires the inclusion of extra interpreta-
tion code.

It was noticed that the evaluation of com-
panion model wvalues from user defined
variables and node voltages resulted in the
repetition of a number of operations within
each Newton-Raphson iteration loop. This is
especially true for complex nonlinear devices
such as MOSFETS. It is possible to avoid
this repetition by setting a number of pro-
gram variables within each iteration loop.
This method, however, conflicts with the
principle of functional programming.
Nevertheless, an acceptable compromise has
been reached by including in the parameter
lists of mnonlinear models, a number of
parameters that are shared between models and
recalculated once in each Newton-Raphson
iteration. Hence the repetition of identical
operations is avoided.

Once the values of a subcircuit's companion
models have been calculated, the network
matrix is set up and solved as part of each
Newton-Raphson iteration, The sparse
matrices of each subeircuit are stored as
lists of rows, which are themselves lists.
Each companion model value may be included in
the matrix at up to four different locations.
Therefore, in order to avoid searching for
the matrix locations at which each companion
model is to be added, we have included
pointers in the data structure, so that when
a model value is calculated, it may be added
into the sparse matrix directly.

To reduce the amount of computation performed
in the course of the simulation, the sparse
matrix structure is set up once at the
beginning of the simulation. In addition, a
symbolic solution of the sparse matrix is
performed so that locations for infills are
included in each matrix. Consequently, the
data structure used to represent a VL3I circ-
uit is potentially very large. It is assumed
that the simulator will be run on a computer
with a virtual memory

4y, TIMESTEPS AND LATENCY IN SUBCIRCUITS

The timestep used for the analysis of a circ-
uit is determined by the fastest changing
node voltage. In general, the faster a vol-
tage changes, the smaller the timestep must
be to ensure convergence in a Newton-Raphson
iteration. 1In a large unpartitioned circuit,
it is unlikely that every node voltage will
be changing at the same rate. Indeed, RIS )
probable that a large number of node voltages
will not change between time points. Conseq-

uently, the voltages of many nodes in such a
circuit will be calculated more often than
they need be.

If a circuit is partitioned into small
hierarchically nested subcircuits, however,
each subcircuit may be analysed with a
timestep determined by the subcircuit's most
active node rather than by the most active
node in the entire circuit. Thus each sub-
circuit is only analysed when one or more of
its node voltages has changed significantly
since the last analysis time point. If the
macromodel of a subecircuit is required for
embedding in another subcircuit's equations
before the macromodel is due to be recalcu-
lated, then the macromodel is assumed to be
unchanged from the last analysis time point.
This assumption 1is generally known as
latency. At any given time point in the
analysis, between one and all of the subcirc-
uits in a circuit may have to be analysed.
Consequently some form of overall control is
needed to determine the next analysis time
point and which subcircuits are to be anal-
ysed at that timepoint. The control struc-
ture takes the form of an event schedular.
Event schedulars have been used for many
years in logic simulators and we use an event
schedular similar to that used in SPLICE [7]
for mixed-mode analysis. Our event schedular
consists of two lists. The first list is of
those subcircuits due to be analysed at the
present timepoint and the second list is of
timepoints in the future together with the
subcircuits due to be analysed at those
timepoints. The timestep of each subcircuit
is controlled by the local truncation error,
Shichman, [8]. Therefore, it is possible to
predict the next timestep for each subecircuit
and hence to update the event 1lists after
each analysis time point. .

5. MIXED-MODE ANALYSIS

Since subcircuits are analysed in isolation,
it is possible to characterise some subcirec-
uits at a logic level rather than at a cire-
uit level. It has been decided that logic
elements and circuit elements maynot be mixed
within subcircuits, unlike DIANA [9].
Therefore, logic to «circuit and circuit to
logic interfaces are confined to  subecircuit
boundaries. This stipulation simplifies the
simulator program and does not unduly
constrain circuit designers.

The simulation of a subcircuit at a logic
level increases the speed of the analysis but
at the expense of accuracy. It is likely,
however, that subcircuits would only be anal-
ysed at a logic level once their design had
been verified at a circuit 1level, although
the characterisation of a logiec subcircuit
from . a' ‘circuisk level description will
probably have to be done manually.

Bearing in mind the simplicity of logic ele-
ments, it is probable that the interfaces
between circuit 1level subcircuits and logic
level subcircuits will simply consist of the
mapping of a 1logical value directly onto a
voltage and vice versa. Greater accuracy may
be obtained by modelling the outputs of dif-
ferent families of logic elements as Boolean
controlled Thevenin circuits as described by
Arnout and de Man [9]. Alternatively logic
level subeircuits may be buffered to circuit
level subeircuits by characterising external
gates at circuit level.



6. CONCLUSION

This paper has described the design philoso-
phies behind a simulator for VLSI circuits.
Many details are necessarily incomplete

because the simulator is still under develop-
ment. We have sought, however, to illustrate
how these design principles have been applied
to the representation and solution of
hierarchically partitioned circuits.

REFERENCES

153 Nagelpsl.gi 97575 NSPICE2: A Computer
Program to Simulate Semiconductor Circuits®,
University of California, Berkeley, U4 Sih%y,
Electronics Research Laboratory Report, No.
ERL-M520.

Jimenez, A. J., Mahoney, G.
and Scott, T.
c T-20,

2. Weeks, W. T.,
W., Mehta, D., Qassemzadeh, M.
R., 1973, IEEE Trans. Circuit Theory,
628-634.

"Functional Pro-

3k Henderson, P., 1980,
International,

gramming", Prentice-Hall
London, U.K.

LS Caliahan ;=< Dise AL Sadigifes "Computer-Aided

Network Design", Revised Ed., McGraw-Hill,
New York, U.S.A.
B Linardis, P. and Nichols, K. G., 1979,

"Partitioning with Latency Exploitation in

Bre Ho, C.-W., Ruehli, A. E. and Brennan, P.
A., 1975, IEEE Trans Circuits and System,
CAS-22, 50U4-509.

T Newton, A. R. and Pederson, D. 0., 1978,
"A Simulation Program with Large-Scale
Integrated Circuit Emphasis", Proc. IEEE
[SCAS, New York, U.S.A.

8. Shichman, H., 1970, IEEE Trans, Circuit
Theory, CT-17, 378-386.

9. Arnout, G. and DeMan, H. J., 1978, IEEE
Journal Solid-State Circuits, SC-13, 326-332.

One of the authors MZ would like to
acknowledge the support provided by the
SERC and IBM United Kingdom Laboratories
Limited, Hursley Park, Winchester.

the Time-Domain Analysis of Large Nonlinear
Electronic Circuits", Proc. IEE CADMECCS,
Brighton, U.K.
MAINCCT
rpue
( |
| )
1
e BT YNy i
|
| PARENT ) \
e | | | ﬂn-;,Fm | %2
/ [
| ,uuu: l
g wm e an o= = = e o e e e S S o tn e Gwe o S e S SR —_—

- —

- —

o o —®  mm mm - —

( )
I

we| /11 ] e

Figure l.Example of Data Structure of a Partitioned Circuit



