

Grid Data Services – Relational Database
Management Systems – Version 1.0 –

05Jul2002

Authors
Brian Collins – collinsb@uk.ibm.com (1)

Andrew Borley – borley@uk.ibm.com (1)
Neil Hardman – nhardman@uk.ibm.com (1)

Alan Knox – knox@uk.ibm.com (1)
Simon Laws – simon_laws@uk.ibm.com (1)

James Magowan – magowan@uk.ibm.com (1)
Manfred Oevers – manfred_oevers@uk.ibm.com (1)

Ed Zaluska – zaluska@uk.ibm.com (2)

Addresses
(1) IBM United Kingdom Laboratories

Hursley Park
Winchester
SO21 2JN

United Kingdom

(2) Dept. of Electronics and Computer Science
University of Southampton

Southampton
SO17 1BJ

United Kingdom

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page ii –

Notices

Copyright
© Copyright IBM Corp. 2002

Versions
Date Version Changes Status Approver
05Jul2002 1.0 First Version

(Working
Draft)

Unresticted
Public

Matrix Project
Manager

Distribution List
Version Organisation Distribution
1.0 GGF DAIS Working Group

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 1 –

Abstract
This document is for information and should be viewed as a working draft. It
describes our current thinking on Grid Data Services for access to Relational Database
Management Systems (RDBMs).

The objective of this document is to allow critical validation of our approach and
proposals in the wider Grid community through the GGF DAIS Working Group. We
plan to revise this document for GGF6 based on input from the community.

We start with some background to our proposal and describe the current scope and
activities we are undertaking and put those into the context of other Grid activities,
which are closely related to ours. We then describe our approach, which
fundamentally begins with gaining an understanding of the user scenarios, and the
generic patterns that arise from those. We then describe our current thinking on
interface definitions and some of the choices with which we are faced. We finally
describe the implementation activities we are undertaking, in parallel with the
scenarios work, through prototyping experiments.

The thinking of the Grid and Web Services communities are converging, as evidenced
by OGSA, however decisions have yet to be made in several key areas, for example
security, stateful services, and service discovery. This means that we have to be aware
that the environment within which we are working is evolving and that we will have
to adapt our proposals accordingly.

Background

Relationship to other Activities
The Open Grid Services Architecture – Data Access and Integration Services project
(known as OGSA – DAI) [1] is an initiative of the UK National eScience Centre[5],
[6], and [7].

In this project the study of Grid data requirements [9] has been divided up into work
packages [1], [10], and Error! Reference source not found.. Work package 6
(hereafter referred to as Matrix) deals with the integration of RDMS into Globus 2.
However, the aim of the OGSA-DAI project in general is to provide an overarching
framework that integrates access to RDBMS with access to XML as Grid Data
Services under OGSA [3] and [4]. The architecture and design of Matrix must
therefore be considered in the context of the ongoing work on OGSA and, more
importantly, the products of the other OGSA-DAI work packages. In this way Matrix
can define a migration path and protect the investment of those Grid projects current
committed to Globus 2, but who may consider moving to OGSA once a stable release
is available.

Our work has been progressing in parallel with the Architecture activities of Work
Package 2 [47]. It is noted that already there is much common thinking between the
Architecture and our current proposal even though they were initially developed
independently. The longer-term objective is to rationalise any differences, to ensure

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 2 –

that Matrix is viewed as a “plug-in” to the overall Architecture, and to ensure
consistency of interface and operation when compared to the other OGSA-DAI work
packages [28], [32], [33], [34], and [47], other related Data Access projects [23], [24],
[25], [26], and [36], and other RDBMs proposals [15] and [35].

The primary sources used in the generation of this document were Technical Reports
from Globus [2] and [3]; a proposal for supporting Databases on the GRID [8]; a
detailed requirements analysis [9]; initial scope and functionality proposals [10], [11],
and [32]; and an initial architecture and design proposal [12]. In addition inputs from
the following technical documents and reviews on OGSA [4], [13], and [14], and
Query Languages [18], [19], [20], [29], [30], and [31], Transformations [44], SSL
[45], and Web Services Security [46] were also used.

Scope and Objectives
The goals of the whole OGSA – DAI project as detailed in [1] are fourfold:

1. To produce a recommended specification for data access and integration
services for OGSA.

2. To produce reference implementations of OGSA services for accessing XML
data repositories and relational databases.

3. To produce a recommended specification for additional OGSA services
required by the e-Science communities.

4. To produce data integration middleware which allows access to existing forms
of data repository through Globus-2 (with compatibility for Globus-3).

Matrix is divided into two main phases

Phase 1 – Core Grid Services Prototype
The aim of this phase is to provide a prototype implementation to allow users of the
Grid to access existing data sources through the Globus-2 API. However, it is the
intention that the prototypes produced by this phase will be compatible with both
Globus-2 and the emerging Globus-3. We believe that this compatibility will be
crucial as applications migrate between the Globus versions.

