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Abstract 
Camera calibration is an essential and important part of 
an Augmented Reality (AR) system. The use of a plane-
based calibration technique can give a good accuracy, 
which can be important for AR applications. The 
calibration technique used in the current ARToolKit 
requires user intervention, which is prone to error and 
involves a lengthy calibration time. The camera has to be 
recalibrated every time the focal length changes which is 
cumbersome and less suitable for applications where a 
more automated and easier approach is needed. This 
paper investigates the use of camera self-calibration for 
the ARToolKit, which has the advantage of simplicity of 
implementation. In order to improve its accuracy, a 
distortion model is also investigated. In this context 
several interesting results are presented. 
 
1. Introduction 
 
1.1 Augmented Reality 
 
Augmented Reality (AR) is actually overlaying 3D virtual 
objects on the real world in real time. AR enhances the 
user's view of the real world with visual information from 
the computer. According to [8], AR is a system that has 
the following three characteristics: 

1) Combines real and virtual  
2) Interactive in real time  
3) Registered in 3-D 

Therefore, overlaying 2D virtual objects on the real world 
could not be considered AR. Films like "Jurassic Park" 
also could not be regarded as AR since they are not 
interactive media.  
 
Camera calibration is one of the important tasks in AR 
systems. It establishes the projection from the 3D world 
co-ordinates to the 2D image co-ordinates. This can be 
achieved by finding the intrinsic and extrinsic camera 
parameters. Once the parameters are determined, 3D 
information can be inferred from 2D information, and 
vice versa.  
 
Regardless of the specific application, existing camera 
calibration techniques can be classified into two [9] 
techniques. This classification divides camera calibration 

into situations with known scenes and unknown scenes. 
Normally, for known scenes a planar pattern is used to 
find the camera parameters whereas for unknown scenes, 
camera motion is used. For the case where neither the 
scene nor the camera motion is known, it requires self-
calibration.  
 
The most likely problem faced in AR applications is the 
registration problem [8]. The virtual object must be 
properly aligned with the real world. There are two types 
of error source that can cause registration problems: static 
and dynamic [10]. Static errors are the ones that cause 
registration errors when both the user's viewpoint and the 
object in the environment remains still. Dynamic errors 
are the ones that cause registration errors when either the 
viewpoint or the objects begin to move.   
 
One way to minimize the registration errors is by having a 
robust camera calibration. In order to achieve this, certain 
criteria must be met. Tsai [1] stated that the calibration 
procedure should be an autonomous process, meeting 
certain accuracy requirements, reasonably efficient and 
versatile. Therefore, any work to develop more robust 
calibration techniques should have at least the 
aforementioned criteria in mind. 
 
1.2 The ARToolKit 
 
The ARToolKit (Augmented Reality ToolKit) is a 
software useful in creating AR applications. Three types 
of AR display that can be used with the ARToolKit 
including monitor based, video see-through and optical 
see-through displays. Different kinds of displays require 
different kinds of calibration routines. The calibration 
procedure in the ARToolKit can be categorised as semi-
automatic calibration since it involves users intervention 
as well as the computer. 
 
To calibrate a camera for monitor based display, the 
ARToolKit uses two different patterns. The first pattern is 
used to estimate the image centre point and lens 
distortion. The second pattern is used to estimate other 
camera parameters. The users’ intervention is needed and 
some procedures need to be done repetitively. This can be 
prone to error, cumbersome and time consuming 



 

 

especially when the focal length changes either 
intentionally or not. 
 
In this paper, we propose a self-calibration technique for 
the camera in a monitor-based AR display for the 
ARToolKit. Our aim is to find parameters in the 3x3 
calibration matrix. Once these parameters are determined, 
they can be used to calculate the transformation matrix, 
which is important to make sure the virtual object is 
overlaid accurately.  
 

 
 

Figure 1: Monitor-based AR display 
 

 
2. Background theory 
 
2.1 Calibration matrix 
 
We consider the pinhole model for the camera model. The 
camera is described by the following 3x3 upper triangular 
matrix: 
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where uα  and vα  are the horizontal and vertical scale 
factors respectively, r is the degree of slant between the 
horizontal and vertical image axes, and ),( 00 vu  is the 
principal point of the image. In this paper, we use a 
reduced set of intrinsic parameters. We will assume that 

0=r which means that the image axes are orthogonal 
which is almost true in practice. 
 
2.2 Camera Model 
 
The transformation from 3D world co-ordinates to camera 
pixel co-ordinates can be modelled as a process of four 
steps [1, 2, 4]: 
 
Step 1:  
Rigid body transformation from the object world 
coordinate system ),,( www ZYX to the camera 3D 
coordinate system ),,( ZYX : 
 

 [ ] [ ] tR += T
www

T ZYXZYX   (2) 
 
Step 2: 
Transformation from 3D camera coordinates ),,( ZYX to 
ideal (undistorted) image coordinates ),( yx using 
perspective projection with pinhole camera geometry: 
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Z
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Z
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where f is the effective focal length 
 
Step 3: 
Lens distortion: 
 
 xxx δ+= ˆ , yyy δ+= ˆ ,  (4) 
 
where )ˆ,ˆ( yx  are the distorted or true image coordinates 
on the image plane, and ),( yx δδ are the distortion 

corrections to ),( yx . The value for xδ and yδ will be 
discussed later.  
 
Step 4: 
Affine transformation from real image coordinates )ˆ,ˆ( yx  
to frame buffer (pixel) image coordinate ),( vu : 
 
 0

1 ˆ uxdu x += − , 0
1 ˆ vydv y += − ,  (5) 

 
where ),( 00 vu  are the coordinates of the image centre 
(the principal point) in the frame buffer, xd and yd  are 
the distance between adjacent pixels in the horizontal and 
vertical directions of the image plane, respectively. 
 
