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SUMMARY

Discrete linear repetitive processes are a distinct class of 2D linear systems with applications in areas
ranging from long-wall coal cutting through to iterative learning control schemes. The main feature which
makes them distinct from other classes of 2D linear systems is that information propagation in one of the
two independent directions only occurs over a finite duration. This, in turn, means that a distinct systems
theory must be developed for them. In this paper, the major new development is that an LMI based re-
formulation of the stability conditions can used to enable the design of a family of control laws which have
a well defined physical basis. It is also noted that this setting can be used to investigate robustness aspects.
Copyright # 2003 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The essential unique characteristic of a repetitive, or multipass, process is a series of sweeps,
termed passes, through a set of dynamics defined over a fixed finite duration known as the pass
length. On each pass an output, termed the pass profile, is produced which acts as a forcing
function on, and hence contributes to, the dynamics of the new pass profile. This, in turn, leads
to the unique control problem for these processes in that the output sequence of pass profiles
generated can contain oscillations that increase in amplitude in the pass to pass direction.

To introduce a formal definition, let a5þ1 denote the pass length (assumed constant).
Then in a repetitive process the pass profile ykðpÞ; 04p4a; generated on pass k acts as a forcing
function on, and hence contributes to, the dynamics of the new pass profile ykþ1ðpÞ; 04p4a;
k50:
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Physical examples of repetitive processes include long-wall coal cutting and metal rolling
operations (see, for example Reference [1]). Also in recent years applications have arisen where
adopting a repetitive process setting for analysis has distinct advantages over alternatives.
Examples of these so-called algorithmic applications of repetitive processes include classes of
iterative learning control (ILC) schemes [2] and iterative algorithms for solving nonlinear
dynamic optimal control problems based on the maximum principle [3]. In the case of iterative
learning control for the linear dynamics case, the stability theory for so-called differential and
discrete linear repetitive processes is the essential basis for a rigorous stability/convergence
theory for such algorithms.

Attempts to control these processes using standard (or 1D) systems theory/algorithms fail
(except in a few very restrictive special cases) precisely because such an approach ignores their
inherent 2D systems structure, i.e. information propagation occurs from pass to pass and along
a given pass. In seeking a rigorous foundation on which to develop a control theory for these
processes, it is natural to attempt to exploit structural links which exist between, in particular,
the class of so-called discrete linear repetitive processes and 2D linear systems described by the
extensively studied Roesser [4] or Fornasini Marchesini [5] state space models. The discrete
linear repetitive processes considered in this contribution are distinct from such 2D linear
systems in the sense that information propagation in one of the two separate directions (along
the pass) only occurs over a finite duration and hence large key elements of existing 2D systems
theory can either (i) not be applied, or (ii) only applied after significant modifications.

A rigorous stability theory for linear repetitive processes has been developed. This theory [6] is
based on an abstract model in a Banach space setting which includes all such processes as special
cases. Also the results of applying this theory to a wide range of cases has been reported,
including the sub-class considered here. This has resulted in stability tests that can be
implemented by direct application of well known 1D linear systems tests.

In this paper, we show that an LMI re-formulation of the stability conditions leads naturally
to design algorithms for control laws of the type discussed above. Moreover, it is noted that this
setting also enables progress to be made on the currently (very much) open problem of stability
and control of these processes in the presence of uncertainty in the model structure. Preliminary
versions of some of the analysis given here have been given in References [7, 8]. We begin in the
next section with a summary of the relevant background results.

2. BACKGROUND

Following Rogers and Owens [6] the state-space model of a discrete linear repetitive process has
the following form over 04p4a; k50

xkþ1ðp þ 1Þ ¼ Axkþ1ðpÞ þ Bukþ1ðpÞ þ B0ykðpÞ

ykþ1ðpÞ ¼ Cxkþ1ðpÞ þ Dukþ1ðpÞ þ D0ykðpÞ ð1Þ

Here on pass k; xkðpÞ is the n� 1 state vector, ykðpÞ is the m� 1 vector pass profile, and ukðpÞ is
the l� 1 vector of control inputs.

To complete the process description, it is necessary to specify the ‘initial conditions’-termed
the boundary conditions here, i.e. the state initial vector on each pass and the initial pass profile.
Here no loss of generality arises from assuming xkþ1ð0Þ ¼ dkþ1; k50; and y0ðpÞ ¼ f ðpÞ; where
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dkþ1 is an n� 1 vector with known constant entries and f ðpÞ is an m� 1 vector whose entries
are known functions of p:

The abstract model based stability theory [6] for linear repetitive processes consists of two
distinct concepts termed asymptotic stability and stability along the pass, respectively. Noting
again the unique control problem for these processes, this theory demands that bounded
sequences of inputs (the element for each pass is formed from the control inputs, state initial
conditions and disturbances which enter on this pass) produce bounded sequences of pass
profiles where here ‘bounded’ is defined in terms of the norm on the underlying function space.
The essential difference between them is that asymptotic stability demands this property over the
finite pass length whereas stability along the pass is stronger in that it demands this property
uniformly, i.e. independent of the pass length.