This work will only support RDBMs which are enabled for JDBC [16], [17], and [27]
and testing will be limited initially to MySQL, Oracle and DB2 and which, at
minimum, support the SQL92 standard. This work will not support integration across
multiple, heterogeneous RDBMs, but it could support access to an already federated
environment through JDBC. The Globus-2 integration will be limited to the Globus
Security Infrastructure (for access and authentication) and to GridFTP (for data
delivery).

During this phase many simplifying assumptions will be made that would prevent
widespread deployment of the prototype – the aim is to generate a “proof-of-concept”,
not a widely used middleware service.

During this phase software will be developed on the assumption that the code may not
persist for use in later versions. The prototype will be developed on the assumption
that it will be deployed for the purpose of evaluating the performance of the

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 3 –

functionality provided. The following is what we currently propose will constitute this
Phase:

1. The publication and review within the OGSA-DAI project of a proposed
architecture and design for a set of Core Grid Services to support access to
RDBMs. The Core Grid Services will be designed to:
• support any RDBMs which is enabled for JDBC.
• provide stateful services.
• provide high performance delivery of large datasets using a number of

protocols (for example, SOAP/HTTP and GridFTP).
• conform to the OGSA specification.
• abstract the OGSA specification to allow Globus-2 integration

2. The development, testing and documentation of a prototype implementation of
the set of Core Grid Services which will:
• be based upon Globus-2 (specifically using GSI and GridFTP).
• be implemented by abstracting the OGSA/Globus-3 specification to allow

both Globus-2 integration and to facilitate migration to Globus-3/OGSA.
• provide a Java API for application developers
• be available for testing with Oracle, DB2, and MySQL.
The Core Grid Services will not be optimised to provide high performance
delivery of large datasets during this phase (see Phase 2 – Full Grid Services
Reference Implementation below).

3. Evaluation by early adopter Grid projects

We would envisage that the deliverables from this phase would be superseded by the
deliverables from the subsequent twelve months phase. However, all attempts would
be made to provide a migration path for any early adopter applications to the next
version.

Phase 2 – Full Grid Services Reference Implementation
The aim of this phase is to provide reference implementations of the prototypes which
were developed in Phase 1. However, a revised Scope and Objectives for Phase 2 will
be one of the deliverables from Phase 1. A key input to that will be the review and
evaluation through the GGF DAIS Working Group and especially by the early adopter
projects. The following is the current view of what might constitute this phase.

1. Continuing research and information gathering on relevant activities within
Grid and related areas such as Web Services.

2. Publication and external review of a reference architecture and design for a set
of Full Grid Services to support access to RDBMs. The Full Grid Services will
be designed to:
• support any RDBMs which is enabled for JDBC.
• provide high performance delivery of large datasets using a number of

protocols (for example, SOAP/HTTP and GridFTP).
• progress towards a Grid Services Standard through the GGF DAIS

Working Group.
3. Development, testing and documentation of a reference implementation of this

set of Full Grid Services will

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 4 –

• be based upon Globus-3 (specifically utilising GSI and GridFTP) with
backward compatibility with the prototype Globus-2 implementation (see
Phase 1 – Core Grid Services Prototype above) where possible.

• provide a Java and possibly a C API for application developers.
• be tested with Oracle, DB2, and MySQL.
• will be optimised to provide high performance delivery of large datasets

using a number of protocols (for example, SOAP/HTTP and GridFTP)
• be evaluated by early adopter Grid projects.

Introduction
This paper discusses 'Matrix', a middleware project which plans to provide
comprehensive and efficient database access in a Grid environment.

The recent widespread interest in Grid computing [2] has identified several research
areas of considerable interest to both the e-Science community and also more
generally the wider e-Business marketplace. One such research area is the Grid-
enabled access of Relational Database Management Systems (RDBMS), with
particular emphasis on two different modes of access:

• The ability to reference very large databases and very large data items.
• The ability to reference a number of geographically distributed databases in a

single Virtual Organisation [2].

Much of the existing Grid work to date has, from necessity, incorporated RDBMS
facilities on an ad hoc basis, rather than establishing a coherent environment that
would be applicable over a range of projects. The EU-funded DataGrid project [36]
plans to implement such an access environment, albeit with a restricted range of
facilities.

The work reported concentrates on the requirements analysis of the necessary
infrastructure, with an emphasis on deriving a general solution which will be
applicable both to current Grid systems based on Globus Toolkit 2 and also the future
Open Grid Service Infrastructure/Interfaces (OGSI) under development by the OGSI
working group of the Global Grid Forum [37]. OGSI has developed out of the Open
Grid Services Architecture (OGSA) specification [3].

Approach
This paper documents a work in progress. As we have taken a top down approach to
this task we have focused our efforts to date on identifying the requirements for
RDBMS access in the Grid in the form of abstract scenarios. In order to understand
the implications of these requirements there is an ongoing prototyping exercise. The
ultimate deliverable is the specification of the interfaces that a user of the service will
use. Thus the approach can be visualized as in Figure 1.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 5 –

Scenario Patterns Interfaces Implementation
Progress To Date

Figure 1 – Top down approach

In this figure the curved progress line demonstrates that working from the top the
focus has been on capturing scenarios and on considering their implications through
prototype implementations.

