
UNCORRECTED P
ROOF

Practitioners' views on the use of formal methods:
an industrial survey by structured interview

C. Snooka, R. Harrisonb,*

aDepartment of Electronics and Computer Science, University of Southampton, High®eld, Southampton SO17 1BJ, UK
bSchool of Computer Science, Cybernetics & Electronic Engineering, University of Reading, Whiteknights, P.O. Box 225, Reading, Berkshire RG6 6AY, UK

Received 16 June 2000; revised 2 November 2000; accepted 3 November 2000

Abstract

The recognised de®ciency in the level of empirical investigation of software engineering methods is particularly acute in the area of formal

methods, where reports about their usefulness vary widely. We interviewed several formal methods users about the use of formal methods

and their impact on various aspects of software engineering including the effects on the company, its products and its development processes

as well as pragmatic issues such as scalability, understandability and tool support. The interviews are a ®rst stage of empirical assessment.

Future work will investigate some of the issues raised using formal experimentation and case studies. q 2001 Elsevier Science B.V. All

rights reserved.

Keywords: Formal methods; Empirical assessment; Survey; Structured interview

1. Introduction

This document reports on a series of structured interviews

which have been conducted with formal methods practi-

tioners. In Section 1, the need for empirical assessment,

especially in formal methods, is introduced. The types of

empirical assessment are described and the contribution

each makes to the establishment and investigation of a

hypothesis is discussed. This provides a context for the

report on the conduct and ®ndings of the series of structured

interviews, which is described in Section 2. In Section 3, our

plans for future work arising from the results of the inter-

views are presented including the statement of two hypoth-

eses and an outline of how they could be investigated

further.

1.1. Empirical assessment

Glass [9] comments on the way software engineering

research has become insular and `academic', losing touch

with the practitioners and not validating theory with real

world evaluation. In response, practitioners have lost faith

in research results. In fact, research and development should

go hand in hand so that research ideas are transferred into

practice via an established process and bad ideas which

cannot be put into practice are not kept alive mainly by

research advocates. Formal methods have been cited as an

example of an idea being kept alive purely by research [7,9].

Similarly, Fenton [7] warns the research community that it

should not be exasperated by the poor industrial acceptance

of new methods when they lack empirical validation.

1.2. Types of empirical assessment

Empirical assessment can be classi®ed as surveys

(systematic post hoc data collection from a known popula-

tion), formal experiments (controlled and replicated treat-

ments on a number of subjects) and case studies (intensive

interpretation of a small sample). Kitchenham [11,12] iden-

ti®es a method for selecting evaluation techniques for soft-

ware engineering methods and tools that is based on

surveys, formal experiments and case studies. As part of

the same project (DESMET), Kitchenham et al. [13] provide

a very good critical review of past quantitative assessments

and again base this around a classi®cation into surveys,

formal experiments and case studies.

Daly [5] points out the value of using all the three forms

of empirical assessment to support each other in establishing

a hypothesis. The survey contributes to the formulation of

the hypothesis and increases the likelihood that it is rele-

vant, formal experiments establish that a relationship exists

Information and Software Technology 00 (2000) 000±000

INFSOF4159

0950-5849/00/$ - see front matter q 2001 Elsevier Science B.V. All rights reserved.

PII: S0950-5849(00)00166-X

www.elsevier.nl/locate/infsof

* Corresponding author. Tel.: 144-118-931-8615; fax: 144-118-975-

1994.

E-mail addresses: cfs98r@ecs.soton.ac.uk (C. Snook), rachel.harri-

son@reading.ac.uk (R. Harrison).

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

and case studies demonstrate that the results can be general-

ised to real life situations.

1.3. Surveys

Surveys rely on the individual's memories of their experi-

ences. Because of this, they can be limited in accuracy.

Pannell and Pannell [14] give an informative discussion

on the problems of extracting the truth via surveys and on

how to maximise the chances of getting valid answers.

Some of the problems include incorrect answers (an esti-

mated 5±17% of answers are incorrect), misinformation,

changing opinions, wording of questions, misinterpretation

and ordering of questions. Nevertheless, surveys provide a

powerful method to get an initial indication of the properties

of a topic from a wide subject base. Survey data can lead to

the formulation of relevant, and widely held, hypotheses.

A survey based on a distributed questionnaire relies on

the questions asked and the way they are phrased. This

implies a prior knowledge of the interesting issues and a

possible outcome. A structured interview [5] consists of

an interview based around a prede®ned set of questions.