In the case of processes described by (1), it can be shown [6] that asymptotic stability holds if,
and only if, rðD0Þ51 where r( � ) denotes the spectral radius. Also if the example under
consideration is asymptotically stable and the control input sequence applied fukgk51 converges
strongly to u1 as k ! 1 then the resulting output pass profile sequence fykgk51 converges
strongly to y1-the so-called limit profile defined (with D ¼ 0 for ease of presentation) over
04p4a by

x1ðp þ 1Þ ¼ ðAþ B0ðIm � D0Þ
�1CÞx1ðpÞ þ Bu1ðpÞ

y1ðpÞ ¼ ðIm � D0Þ
�1Cx1ðpÞ ð2Þ

In effect, this result states that if a process is asymptotically stable then its repetitive dynamics
can, after a ‘sufficiently large’ number of passes, be replaced by those of a 1D discrete linear
system. Note, however, that this property does not guarantee that the limit profile is stable in the
normal sense, i.e. rðAþ B0ðIm � D0Þ

�1CÞ51-a point which is easily illustrated by, for example,
the case when A ¼ �0:5; B ¼ 0; B0 ¼ 0:5þ b0; C ¼ 1; D ¼ D0 ¼ 0; and the real scalar b0 is
chosen such that jb0j51:

Stability along the pass prevents cases such as the simple example above from arising and in
this work it is the following characterization [6] of this property that will be required.

Theorem 1
Discrete linear repetitive processes described by (1) are stable along the pass if, and only if, the
2D characteristic polynomial

Cðz1; z2Þ :¼ det
In � z1A �z1B0

�z2C Im � z2D0

" #
=0 8ðz1; z2Þ 2 %UU2 ð3Þ

where %UU2 ¼ fðz1; z2Þ : jz1j41; jz2j41g:

Note that stability along the pass includes asymptotic stability as a special case ((3) clearly
requires that rðD0Þ51).

Note that (3) is also the necessary and sufficient condition for stability of a 2D discrete linear
system described by a Roesser model whose state dynamics are defined by the state space
matrices fA;B;B0;C;D0g: This is a well known fact [6] and leads immediately to the interchange
of stability tests for these two classes of linear systems. None of these tests, however, provide an
effective basis on which to design control laws for these processes beyond the task of obtaining
conditions for stability of the resulting closed loop system. In the case of repetitive processes
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and, in particular, applications areas (such as ILC) it is also essential to include performance in
the design specification.

The remainder of this paper shows that an LMI formulation meets this last specification for a
physically motivated control law but at the expense of a sufficient but not necessary condition
for stability along the pass. Moreover, it is shown that the LMI setting leads to a Lyapunov
equation which can be used to extract computable information on a key performance measure,
i.e. the rate of approach of the output sequence of pass profiles to the resulting limit profile for a
stable along the pass example. Finally, it is noted that the LMI setting also allows a start to be
made on robustness analysis for these processes both open loop and closed loop under control
action.

3. LMI BASED STABILITY ANALYSIS

In this work, the following well known (for a proof see Reference [9]) result is extensively
used.

Lemma 1
Given constant matrices W ; L; and V of appropriate dimensions where W ¼ W T and V ¼ V T >
0; then

W þ LTVL50 ð4Þ

if and only if

W LT

L �V �1

" #
50 ð5Þ

or, equivalently,

�V �1 L

LT W

" #
50 ð6Þ

The matrix W þ LTVL is known as the Schur complement of the matrix in (5) or (6).
Now define the following matrices from the state space model (1):

#AA1 ¼
A B0

0 0

" #
; #AA2 ¼

0 0

C D0

" #
ð7Þ

Then we have the following sufficient condition for stability along the pass of processes
described by (1) (with the assumed boundary conditions).