Scenarios and Patterns

Requirements
Understandably, there are many sources of requirements for this project. There are
many e-Science projects that rely on data sharing and hence data access in the grid
environment, for example, AstroGrid [23] and MyGrid [21]. The European DataGrid
project [36] is also facing these problems and has made significant progress in
developing solutions. All of these activities provide requirements to this project.

Following the major requirements study by Dave Pearson [9], we have chosen to
enumerate requirements in terms of the abstract scenario patterns that the software
must support. The scenario patterns considered in this design are described in more
detail in a separate document [38].

In the first stages of our work we are concerned primarily with supporting query and
metadata operations on remote databases. On the face of it this sounds like
straightforward database access using existing techniques. However this gives us the
platform to progress to more complex scenarios and address the isolation and
subsequent integration of query and delivery services.

This is important as the project must support and satisfy wider architectural criteria,
i.e. the need to support different source data types, data replication, data federation
etc. In particular we must deliver an attractive proposition for users of the Grid. We
must provide a solution that can be used in the simplest scenarios with little effort
required in installation and configuration. It should also provide a framework that
allows “power” users to tune and extend its modes of operation.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 6 –

Scenario Capture Process
The process of identifying the scenarios that form our requirements statement is
iterative.

Identify
abstract
scenario
patterns

Review
with
early
adopter
projects

Order and
prioritize
scenario
patterns

Identify test
scenarios
pertinent to
early
adopters Test design

against patterns
and early
adopter
specifics

Figure 2 – The scenario capture process

In this process Scenarios represent real world application-specific descriptions of
RDBMS access mechanisms. Scenario patterns are abstract patterns for data access
which are derived from the real world scenarios but which are not themselves
application specific.

The scenario patterns identified to date have been categorized using a scheme based
on that proposed in [8].

Meta Data (M) Query – Retrieve (R)

Query – Update (U)

Bulk Load (B)

Transformation (T)

Notification (N)

Scheduling (S)

Accounting (A)

Security (SEC)

Data Management
(DM)

High Level (H)

Vertical Horizontal

Error (E)

Figure 3 – Scenario Pattern Categorization

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 7 –

“Vertical” and “horizontal” in figure 3 distinguish fundamental scenario patterns
(vertical) from more general support patterns (horizontal) that could apply to several
of the vertical patterns.

In total 42 scenario patterns have been identified to date covering all of the categories
in figure 3. Many of these scenarios identify distinct modes of operation, while others
simply represent variations on a theme.

The key actors in the patterns are Matrix, Analyst and Consumer. These roles account
for patterns where some query against a data source is constructed and refined by
some party (Analyst) with the intention that the results of the final query are sent to a
third party (Consumer) for processing. Scenario patterns where the Analyst and the
Consumer are one and the same are essentially a special case.

Given below is a selection of example scenario patterns (identified R1, R2, R10 and
R21) taken from our initial studies that provide the most important modes of
operation that we are currently considering.

Scenario Pattern R1
 “Select a small number of rows each with a small volume of data returned directly to
the calling process”

Registry

Analyst /
Consumer Matrix

Publish
Find

JDB

Query Spec

Result Data

Figure 4 – Scenario Pattern 1

Some mechanism is assumed to publish the Matrix service to a registry, which can
then be searched by the user to discover how to access the correct service. The user
(shown as 'Analyst/Consumer' in the diagram, because in this scenario pattern these
two functions refer to a single user) issues a query specification to the Matrix
infrastructure, which interrogates the RDBMS and returns the resulting data directly
to the user. The same model also supports several of the metadata scenarios described
in the scenario patterns document [38], returning metadata rather than the actual data.

Scenario Pattern R2
“Select from a database table that contains references to external information. This is
often the case in scientific Grid applications where the database tables hold metadata
about images or other data sets held externally to the database. The external reference
is returned as part of the resulting information.”

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 8 –

Registry

Analyst /
Consumer

Publish
Find

Query

Result reference

Retrieve data via reference

Result data

Matrix

Figure 5 – Scenario Pattern R2

In this scenario pattern, the RBDMS returns a reference to the actual data. The
Analyst may access this data using the returned reference via Matrix. Direct access to
the data by the Analyst to the data is not considered.

Scenario Pattern R10
“Third party or parallel transfer. A select with a large volume of data to be returned
indirectly, i.e. to a Consumer, which could be a file system, replica manager or
another service. The Consumer is given authority to access the retrieved data set and
the original requester is provided with a reference to the delivered data set.”

Registry

Analyst
Matrix

Publish
Find

Query/Delivery Spec

Status

Consumer

Delivery
initiation/
Credential
delegation

Status Request

Status

Delivery Request

Delivery

Delivery
Ref

Figure 6 – Scenario Pattern R10

In this scenario pattern, the user function is split into 'Analyst' (the query specifier)
and 'Consumer' (the data user). The Analyst may need to obtain a reference from the
Consumer before the query can be sent (together with the delivery specification) to
Matrix. The result returned to the Analyst is the status of the request. When the data
becomes available, the Analyst can notify the Consumer, which can then request
delivery (monitoring progress with explicit status request messages). Alternatively,
the Consumer could be designed to monitor the status of the initial query from the
outset.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 9 –

Scenario Pattern R21
“Return metadata directly to the user, but deliver the result set to a third party. (Note –
In the AstroGrid project the most common mode of usage is expected to be data
placed on an FTP server.)”