The questions provide a consistent structure for the inter-

views but the interviewer can discover knowledge by seek-

ing con®rmatory evidence as necessary. The interviewer can

also explore the experience and language of the interviewee

to put the answers in context. Thus many of the shortcom-

ings of an independent survey are overcome. Structured

interviews are limited to a small selected set of experienced

subjects, but enable a wider exploration of the subject to be

performed and a higher level of con®dence in the answers.

However, the results will be a re¯ection of the opinions and

prejudices of a small set of subjects. The selection of these

subjects may ensure that they are the best placed individuals

to give an accurate opinion. On the other hand, other empiri-

cal assessment techniques should be used to test the results

of the structured interviews. Our structured interview is

reported in Section 2 of this report.

1.4. Formal experiments

The purpose of a formal experiment is to test a relation-

ship in a particular system. We must minimise the effect of

confounding factors so that we can attribute changes in the

dependent variable to changes in the independent variable.

We should not expect formal experiments to be set in realis-

tic scenarios. This would be counter to the design aims of

eliminating confounding factors. Instead we should concen-

trate on isolating and demonstrating the relationship under

test. Once the relationship has been established as likely to

exist we may then consider to what degree it is relevant to

real life scenarios.

1.5. Case studies

Case studies lack the level of control that formal experi-

ments have. The behaviour of interest is observed in a real

life example. The many other environmental parameters are

uncontrolled and may in¯uence the dependent variable

being observed. To alleviate this to some extent a typical

baseline is used for comparison. However, a case study

cannot be considered as rigorous an empirical investigation

as a formal experiment. Nevertheless, case studies have an

important role because they test whether a relationship is

observed in real situations. This can support formal experi-

ment results, either as an investigatory stage (establishing a

hypothesis to test) or as a follow up stage (establishing the

generality of experimental results).

2. Industrial survey

We performed a survey of the opinions of industrial users

of formal methods. This covered a broad range of topics

associated with the effects that using formal methods

might have on a company and its products. The survey

was conducted by structured interviews based on a ques-

tionnaire (see Appendix A).

2.1. Purpose

The aim of the survey was to explore the experiences of

the practitioners directly. There are many popular theories

about formal methods that have questionable validity and it

is often unclear whether they are based on actual experi-

ence. Hall discusses some of these myths [10] as do Bowen

and Hinchy [2]. Therefore, it was seen as important to inves-

tigate the effects of using formal methods directly with

individuals who had ®rst-hand experience. Of course, the

results are still dependent on the subjective opinions of these

individuals and the environments in which their experiences

were obtained. This must be borne in mind when the results

are interpreted and the results should be viewed as provi-

sional until further empirical assessment has been carried

out to corroborate them.

We wanted to discover the main issues involved in the use

of formal methods, in particular, the issues surrounding

understandability and the dif®culty of creating and using

formal speci®cations. It was hoped that signi®cant points

would be raised that would warrant further empirical assess-

ment. In this way the survey was seen as the ®rst stage of a

`multi-method' programme of research as described by

Daly [5]. The purpose of this ®rst stage was to raise inter-

esting and relevant provisional ®ndings for further research

rather than ®rm conclusions which would be suspect based

on such a small survey.

2.2. Conduct of survey

The companies were initially contacted by email with a

brief outline of our aims and the questions that would be

asked. Meetings were set up at the company's premises

where the representatives were interviewed. The interviews

were structured around a questionnaire but the interviewees

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±0002

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

were encouraged to digress and elaborate on topics as much

as they felt necessary. The questions were used to trigger

discussion and as a checklist but in an effort to explore the

subject widely, the discussions were conducted in an open,

free form without constraining the topic to the initial ques-

tion. The interviewees related answers to their experiences

to provide justi®cation, and in the process the context of the

interviewees answers and their understanding of key phrases

was discovered. This happened mostly as a natural part of

the discussions without conscious effort. The ®nal question

asked the interviewee if there were any important issues that

had not been covered. In most cases, the interviewee

recapped some of the more important issues at this point

but did not raise any new issues. This indicates that the

questionnaire covers the main points of interest with respect

to formal methods. Each interview lasted approximately 2 h.

The same interviewer conducted all the interviews. The

interviews were tape-recorded. It was felt that recording

the interviews prevented the interviewer from being

distracted by note-taking. It also meant that the intervie-

wees' opinions could be summarised and distilled with

greater consideration and care than would have been possi-

ble by taking notes `on the ¯y'. The tapes were analysed in

detail and the comments categorised and matched with like

comments from other interviewees. From this process a

table of summary notes was built up with rows representing

each point made by the interviewees and each column repre-

senting the summaries of a particular interviewee's

responses. The text of this report was written from the

summary table. Despite the careful analysis of the actual

conversation on the tapes, it is still possible that the authors

might misinterpret responses or inappropriately emphasise a

point. To guard against this the report was circulated to the

interviewees for review. A few adjustments arose from this

review stage but on the whole the interviewees agreed that

the report was an accurate representation of their views.