Lens distortion mainly comprises two components: radial 
and decentering. Radial distortion is caused by imperfect 
lens shape and decentering is usually caused by improper 
lens assembly. The distortion corrections ( xδ and yδ ) are 
expressed as power series in radial distance r : 
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where r = 22 ˆˆ yx + , 1k , 2k and 3k are coefficients of 
radial distortion, and 1p , 2p and 3p are coefficients of 
decentering distortion. 
 
In order to keep the algorithm simpler for the ARToolKit, 
we only include radial distortion. According to [1], unless 
one is specifically concerned with the reduction of 
distortion to very low levels, it is likely that the distortion 
function is totally dominated by the radial components, 
and especially dominated by the 1k  term. 
 
2.3 Epipolar Geometry 
 
Epipolar geometry can be described by a 3x3 matrix 
called the fundamental matrix and it has the following 
expression 
 
 1−−≅ S(t)RKKF T    (8) 
 
where R and t represent the relative rotation and 
translation between the two camera positions, S(t)  is the 
skew-symmetric matrix associated with three-vector t . ≅  
stands for equality up to a scale factor. 
 
2.4 Fundamental Matrix Estimation 
 
The fundamental matrix can be robustly estimated from 
point matches given at least seven point-to-point 
correspondence. If a point [ ]Tiii vu=m  in the first 

image is matched to a point [ ]Tiii vu ′′=′m in the second 
image, they must satisfy the following epipolar equation: 
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In this paper we use publicly available software "image 
matching" [12] to get the accurate determination of point 
correspondence and to estimate the fundamental matrix.  
 
3. Self Calibration 
 
There are several techniques reported in the literature for 
self-calibration [6, 7]. These techniques are all rely on 
known motions of the cameras. In [7] the motion of the 
camera is assumed to be translational, while in [6] 
rotational motions of the camera are considered, but 
rotation must be through known angles.  
 
The method chosen here is the algebraic Dornaika’s 
method [5]. This method is used because it outperforms 
the Kruppa equations in terms of convergence and 
accuracy and also for its simpler algorithm, which is more 
suitable for the ARToolKit.  

 
The method is derived from equation (8). The equation 
can be rewritten as 
 

S(t)FKRK ≅TT .   (10) 
 
Let 3,1, ≤≤ jlalj  be entries of TTFKRK . From this it 
follows that  
 

0322331132112332211 =+=+=+=== aaaaaaaaa  
      (11) 
 
The rotation R is represented by its associated unit 
quaternion T

zyx qqqq ),,,( 0=q . More details of the 
derivation of the method can be found in [5]. 
 
For n fundamental matrix, we accumulate the constraints 
(11) by building a positive error function f that will be 
minimized over the unknown. The error function can have 
the following form: 
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where Taaaaaaaaa ),,,,,( 322331132112332211 +++=v , 
and λ is a real positive number. 

3.1 Distortion 
 
There are two ways of dealing with distortion. As a start 
we are concerned with the radial distortion. Often in 
literature, the fundamental matrix is estimated based on 
the assumption that distortion in the captured image is 
corrected offline. However, there is a paper reported by 
Zhang [4], which integrates the distortion correction when 
estimating the epipolar geometry. In this context we only 
concentrate on the former method for its simplicity.  
 
4. Experiment 
 
An experiment was conducted in order to check the 
accuracy of the intrinsic parameters from the camera self-
calibration routine. The results are compared with the one 
from the ARToolKit. In the experiments carried out to test 
the self-calibration algorithm, image sequences, rather 
than individual image were used.  
 
K is initialized using reasonable figures quoted by camera 
the manufacturer or from educated guess. The quaternion 
q is initialized through the following steps. 



 

 

 
1. The camera that needs to be calibrated should 

capture at least 3 images by moving the camera. 
2. Find the point correspondence between each pair 

of images based on relaxation and correlation 
techniques.  

3. From the point correspondence, the fundamental 
matrix is estimated. Each pair will produce one 
fundamental matrix. 

4. The essential matrix would then be estimated 
based on this relation KFKE T

ii ≅ . 
5. Based on the essential matrix, each quaternion qi 

is estimated by factorizing the corresponding 
essential matrix as )()( iii qRtSE ≅ . 

 
The initial intrinsic parameters together with the 
obtained quaternions constitute the starting point of 
the nonlinear equation in (12). The calibration matrix 
from self-calibration and ARToolKit is presented as 
follows: 
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Figure 2: Principal Point without distortion correction. 
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Figure 3: Scale Factor without distortion correction. 
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Figure 4: Principal point after distortion correction  
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Figure 5: Scale factor after distortion correction  

 
From these results, we can observe that the principal point 
estimation for self-calibration without distortion 
correction is quite reliable.  However Figure 4 and Figure 
5 show improvements in the clusters for the self-
calibration method in comparison to clusters in Figure 2 
and Figure 3. From here we can presume that by taking 
distortion into account will improve the accuracy of the 
camera parameters. 
 
5. Conclusion and Future Work 
 
Although the algorithm proposed here is not as robust as 
the existing algorithm in the ARToolKit, but this could be 
considered as a first step towards a more automatic 
calibration process without the needs for a particular 
pattern. Improvement can be made by accurately 
estimating the fundamental matrix which is largely related 
to the accuracy of point correspondence matching. Once 
this is achieved, it is easier to obtain a good estimation of 
the camera parameters.  
 
For future work, investigation on Zhang’s distortion 
method [4] can be employed into distortion parameters 
calculation. This makes the calibration more automatic 
rather than having to correct the distortion offline.  
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