Registry

Analyst
Matrix

Publish
Find

Result
meta data

Query/Delivery Spec

Consumer
(FTP Server)

Delivery
Ref

Status Request
Status

Delivery Request

Delivery

Delivery
initiation/
Credential
delegation

Figure 7 – Scenario Pattern R21

The essential difference between this scenario pattern and R10 is that the metadata
(rather than just the status) is returned to the user, who will then access results as
required directly from the FTP server.

Other Scenarios
In addition to the examples given above, the initial analysis demonstrated that there is
a wide range of potential requirements to be satisfied - for example:

• Translation of query or results.
• Control over maximum size of result set or query execution time.
• Selection of alternative delivery mechanisms (e.g. stream or FTP).

These are documented in the scenario patterns document [38].

Initial Matrix functions
Analysis of the scenarios we have collected has led us to consider the Matrix service
as comprised of three groups of functions.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 10 –

Registry

Analyst
Matrix

Consumer

Transform

Delivery

Query
RDBMS

Figure 8 – Key functions

The function of Matrix splits up into three areas:

• Query – This relates to the execution of SQL against a relational database.
• Transform – Conversion of the retrieved data into a new format. Examples of

transforms might be data compression and application level encryption.
• Delivery – Movement of the retrieved data to one or more Consumers.

These functions are referred to later in this paper as QTD.

Interfaces

Discovery
As yet we have not defined the Matrix metadata that will be published to ensure
efficient discovery. It is unclear which of many registries will be used and this aspect
will be addressed later in the project.

Security
The options for securing a Matrix Service at the Transport level are Secure Sockets
Layer (SSL) and Grid Security Infrastructure (GSI) [39]. Web Services Security [40]
offers the option of application level security. Each of these is capable of meeting the
authentication (the user must have valid Grid credentials), confidentiality (security of
data in transit) and integrity (the data received by the user must be what was sent by
the database) requirements for the service.

There is an additional requirement of authorization: a user with a valid Grid credential
must be authorized to access the target database in some role. This requirement is
addressed by mapping Grid credentials to user IDs in the target database. This
operation can either be performed explicitly within the Matrix system by maintaining
a suitable map at the Matrix node, or can be implicit with the system by making use of
the mapping of Grid credentials to user IDs provided by GSI in the file /etc/grid-

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 11 –

security/grid-mapfile. The implications of a single instance of the Matrix service
managing multiple databases needs to be considered carefully before adopting the
latter approach.

The Spitfire (European DataGrid Work Package 2) project [36] has implemented a
security architecture based on transport-level SSL security and mapping of Grid
credentials to database roles. This implementation has been developed with reuse in
mind and could be applied for Matrix.

State
A stateful service allows the results of a query against the database to be cached close
to the database for subsequent queries or delivery (possibly delayed) to a third party.
This will be a requirement for example if it is important that the data delivered is
identical in every respect to the data queried. The implication here is that the database
node must manage a number of sets of results for an indefinite time. Both the number
and size of result sets may be large and the scalability of this solution is questionable.
The alternative is to leave data in the relational database and accept that updates may
occur between query time and delivery time.

There are three approaches to resolving the issue of state:

• Stateless – We ensure through the design of our interfaces that there is never
any need to hold state.

• Non-OGSA Stateful – Here we do not assume the existence of any Grid
toolkit implementing OGSA and we address the issue of state ourselves

• OGSA Stateful – We make use of a Grid Service Handle (GSH) and allow the
OGSA compliant infrastructure to manage the state for us.

We see Matrix as evolving from Stateless to Non-OGSA Stateful to OGSA Stateful
over time, as Globus Toolkit 3 (OGSA implementation) becomes more widely
adopted and replaces Globus Toolkit 2.

Below we consider state using the example where we have an Analyst who wishes to
make a query and have the results of this query returned to a separate Consumer.

Matrix
JDBC

Query Spec

Result Data

Analyst

Consumer

Refined
Query Spec Refined

Query Spec

Result Data

Figure 9 - Stateless

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 12 –

With a stateless approach the Analyst would send the delivery specification to Matrix,
which carries out the query and returns the results to the Analyst who then forwards
them to the Consumer. This is not ideal especially if the results are large but could be
improved by sending a query specification to Matrix requesting metadata to be
returned to the Analyst. At this point query refinement can take place until a
satisfactory query has been developed, which can then be sent to the Consumer. The
Consumer can issue the new query to Matrix, which executes the query and returns
the results.

Matrix
JDBC

Query Spec

Result Data

Analyst

Consumer

State Key
& row,col
for delivery

Result Data
& State Key

State
Table

State Key
& row,col
for delivery

Figure 10 – Non-OGSA Stateful

In a Non-OGSA Stateful, Matrix would maintain a state table accessed using a state
key. The query specification sent by the Analyst results in a state key as well as any
data requested for return. The state key can then be passed to the Consumer with an
indication of the data sought. The Consumer can access Matrix using the state key and
obtain the data required.