All the interviewees had at least some experience in using

formal speci®cations on full-scale products. Some had also

performed re®nement, model checking and veri®cation

proofs. For various reasons, only one company was using

formal methods to the same extent as previously but all

retained a capability or interest. The market sector varied

greatly, including commercial computing systems, safety

critical embedded systems and high street consumer

products. Table 1 lists the companies and Table 2 gives an

outline of their background and experience. At this stage of

investigation the wide spread of market sector backgrounds

is an advantage to the broad information gathering process.

In subsequent stages, less variability will be needed as we

focus more narrowly on selected issues. The companies are,

in most cases, the market leaders in their sector and the

interviewees are the technical experts within those compa-

nies. In several cases, the interviewees have published in the

area of formal methods. It is reasonable, therefore, to claim

that the interviewees are knowledgeable and experienced in

the use of formal methods. It might be argued that the inter-

viewees are all proponents of formal methods and the results

might therefore be a biased view. We believe that the

commercial pressures upon the interviewees would not

allow them to maintain an unrealistic stance. It was apparent

however that the market sector has a bearing on the stance

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±000 3

Table 1

Participating companies

Company Identi®cation in this report

(Wishes to remain anonymous) Interviewee A

IBM United Kingdom

Laboratories, Hursley Park,

Winchester, Hants

IBM

Marconi Electronic Systems;

Avionics Systems, Airport

Works, Rochester, Kent

Marconi

Philips Research Laboratories,

Crossoak Lane, Redhill, Surrey

Philips

Praxis Critical Systems,

Manvers Street, Bath

Praxis

Table 2

Main characteristics of contributors

Company Market sector Notations used Extent of use Approximate size

of systems (Kloc)

Current level

of use

Interviewee A Contractor with personal

experience

Z, VDM(some), CSP (some) Experience with large

and small applications

± Introducing formal

methods into a company

IBM Commercial computer systems Z, B Mainly speci®cation 50 At option of project

manager

Marconi Military embedded systems

(some safety critical)

B Full development

including re®nement

proofs, etc.

3 Completed case study Ð

bidding for contracts

Philips Consumer products Set theory and ®rst-order logic Mainly speci®cation 10 1 Isolated usage Ð

investigating

applicability

Praxis Safety critical systems Z, VDM, CSP (some), CCS

(some)

Some full

developments, others

speci®cation only

10±100 1 Continuing full-scale use

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

taken, with the safety critical areas having much more

compelling reasons for supporting the use of formal meth-

ods, and the others having a more guarded response.

Each interviewee was asked to de®ne a formal method.

Most answers indicated that a mathematical notation or

underlying theory was needed (one interviewee required a

precise syntax and semantics). Some required there to be

methods for manipulation and re®nement, others recognised

these as possible extensions but did not require them. It was

thought that some companies might have a looser de®nition

of formal methods. To test this the interviewees were asked

if they would include modelling languages such as UML.

All would not, although several interviewees suggested that

some parts of UML (e.g. state charts) are close to being a

formal notation. Some added that UML did not contain the

facilities to express the semantic details of the behaviour of

systems.

The formal methods that had been used by the intervie-

wees are as follows. Z is a speci®cation language developed

by the Programming Research Group at Oxford University

around 1980. It is based on axiomatic set theory and ®rst-

order predicate logic. B is a speci®cation and development

method designed by Jean-Raymond Abrial of B Core, UK. It

is a system for the formal development of software using the

notion of Abstract Machines. Abstract Machines are speci-

®ed using the Abstract Machine Notation (AMN) which is

based on the mathematical theory of Generalised Substitu-

tions. B is related to Z and supports the development of C

code from speci®cations. The Vienna Development Method

(VDM) is a notation and set of techniques for modelling

computing systems, analysing those models and progressing

to detailed design and coding. VDM has its origins in the

work of the IBM Vienna Laboratory in the mid-1970s.

Communicating Sequential Processes (CSP) is a notation

for concurrency, based on synchronous message passing

and selective communications, designed by Anthony

Hoare in 1978. Calculus of Communicating Systems

(CCS) is a mathematical model for describing processes,

mostly used in the study of parallelism. A CCS program,

written in behaviour expressions syntax, denotes a process

behaviour. Programs can be compared using the notion of

observational equivalence.

2.3. Results

2.3.1. The customer's viewpoint

The companies interviewed had very different market

sectors and this led to large variations in the answers to

questions about the customer's views on their use of formal

methods.