Matrix
Factory

Create Instance

Result Data

Analyst

Consumer

Matrix
Instance
GSH

Matrix Instance
GSH

Consumer
GSH

Matrix
Instance

Handle
Map

GSH
GSR

Query Spec

Status

Figure 11 – OGSA Stateful

With the OGSA stateful approach, the infrastructure will maintain the state. The
Analyst obtains an instance of the Matrix service (represented by a GSH) and sends a
query specification to it. The GSH enables the Consumer to access the instance and
the Consumer can send its own GSH to Matrix for delivery of results. There are of
course variations on this theme; for example, the Analyst could provide the handle to
the Consumer as part of the original query.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 13 –

It is important to note that the Consumer must have appropriate credentials to make
the request on the Matrix service or for the Matrix service to access the Consumer end
point.

Issues for handling large data sets
One of the important requirements for a system to access databases on the Grid is the
ability to handle large amounts of data efficiently. The data can be in the form of a
result set with a small number of rows, each containing a large object (LOB) or a
result set with a large number of rows without LOBs or a combination of both. It
follows from this requirement that unnecessary copies of the data set should be
avoided.

We have identified query, the possible transformation of the result and delivery of the
resulting data as key services that a Grid data service should support. These three
independent functions have been separated into three independent services.

 Transform

 Delivery

Analyst

Consumer

 Query
ResultHandle

Query

ResultHandle
TransformHandle

TransformHandle

TransformHandle

Result

Figure 12 – Handling Data Sets With Distinct Service Instances

However this introduces a possible conflict with the requirement not to copy data
unnecessarily if the three services are implemented on separate machines. Once a
query is executed against the database the resulting data set has to be cached by the
query service in order to present a single state image of the database to the requester.
This in itself presents a scalability issue, as similar requests will potentially duplicate
data in the cache. Since the transformation service runs on a different host it has to
copy the data across first before it can attempt a transform into the required format.
Similarly the delivery service has to copy the transformed data across before sending
this to the final destination.

As this would represent inefficient use of resources we decided to investigate a way to
combine the three services into a single Matrix service but still be flexible about how
to compose the three functions.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 14 –

 Analyst

Consumer

QTD
QTDHandle
QTDRequest

QTDHandle

Result

QTDHandle

Figure 13 – Consolidated Approach

This is a modular approach that allows new delivery mechanisms or new
transformations to be plugged in easily. For each request the user specifies how the
building blocks get assembled.

Large Objects
The alternative approaches to storing large objects (LOBs) are as follows:

• The metadata, in this case data about the LOB, is held in a table and the LOB
is also held in the same logical table. This approach allows the database
management system to control referential integrity, however, though this
approach is architecturally sound it can introduce performance difficulties.

• The metadata is held in a table and an external reference is held in the same

logical table. The external reference is a pointer to the LOB, which is held
outside the relational database for example in a flat file. This approach does
not allow for the database management system to control referential integrity.

• The metadata is held in a table and an external reference is held in the same

logical table. The external reference is a pointer to the LOB held in a flat file
that can optionally be managed as part of the relational database. In this
approach the external reference is a URL in a table column with type of
DATALINK. The DATALINK type is specified in SQL/MED [41].

It is our assessment that we will have to support all three of the above approaches.

Synchronous and Asynchronous
There are parts of the Matrix infrastructure that will operate synchronously, i.e.
execute following a request by the Analyst returning a result with the call response.
There are other parts that must operate asynchronously, to support (for example) long-
running query or delivery operations.

As soon as the mode of operation moves outside of the simple returning of results
with the call response, asynchronous operation is needed.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 15 –

Asynchronous Synchronous

Matrix
Asynchronous Synchronous

Matrix

Analyst

Consumer

QTD

QTD
QTD

RDBMS

Config

Figure 14 – Synchronous and Asynchronous Operation

Asynchronous operation can be supported through the initiation of control threads
either in the called service instance or in a new service instance. In both cases the
thread of control undertakes a series of operations in accordance with process defined
by the QTD specification in the same way as the synchronous side of the service.

Interface Style
We have discussed interface issues in general without actually defining the interface
for the Matrix service. This is intentional, because the external frameworks on which
the interface definition depends are currently under development.

The function provided by this interface is clearer and it is interesting to consider how
it will be exposed. One alternative is to take an RPC approach and present to the user
port types that take many separate parameters. Another is to build a specification, in
the form of an XML document, and pass this into the service through a simple port
type.

One interface
Many functions
(Document)

Many
interfaces
One function
(RPC)

Figure 15 – Interface Styles

Our preference is for a document-style interface for a number of reasons:

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 16 –

The document approach provides a high level of flexibility of function.
Specifications encoded as documents can be archived, audited, reused and shared.
A document approach more easily allows for the combination of query specifications
and metadata along with results.

This reasoning does not of course preclude an RPC interface that wraps a document
interface.

Implementation

Chain of Responsibility
As previously discussed, the Matrix functions map onto sub-services such as Query,
Transform and Delivery in such a way that flexibility and extensibility are
maximized. The ‘Chain of Responsibility’ design pattern (figure 16) addresses this
issue.

ConcreteHandler1

HandleRequest()

ConcreteHandler2

HandleRequest()

Client
Handler

HandleRequest()

succesor

Figure 16 – Chain Of Responsibility Pattern from Gamma et al [42]

This ‘Chain of Responsibility’ pattern maps directly onto the ‘message path’
architecture provided by Axis (the Web Services engine under development by
Apache Error! Reference source not found.).

Figure 17 – Axis Message Path

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 17 –

Each of the Query, Delivery and Transport functions maps onto an abstract Handler
object in this pattern. A Matrix Service can be customised by extending one of the
existing handlers or by creating a new handler.

TransformHandler

HandleRequest()

DeliveryHandler

HandleRequest()

Client MatrixHandler

HandleRequest()

succesor

QueryHandler

HandleRequest()

XXXHandler

HandleRequest()

XXXTransformHandler

HandleRequest()

Figure 18 – Handlers Supporting Matrix Functions

QTD Specification
The QTD document is a representation in XML of the specifications required to
perform the Query, Transformation and Delivery of data within the Matrix system. An
Action Scheduler process is responsible for parsing the QTD document and invoking
the actions needed to fulfil the QTD specification. Within the QTD document it is
possible to specify a number of operations that must be done, for example a Query of
a database, a set of transformations on the results returned and then delivery of the
data to one or a number of endpoints.

The major advantage of this approach is the flexibility that the document interface
gives. The document interface allows applications to be tolerant of any future changes
to the QTD schema should they arise. It is also straightforward to provide RPC style
interfaces that could wrap a number of different QTD specifications. This would
provide a controlled way to expose the services provided by Matrix.

QTD Structure
The QTD schema is not defined at present; the example presented here is designed to
show what a QTD document might look like. This example shows a QTD tag with a
processName attribute. For the specified process, it is possible to list a set of activities
that must be performed to fulfil the requirements of the QTD document. In the outline
document below, three activities are listed and each one would detail the parameters
specific to that activity.

<QTD processName=“BlueBanana" >

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 18 –

 <Activity name="SubmitQuery">
 …
 </Activity>

 <Activity name=“TransformData">
 …
 </Activity>

 <Activity name="DeliverData">
 …
 </Activity>

</QTD>

QTD Example
The delivery service will transport data based on Quality of Service (QoS) criteria.
The QoS describes performance metrics and attributes of the transport that must be
adhered to. For example, it might be requested that data is transported by the least
cost route, but must also be encrypted using a specific type and strength of algorithm.

This QTD specification has four activities to perform:

1. A database query – A simple select statement.
2. Conversion of the returned data via a style sheet transformation – The

ProcessStyleSheet activity should convert the data to SVG format.
3. Compression of the SVG format data – Uses gzip to compress the data.
4. Delivery of the data – Data should be delivered to the specified location whilst

meeting the QoS criteria for delivery.
<QTD processName=“BlueBanana">
 <Activity name="SubmitQuery">
 <Param name="QueryString">SELECT myimages.id, myimages.image1,
myimages.image2 from myimages</Param>
 </Activity>

 <Activity name=“ProcessStyleSheet”>
 <Param name=“StyleSheet">ConvertToSVG</Param>
 </Activity>

 <Activity name=“Compress">
 <Param name=“CompressionType">gzip</Param>
 </Activity>

 <Activity name="DeliverData">
 <Param name="DestinationType">file</Param>
 <Param name="DestinationPath">/home/neil/</Param>
 <Param name="DestinationName">images.xml.zip</Param>
 <Param name="DestinationAddress">serpent.hursley.ibm.com</Param>

 <Param name=”QoSDeliveryCost”>least cost</QTD:Param>
 <Param name=”QoSDeliverySpeed”>don’t care</QTD:Param>
 </Activity>
</QTD>

QTD Interface Styles
The QTD document can be used as the basis of differing styles of interface that range
from an RPC style at one extreme to a strongly typed document interface at the other.

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 19 –

Examples might look like:

Strongly Typed Document Style
<QTD:QTD processName=“BlueBanana“ xmlns:QTD="http://www.ibm.com" …>
 <QTD:SubmitQuery>
 <QTD:QueryString>SELECT myimages.id, myimages.image1,
myimages.image2 from myimages</QTD:Param>
 <QTD:QueryLanguage>SQL92 <QTD:QueryLanguage>
</QTD:SubmitQuery>
 …

Flexible Document Style

<QTD:QTD processName=“BlueBanana" xmlns:QTD="http://www.ibm.com" … >
 <QTD:Activity name="SubmitQuery">
 <QTD:Param name="QueryString">SELECT myimages.id,
myimages.image1, myimages.image2 from myimages</QTD:Param>
 <QTD:Param name="QueryLanguage">SQL92</QTD:Param>
</QTD:Activity>
 …

RPC Style

<message name=“QueryInputMessage">
 <part name=“queryLanguage" element=“xsi:string"/>
 <part name=“queryLanguage" element=“xsi:string"/>
</message>
…
<portType name=“MatrixPortType">
 <operation name=“query">
 <input message="tns: QueryInputMessage "/>
…

Conclusion
The key benefit for any organization participating in open source projects is
development of skills and experience within the organization that will be of future
value. We have chosen a Web Services architecture and given a good deal of thought
to a smooth migration path through to OGSA. In thinking about the interface
definitions for Matrix Services we have kept flexibility and extensibility in mind and
there is scope for providing interfaces that are essentially independent of the data
source.