Marconi, being a UK defence contractor, often bids for

contracts with Def-Stan 00-55 as a mandatory standard [1].

Hence Marconi's use of formal methods is imposed by its

main customer (or at least by the regulatory authorities that

its customer has to satisfy). Marconi also supplies outside of

the UK, e.g. USA, and for these customers it is expected that

persuasion would be needed to convince them to accept

formal proof in place of other veri®cation methods such

as testing and reviewing.

Praxis also supply to the UK MoD and to other authorities

that are very safety conscious, such as aviation authorities. It

also supplies to other markets and ®nds that some of these

customers resist the use of formal methods because of the

barrier it creates between supplier and customer. Typically,

the customer will need to train some of its employees if it

wants to be involved in veri®cation and validation activities

during the software development.

The remaining interviewees felt that their customers

(which for IBM and Philips were internal) were usually

impressed by the use of formal methods and assumed that

they would lead to high quality products.

Where the formal speci®cations were used as interfaces to

customers, the customer's technical staff (who sometimes

needed special training) usually found formality helpful

because they knew the precise behaviour of the speci®ed

system. It was recognised that the audience may be

restricted by formality but this is the case for any technical

speci®cation.

Both IBM and Praxis commented that one of the main

barriers to the widespread use of formal methods is the

general acceptance that software is error prone. One inter-

viewee said, ªIf you want highly reliable software then

formal methods are the most cost effective way to produce

it, but if the customer will accept unreliable software then it

is cheaper not to use formal methods.º From the suppliers'

point of view, any subsequent re-work is either covered in

the initial price or is paid for by the customer as a main-

tenance contract.

IBM went on to say that some customers do not want to

be tied down to what they require, but would rather have a

vague speci®cation of requirements and hope the supplier

produces something over and above it than be forced to

address compromises in order to specify precisely their

requirements and then take responsibility for the system's

validity.

2.3.2. Impact on company

2.3.2.1. Quality assurance. Opinion on how formal meth-

ods affect quality assurance issues was uniform. All (except

one company that, independent of the method used, had

dispensed with its quality assurance function) agreed that

the quality assurance function is not changed. The auditors

may need to have some appreciation of the records that they

will be examining but this is true of any new method. They

did not feel that quality assurance personnel would need a

full understanding of the formal speci®cation notation. They

only need to satisfy themselves that the record has been

produced and that the right sort of people have veri®ed

and authorised it.

2.3.2.2. Consultancy and skills. Several companies had

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±0004

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

employed external consultants during the initial projects

that introduced formal methods to the company. This was

seen as necessary. Training was given to all staff involved in

formal methods. Generally a couple of weeks was found

suf®cient for the staff to assist in formal methods projects.

However, it was not thought feasible to train the existing

staff to a degree that they could successfully use formal

methods without expert guidance on hand until they had

built up some experience and practice.

Not many experienced modellers are required as the

majority of the project staff need to be able to comprehend

speci®cations and write detailed sections as directed, but do

not need to be able to create the overall structure of the

speci®cation.

One interviewee felt that external consultants, who are

typically extremely intelligent, would make any project

successful, no matter what method they used. This could

give a biased view in favour of formal methods. Similarly,

companies that use formal methods only recruit personnel

who demonstrate the ability to use formal methods, thereby

increasing the quality of their staff. Evidence of this was

provided by another interviewee who reported that his

company tended to recruit from research areas to ®ll vacan-

cies involving formal speci®cation. This ®ltering effect

inherent in the adoption of formal methods could be seen

as a bene®cial effect on the culture.

However, there can be detrimental effects if, having

altered the company's methods and culture, none of the

permanent staff are suf®ciently skilled to take over when

the consultants leave.

2.3.3. Impact on product

2.3.3.1. Reliability. Only IBM and Praxis had any

evidence of product improvement. IBM had found (based

on informally collected data) a 40% reduction in post-deliv-

ery failures compared to their own average product perfor-

mance. Praxis referred to published data which compares a

Praxis software product favourably with the industry aver-

age data. As with most case studies, the cause of this

improvement cannot be identi®ed with certainty to the use

of formal methods, since other factors such as culture may

be atypical, but it does provide a positive empirical indica-

tion of the possible bene®ts of formal methods. Of the other

interviewees, Marconi's experience was based on a study

which did not go into service, and Philips and Interviewee A

did not have personal knowledge of the relevant product

service histories.

There was, however, an implicit assumption from the

interviewees that the product would be more reliable. This

was indicated by comments such as, ªif you want software

that works, then the only cost effective way to do it is with

formal methodsº. This implies that formal methods produce

a level of reliability that may only be achieved at signi®-

cantly greater cost by using conventional methods. This

may be a subjective view but it is the view of those who

have used both formal and conventional methods in soft-

ware development.