Our aim is to identify a solution that can be implemented in a series of iterations, to
provide a straightforward implementation in the first instance, but one that can be
developed through successive iterations into a middleware system that contributes
towards the realization of the Grid.

Acknowledgements
We would like to acknowledge the assistance of the UK National eScience Initiative
and its Database and Architecture Task Forces; the members of the OGSA-DAI
Project; the MyGrid Team; the AstroGrid Team; and the European Data Grid Team.

We would also like to thank Vijay Dialani (University of Southampton); Peter Kunszt
(CERN); and Inderpal Narang, Vijayshankar Raman, Susan Malaika, Dan Wolfson,

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 20 –

Rodolphe Michel, Jeff Nick, Jeff Frey, Steve Graham, and Tony Storey (IBM) who
assisted us by providing additional input, in workshops, or in reviewing earlier
versions of this document.

References
[1] NeSC, IBM, Oracle, eSNW, NEReSC, OGSA – Data Access and Integration

Services, Project Proposal V 1.1, March 2002, private communication.

[2] I. Foster, C. Kesselman, and S Tuecke, The Anatomy of the Grid: Enabling
Scalable Virtual Organisations, Int. J. High Perform. Comput. Appl., Vol. 15,
No. 3, 2001, http://www.globus.org/research/papers/anatomy.pdf

[3] I. Foster, C. Kesselman, J.M. Nick, and S. Tuecke, The Physiology of the
Grid: An Open Grid Services Architecture for Distributed Systems Integration,
Globus Project Technical Report, January 2002,
http://www.globus.org/research/papers/ogsa.pdf,

[4] S. Tuecke, K. Czajkowski, I. Foster, J. Frey, S. Graham, and C. Kesselman,
Grid Service Specification, Globus Project Technical Report, February 2002,
http://www.globus.org/research/papers/gsspec.pdf

[5] T. Hey, and A. E. Trefethen, The UK eScience Core Programme and the Grid,
2001

[6] T. Hey, Towards an eScience Grid Roadmap: The Open Grid Services
Architecture, April 2002

[7] M. Atkinson, et al, UK Role in Open Grid Services Architecture: UK eScience
Core Programme, Technical Report by UK eScience ATF, March 2002

[8] P. Watson, Databases and the Grid, Technical Report CS-TR-755, University
of Newcastle, 2001, http://www.cs.man.ac.uk/grid-db/papers/dbg.pdf

[9] D. Pearson, Data Requirements for the Grid Scoping Study Report, Technical
Report for Databases and the Grid BOF at GGF4, Toronto, February 2002,
http://www.cs.man.ac.uk/grid-db/papers/Requirements.pdf

[10] N.W. Paton, M.P. Atkinson, V. Dialani, D. Pearson, T. Storey, and P. Watson,
Database Access and Integration Services on the Grid, Technical Report for
Databases and the Grid BOF at GGF4, Toronto, February 2002,
http://www.cs.man.ac.uk/grid-db/papers/dbtf.pdf

[11] M.P. Atkinson, Comments and Additions to A Model for Database Access and
Integration on the Grid, Technical Report on first draft of [10], January 2002.

[12] M.N. Alpdemir, N.W. Paton, and A.A.A. Fernandes, An Investigation on the
Integration of the Globus Toolkit with Relational DBMSs, Technical Report,
University of Manchester, March 2002, private communication.

[13] D. Gannon, K. Chiu, M Govindaraju, and A Slominski, An Analysis of the
Open Grid Services Architecture, Technical Report commissioned by the UK
eScience Core Programme, Indiana University, 2002,
http://www.extreme.indiana.edu/~gannon/OGSAanalysis3.pdf

[14] P. Z. Kunszt, The Open Grid Services Architecture: A Summary and
Evaluation, Technical Report commissioned by the UK eScience Core
Program, CERN, April 2002,

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 21 –

http://umbriel.dcs.gla.ac.uk/NeSC/general/teams/OGSAreviewPeterKunszt.pd
f

[15] I. Narang and V. Raman, Database Issues in Grid Computing: IBM Research
Perspective, Technical Report for OGSA-DAI Workshop, Edinburgh, April
2002

[16] JDBC 2.1 Specification, Sun Microsystems, October 1999,
ftp://ftp.javasoft.com/pub/jdbc/9128374/jdbc2_1-spec.pdf

[17] J. Ellis, L. Ho, and M. Fisher, JDBC 3.0 Specification, Sun Microsystems,
October 2001, ftp://ftp.javasoft.com/pub/spec/jdbc/d0o9FR30dsofe/jdbc-3_0-
fr-spec.pdf

[18] C. Fan, J. Funderburk, H. Lam, J. Kierman, E. Shekita, and j
Shanmugasundaram, XPERANTO: Bridging Relational Technology and XML,
February 2002

[19] H. Katz, An Introduction to Xquery, February 2002,
http://www.ibm.com/developerworks/library/x-xquery.html

[20] M. Papiani, J. L. Wason, A. N. Dunlop, and D. A. Nicole, A Distributed
Scientific Data Archive Using the Web, XML and SQL/MED, ACM SIGMOD
Vol. 28, No. 3, September 1999,
http://www.acm.org/sigs/sigmod/record/issues/9909/papiani.pdf

[21] MyGrid Proposal Document - http://mygrid.man.ac.uk/more.html

[22] Astrogrid Usecase list - http://wiki.astrogrid.org/bin/view/VO/UseCaseList

[23] C. Page, Database Technology For Astrogrid: A Discussion Document, 09

May 2002 - http://www.star.le.ac.uk/~cgp/ag/dbstatus.html

[24] C. Page, Indexing the Sky, 09 May 2002 -
http://www.star.le.ac.uk/~cgp/ag/skyindex.html

[25] R. Williams, et al, VOTable: A Proposed XML Format For Astronomical
Tables, Version 1.0, 15 April 2002 - http://vizier.u-strasbg.fr/doc/VOTable/

[26] J. Gray, D. Slutz, A. Szalay, A. Thakar, J. van den Berg, P. Kunszt, and C.
Stoughton, Data Mining the SDSS SkyServer Database, Microsoft Technical
Report, MSR-TR-2002-01, January 2001,
http://research.microsoft.com/~Egray/Papers/MSR_TR_O2_01_20_queries.pd
f

[27] Java Developer Connection, Early Access, JDBC Rowset -
http://developer.java.sun.com/developer/earlyAccess/crs/index.html

[28] N. C. Hong, Writing GSI enabled Web Services -
http://www.epcc.ed.ac.uk/~neilc/gsiws/

[29] Oracle Application Developers Guide, XSQL Pages Publishing Framework -
http://download-
uk.oracle.com/otndoc/oracle9i/901_doc/appdev.901/a88894/adx10xsq.htm

[30] ISO-ANSI Working Draft - XML-Related Specifications (SQL/XML),
Mar2002

[31] J. Melton, J-E. Michels, V. Josifovski, K. Kulkarni, P. Schwartz, K.
Zeidenstein, SQL and Management of External Data

Grid Data Services - Relational Database Management Systems - Version 1.0 - 05Jul2002

 -Page 22 –

[32] M. Atkinson, V. Dialani, L.Guy, I. Narang, N. Paton, D. Pearson, T. Storey,
and P. Watson, Grid Database Access and Integration Requirements and
Functionalities (Draft), 04 July 2002, http://www.cs.man.ac.uk/grid-
db/papers/dairf.pdf

[33] A. Krause, K. Smyllie, R. Baxter, Grid Data Services Specification for XML
Databases Version 1.0, 19 June 2002, http://www.cs.man.ac.uk/grid-
db/papers/GXDSspec.pdf

[34] J. Smith, A. Gounaris, P Watson, N. W. Paton, A. A. A. Fernandes, and R.
Sakellariou, Distributed Query Processing on the Grid,
http://www.cs.man.ac.uk/grid-db/papers/dqp.pdf

[35] V. Raman, I. Narang, C. Crone, L. Haas, S. Malaika, T. Mukai, D. Wolfson,
and C. Baru, Data Access and Management Services on Grid

[36] European DataGrid Work Package 2 {Project Spitfire), http://hep-proj-
spitfire.web.cern.ch/hep-proj-spitfire/server/doc/index.html

[37] Global Grid Forum, http://www.gridforum.org/

[38] IBM - OGSA - DAI – WP6 – Scenarios and Patterns, to be published

[39] Grid Security Infrastructure, http://www.globus.org/security/

[40] Web Services Security, http://www-106.ibm.com/developerworks/library/ws-
secure/

[41] DATALINK, http://www.almaden.ibm.com/cs/datalinks/

[42] E Gamma, R Helm, R Johnson and J Vlissides, Design Patterns: elements of
reusable object-oriented software, Addison-Wesley, Reading, Mass, 1994

[43] Apache Axis (SOAP Implementation), http://xml.apache.org/axis/

[44] Apache Xalan (XSL Transformation engine), http://xml.apache.org/xalan-
j/index.html

[45] Secure Sockets Layer 3.0 specification, http://wp.netscape.com/eng/ssl3/

[46] Web Services Security (WS-Security),
http://msdn.microsoft.com/library/default.asp?url=/library/en-
us/dnglobspec/html/ws-security.asp

[47] M. Atkinson, OGSA-DAI Project Work Package 2 – A Strategy for
Architectural Development and an Outline Architecture, Version 0.2, 28-31
May 2002, private communication.