2.3.3.2. Ef®ciency. Praxis had noted that the product code

was more ef®cient than the conventionally speci®ed

software. The precise and accurate nature of the

speci®cation makes the coding task straightforward and

the coder is less likely to build in redundant code. Note

that this observation is supported in the ®ndings of a

comparative study by Brookes et al. [3].

2.3.3.3. Functionality. Praxis also noted that the effort that is

needed in formal speci®cation tends to deter the

functionality growth that af¯icts many software systems.

2.3.3.4. Traceability and maintenance. The interviewees

were asked if the structure of the speci®cations is re¯ected

in the code. Generally, the answer was af®rmative and this

was thought to be bene®cial in aiding traceability between

the speci®cation and the code. Some noted that this

structuring of the code may not be the most ef®cient

implementation but that the traceability bene®t

outweighed this. Philips questioned whether the

speci®cation should in¯uence the structure of the code or

not. One view is that the speci®cation should not if it is at

the right level of abstraction to be a requirements document.

Another is that it would be bene®cial if the speci®cation

could impose structuring requirements, for example, to

improve re-use.

Two interviewees, Praxis and Philips, felt that the formal

speci®cation helped a maintainer to understand what

changes were needed and therefore to get them right.

Marconi felt that the speci®cations had little impact on

maintenance but that the B toolkit helped a lot in automati-

cally detecting the affected components and re-checking

them. IBM said that they do not normally use the documen-

tation for maintenance, although in one case, when they did

and it was a formal speci®cation, the project leader esti-

mated a 50% reduction in the cost of maintenance.

The interviewees were asked if they thought that formal

speci®cations help prevent the degradation of code structure

through maintenance and also whether the speci®cation

itself degrades through maintenance. IBM did not use or

maintain the speci®cations after delivery and therefore

could not answer. Interviewee A had not been involved in

the product maintenance stages. Marconi felt that the B-tool

was largely responsible for preventing code degradation

since it maintains the traceability from the speci®cation.

Philips thought that the formal speci®cation would help

prevent code degradation if traceability could be maintained

but that this had been a problem (see comments under Life-

cycle). Praxis thought that the formal speci®cation

prevented code degradation by supporting good practice

(i.e. changing the speci®cation ®rst when implementing

changes).

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±000 5

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

2.3.4. Impact on development

2.3.4.1. Development lifecycle. All agreed that there is no

change to the sequence of activities performed during the

software development lifecycle but the effort involved in

some of the stages is dramatically altered. The speci®cation

stages take a lot longer. However, everyone agreed that

generally the resolution of speci®cation problems discov-

ered during this stage was well worth the effort because

these problems would otherwise have arisen later during

the development, with increased re-work consequences.

Similarly, Interviewee A believed the primary bene®t of

formal speci®cations to be the improved analysis of the

problem domain that results from the process of writing

them. This leads to a better understanding of the require-

ments prior to starting a design which may be another reason

for the reduction in problems occurring later in the lifecycle.

Veri®cation stages, particularly testing, were much

reduced since far fewer errors remained to be discovered.

The net effect was that the overall timescales were usually

very similar or possibly better for the development that

started with a formal speci®cation.

However, Philips found that formal speci®cation did not

®t easily with the iterative lifecycle used for some products.

Since Philips do not normally have an end-customer

performing the requirements speci®cation role, they have

to develop the requirements themselves. Also, they typically

have very short timescales to develop new products and

often re®ne the requirements as the product is being devel-

oped. The time consuming ®rst phase of formally specifying

to resolve the requirements issues does not ®t into this type

of lifecycle easily. In fact, Philips had examples where the

product was ®nished before they could complete the speci-

®cation. To address this, the company are looking at differ-

ent levels of speci®cation formality appropriate to different

product lifecycles.

Formal speci®cation was also found to aid the veri®cation

testing process. Marconi, Philips and Praxis all reported that

testing was more ef®cient and more effective when a formal

speci®cation was available. This was the primary driving

force for improving speci®cation techniques, as far as

Philips were concerned. From the formal speci®cation, it

is easy to derive test cases and some companies had gone

as far as automating this process. Marconi had used B speci-

®cations to generate expected results automatically and

Philips had generated test cases from state charts automati-

cally.

2.3.5. Size of system

A guide to the size of the systems developed using formal

methods is shown in Table 2. The ®gures should be taken as

a rough guide only due to possible variations in the measure-

ment of a line of code and in the programming languages

used. However, they indicate that formal methods were used

on systems typically in the region of tens of Kloc. The

interviewees were asked if large systems were a problem

when using formal methods (compared with any other

method). Answers varied somewhat but, generally, the

impression was that size is not a major obstacle any more

than other methods. Marconi and Praxis indicated that prov-

ing becomes problematic with large systems and that the

proof checkers and, to a lesser extent, model checkers

may not scale up very well. For formal speci®cation,

though, IBM said that large systems are dealt with by break-

ing the system down into `encapsulated' sub-components

that could be dealt with separately. Marconi, using the B

toolkit, felt that the system speci®cation was dif®cult to

cope with due to the fact that it could not be subdivided

but that, as soon as the design was re®ned, the system natu-

rally was divided into encapsulated sub-components. It

appears that the concept of breaking down the system via

encapsulation is crucial in dealing with industrial scale

problems.

2.3.6. Understandability

The interviewees did not feel that there were any signi®-

cant understanding problems with formal notations

(although some commented that this may be because they

recruit people who will understand them). The notations

were not seen as being a problem in this respect. In fact

Praxis felt that formal speci®cations should be easier to

understand than code.

Several interviewees said that it is essential to comment Z

with English text to explain the structure of the model. This

is not so necessary with B as it is more structured. Most

companies impose some styling (e.g. lexical) rules on top of

the formal notation in order to improve the consistency of

style throughout the organisation, although the general

impression was that this was not a major factor in under-

standability. Interviewee A had used a `friendly' style of Z

(a reduced subset avoiding the less intuitive constructs and

annotation in a light style to enhance the friendly feel of the

document) and felt that it had been bene®cial to understand-

ing for unpractised readers.

Only one speci®c feature that affects understanding was

mentioned. Praxis had found that over-reliance on invariants

can be confusing. It is sometimes better to explicitly state

things that change during an operation rather than rely on

implicit changes as a result of satisfying a state invariant,

even if this is, strictly speaking, redundant.

The area that the interviewees did think was dif®cult was

in creating the formal speci®cations. IBM and Praxis had

both employed expert consultants to facilitate this stage.

Marconi said that the most highly skilled or experienced

people were needed to do the initial or higher level structur-

ing, although the others could then cope with adding in the

detail. IBM said that the ability to create the right (i.e.

useful) model requires the most skill and experience. It is

too easy to create a model that might be consistent in itself

but which does not contain the abstractions that are useful in

describing the problem.

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±0006

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

2.3.7. Tools and notations

The interviewees were not questioned speci®cally about

tools but during the course of these discussions, the B toolkit

stood out as the only tool that had been used to any extent.

IBM had started with Z but switched to B so that the B

toolkit could be used. Marconi's entire experience was

based around the B toolkit and they were very pleased

with it in most respects. They relied on it heavily and

found that it helped in tracing, proving and maintenance

work. Praxis said that there were few industrial strength

tools but agreed that the B tool is an exception. A Praxis

interviewee thought that B was not as suitable as Z for the

system level speci®cation. However, Marconi have used B

for all levels of speci®cation.

Philips thought that tool availability has a big impact on

the decision to use certain speci®cation techniques. In parti-

cular, tool support to maintain traceability between speci®-

cations, implementation and test cases is an area of concern.

Interviewee A was in the process of installing the UML as

a company-wide documentation language. They were

anticipating using formal speci®cation in conjunction with

the UML. Philips was also adopting the UML in some

sectors of the company.

3. Conclusions

As this is a ®rst stage, opinion gathering exercise, we are

wary of drawing any ®rm conclusions. The results described

above are considered indicators for further investigations.

However, we have summarised some of the main opinions

recorded. Formal methods are worthwhile in terms of

improved quality of software with little or no additional

lifecycle costs, but only when compared to a rigorous devel-

opment lifecycle where the cost of software errors is high. If

the market does not demand high quality software, then it is

more dif®cult to justify their use. The introduction of formal

methods affects a company's workforce, processes and

culture through effects such as skills ®ltering and consul-

tancy syndrome. It may also impact on the relationships

with a customer through kudos, and communication impli-

cations. Overall the effects are usually bene®cial but there

can be some problems to overcome. There is no real

problem with understanding the speci®cations Ð given

suitable training they are no more dif®cult to understand

than programs. The dif®cult part is creating the speci®cation

as appropriate modelling requires practice and skill. Encap-

sulation is important within the context of large systems.

There is a lack of industrial scale tools, the B-toolkit being

the only suitable toolkit.

4. Future work

Many interesting points have arisen from the structured

interviews. We have selected two hypotheses for further

investigation. The ®rst is a comparatively straightforward

hypothesis that is suitable for formal experimentation in a

laboratory setting. The second is a more complicated issue

and will require ingenuity in order to facilitate further

empirical investigation.

4.1. Understandability

One of the areas that was expected to be rich with discus-

sion was that of understandability. It is often said that one of

the problems with formal notations is that they are dif®cult

to understand and that highly trained mathematicians are

needed to read them. However, the interviewees did not

support this view. This is signi®cant because it con¯icts

with popular opinion. All the experienced interviewees

agreed that typical software engineers have no real dif®cul-

ties with understanding formal notations. As one intervie-

wee put it, formal speci®cations are no more dif®cult to

understand than code. We intend to design and conduct an

experiment to test this, by writing a speci®cation using Z

and implementing it in a programming language. A close

correspondence will be maintained between the speci®ca-

tion and the implementation, both in functionality and in

structure. Subjects will be given either the formal speci®ca-

tion or the code and their understanding will be tested using

questionnaires. The effect of bias factors, such as whether

the structure is more appropriate for one of the representa-

tions, will require consideration when assessing the results.

4.2. Modelling

The interviewees thought that the dif®culties with using

formal speci®cations were in ®nding the useful abstractions

from which to create models. This is surprising, because the

same engineers are practised at creating models of problems

and solutions using less formal notations as a transitory step

in programming. The criteria for selecting a model on which

to base a formal speci®cation may differ from those of less

formal design, nevertheless, one would expect similar skills

to be applicable. One is led to suspect that there may be

something lacking in the available notations and methods

compared to informal program design methods.

Comparing the available formal speci®cation methods

with informal program design methods, we ®nd that

program design methods concentrate on structure. Their

aim is to provide the engineer with mechanisms for visua-

lising the structure of problems from different viewpoints.

Engineers are encouraged to manipulate the entities in their

models in order to try different abstractions. The tools

supporting program design methods are designed to enable

them to build up an outline model of the problem in their

mind. In contrast, if we look at formal methods, they

concentrate on detailed behaviour rather than on problem

structure. This is what formal notations are designed to

tackle, in accurate precise detail. Formal notations do not

provide the modelling constructs, let alone tools, that are

available for informal notations. The engineer attempting a

formal speci®cation is faced with the need to make dif®cult

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±000 7

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

and critical choices of model structure but has little support

for such work.

Our hypothesis is that formal speci®cation would be

easier and of better quality if an informal transitory model-

ling stage were performed, as is done in program design.

Fraser et al. have described such transitory modelling stages

[8] and Bruel and France [4] have investigated the use of

UML as an aid to producing formal speci®cations. In order

to investigate this hypothesis further, we will look at the

effect that such a transitory stage has on the speci®cation

process.

The aim will be to provide a method by which the outline

model of the formal speci®cation can be built using

constructs and tools similar to the informal modelling meth-

ods. We shall attempt to demonstrate empirically that a

suitable notation and tool to aid the modelling process has

a signi®cant bene®cial effect. The hypothesis will be tested

by comparing measures of effort and quality for the tool

assisted, and unassisted, by the creation of a formal speci-

®cation.

In order to support the ®ndings of the formal experiments,

case studies will be carried out with collaborating industrial

partners. Several companies who have an interest in formal

methods are using, or are in the process of introducing,

informal modelling tools and will bene®t from specifying

parts of their systems in the assisted formal notation.

Other companies who have more extensive experience

of formal notations may also bene®t from using the

assisted formal notation for comparison with their

previous experiences. This would give contrasting

perspectives from the points of view of experienced

and novice formal methods users.

5. Summary

We have carried out a survey of the opinions of practi-

tioners who use formal methods for software speci®cation

and development. The size of the sample is small (®ve

companies were visited) but covers a range of different

market sectors including commercial computing systems,

defence and avionics systems, and consumer products.

The interviewees are experienced experts in the use of

formal methods in real systems. The results cover a wide

range of issues including the impact on the company, its

products and development processes as well as pragmatics

such as scalability, understandability and tools. The survey

is the ®rst stage of a sequence of empirical assessments that

will assess some of the understandability problems and

bene®ts that have been raised. The work that follows on

from this survey will focus more narrowly on these areas

and will involve formal experimentation and case studies. In

particular, we will investigate empirically whether informal

modelling methods have a signi®cant effect on the effort

involved in producing formal speci®cations and on the qual-

ity of the resulting speci®cation.

6. Uncited References

[6]. [15]. [16].

Acknowledgements

The authors wish to acknowledge the support of UK

EPSRC which has funded EMPAF (GR/L87347) and a

PhD studentship for this work. We would also like to

thank the companies and individuals who participated in

this survey without whom this work would not have been

possible.

Appendix A. Questionnaire

(1) How would you de®ne a formal method?

(2) What experience has the company had with formal

methods?

(3) Which formal methods have you used most?

(4) How big are the systems that you use formal methods

on?

(4a) Does the size of the system affect the practicality of

using formal methods?

(5) How do formal methods affect the software life cycle?

(6) How do formal methods affect software quality assur-

ance activities (records, audits, certi®cation, etc.)?

(7) What are the bene®ts that you have found?

(7a) Are they measurable in terms of the quality of soft-

ware products?

(7b) Are they measurable in terms of software process

improvements?

(7c) Has any quantitative data been collected that demon-

strate the bene®ts?

(8) What problems have been encountered?

(8a) How do the problems affect the quality of software

products?

(8b) How were they overcome?

(9) Have any understanding dif®culties or bene®ts been

found?

(9a) If so, has this affected the correctness and veri®ca-

tion of the resulting code?

(9b) Is there any pattern to the misunderstanding i.e.

particular constructs or styles?

(10) Do you use any style rules or codes of practice when

writing formal speci®cations?

(10a) How do they affect understanding (if at all)?

(11) Have you found that the structure of the speci®cation

model in¯uences the implementation?

(11a) Is this good or bad?

(12) How have formal speci®cations affected mainte-

nance issues?

(12a) Do the formal speci®cations help to determine the

correct code change?

(12b) Are the formal speci®cations dif®cult to update?

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±0008

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden



UNCORRECTED P
ROOF

Are they kept up to date?

(12c) Do the formal speci®cations prevent (or worsen)

degradation of the code structure through mainte-

nance?

(12d) Does the structure of the speci®cations themselves

deteriorate through maintenance?

(13) How do customers view the use of formal methods?

(13a) Are formal documents used as an interface to custo-

mers?

(13b) If so, how does this affect the understanding of the

system by the customer?

(13c) Has it affected the system validation and accep-

tance stages?

(14) Is there anything we have not covered that you

would like to talk about?

References

[1] Ministry of Defence: Def Stan 00-55, Requirements for Safety

Related Software in Defence Equipment, issue 2, 1997.

[2] J. Bowen, M. Hinchey, Seven more myths of formal methods, IEEE

Software 12 (4) (1995).

[3] T.M. Brookes, J.S. Fitzgerald, P. Larsen, Formal and informal speci-

®cations of a secure component: ®nal results in a comparative study,

FME '96: Industrial Bene®t and Advances in Formal Methods,

Springer, Berlin, 1996 (pp. 214±227).

[4] J. Bruel, R. France, Transforming UML models to formal speci®ca-

tions, Proceedings of the OOPSLA '98 Workshop on Formalising

UML. Why? How?, 1998.

[5] J. Daly, Replication and a Multi-Method Approach to Empirical Soft-

ware Engineering Research, PhD Thesis, University of Strathclyde,

1996.

[6] J. Draper, H. Treharne, T. Boyce, B. Ormsby, Evaluating the B-

Method on an Avionics Example.

[7] N. Fenton, How effective are software engineering methods, Journal

of Systems Software 22 (1993) 141±146.

[8] M.D. Fraser, K. Kumar, V.K. Vaishnavi, Strategies for incorporating

formal speci®cations in software development, Committee of ACM

37 (10) (1994) 74±86.

[9] R. Glass, The software research crisis, IEEE Software (1994) 1994.

[10] A. Hall, Seven myths of formal methods, IEEE Software 9 (1990) 11±

19.

[11] B. Kitchenham, Evaluating software engineering methods and

tools Ð part 1, ACM SIGSOFT Software Engineering Notes

21 (1) (1996).

[12] B. Kitchenham, Evaluating software engineering methods and tools

Ð part 2, ACM SIGSOFT Software Engineering Notes 21 (2) (1996).

[13] B. Kitchenham, S. Linkman, D. Law, Critical review of quantitative

assessment, Software Engineering Journal (1994).

[14] P.B. Pannell, D.J. Pannell, Introduction to Social Surveying: Pitfalls,

Potential Problems and Preferred Practices, SEA Working Paper 99/

04, 1999 http://www.general.uwa.edu.au/u/dpannell/seameth3.htm.

[15] S. P¯eeger, L. Hatton, Investigating the in¯uence of formal methods,

IEEE Computer (1997).

[16] J. Wynekoop, N. Russo, Studying system development methodolo-

gies: an examination of research methods, Information Systems Jour-

nal 7 (1997) 47±65.

C. Snook, R. Harrison / Information and Software Technology 00 (2000) 000±000 9

Information and Software Technology ± Model 5 ± Ref style 1 ± AUTOPAGINATION 2 24-11-2000 11:33 IN6002 GLAlden