Theorem 2
Discrete linear repetitive processes described by (1) are stable along the pass if 9 matrices
P ¼ PT > 0 and Q ¼ QT > 0 satisfying the following LMI:

#AAT
1 P #AA1 þ Q� P #AAT

1 P #AA2

#AAT
2 P #AA1

#AAT
2 P #AA2 � Q

" #
50 ð8Þ
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Proof
Using * to denote the complex conjugate transpose operation, first pre-multiply (8) by ½zn1In
zn2Im� and post-multiply it by the complex conjugate transpose of this last matrix to yield

ðz1 #AA1 þ z2 #AA2Þ
nP ðz1 #AA1 þ z2 #AA2Þ þ zn1Qz1 � zn1Pz1 � zn2Qz250

Also for (8) to hold we must have that Q� P50 and hence ð8ðz1; z2Þ 2 %UU2Þ

zn1Qz1 � zn1Pz1 � zn2Qz2 ¼ zn1ðQ� P Þz1 � zn2Qz2

¼ � ½zn1ðP � QÞz1 þ zn2Qz2�

5 � ½P � Qþ Q� ¼ �P

Consequently for (8) to hold rðz1 #AA1 þ z2 #AA2Þ51; 8ðz1; z2Þ 2 %UU2: This in turn implies that

detðInþm � z1 #AA1 � z2 #AA2Þ=0; 8ðz1; z2Þ 2 %UU2

which is equivalent to (3) and the proof is complete.
The following corollary to Theorem 2 links the LMI result derived here to a Lyapunov

equation interpretation of stability along the pass and will be used in the next section to obtain
computable information on the rate of convergence of the output sequence of pass profiles
fykgk51 produced by a stable along the pass process.

Corollary 1
Discrete linear repetitive processes described by (1) are stable along the pass if 9 matrices
W1 ¼ W T

1 > 0 and W2 ¼ W T
2 > 0 such that the Lyapunov inequality

FTW F� W50 ð9Þ

holds, where F is the so-called augmented plant matrix defined by

F ¼
A B0

C D0

" #
¼ #AA1 þ #AA2 ð10Þ

and W ¼ W1 � W2 where � denotes the direct sum, i.e. W ¼ diagfW1;W2g:

Proof
If (9) holds, then 9 a sufficiently small scalar e > 0 such that

FTW F� W þ eI50 ð11Þ

or, on substituting for F in terms of #AA1 and #AA2;

#AAT
1W #AA1 þ #AAT

2W #AA2 � W þ eI50 ð12Þ
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Note also that #AAT
1W #AA2 ¼ 0; and define Q and P of Theorem 2 as Q ¼ #AAT

2W #AA2 þ eI ; and P ¼ W
respectively. Then (12) can be rewritten in the analogous form to (8) as

#AAT
1 P #AA1

#AAT
1 P #AA2

#AAT
2 P #AA1

#AAT
2 P #AA2 � Q

" #
50 ð13Þ

and the proof is complete.

4. LMI BASED CONTROLLER DESIGN

The design of control laws for 2D discrete linear systems described by the Roesser [4] and
Fornasini Marchesini [5] state space models has received considerable attention in the literature
over the years. A valid criticism of such work, however, is that the structure and design of the
control algorithms are not well founded physically due to the fact that, for example, the concept
of a state for these systems is not uniquely defined. For example, it is possible to define a state
feedback law based on the local or global state vectors. Also in the absence of generalizations of
well defined and understood 1D concepts, e.g. the pole assignment problem and error actuated
output feedback control action, it has not been really possible to formulate a control design
problem beyond that of obtaining conditions for stabilization under the control action.

This difficulty does not arise with linear repetitive processes. For example, it is physically
meaningful to define the current pass error as the difference, at each point along the pass,
between a specified reference trajectory for that pass (which in most cases will be the same on
each pass) and the actual pass profile produced. Then one can define a so-called current pass
error actuated controller which uses the generated error vector to construct the current trial
control input vector. In which context, preliminary work (see, for example Reference [10]) has
shown that, except in a few very restrictive special cases, the controller used must be actuated by
a combination of current trial information and ‘feedforward’ information from the previous
pass to guarantee even stability along the pass closed loop. (Note that in the ILC application
area the previous pass output vector is an obvious signal to use as feedforward action.)

As a major systematic attempt at controller design for discrete linear repetitive processes we
consider a control law of the following form over 04p4a; k50

ukþ1ðpÞ ¼ K1xkþ1ðpÞ þ K2ykðpÞ :¼ K
xkþ1ðpÞ

ykðpÞ

" #
ð14Þ

where K1 and K2 are appropriately dimensioned matrices to be designed. In effect, this control
law uses feedback of the current pass state vector (which is assumed to be available for use) and
‘feedforward’ of the previous pass profile vector. (Note that in repetitive process theory the term
feedforward is used to describe the case where (state or pass profile) information from the
previous pass (or passes) is used as (part of) the input to a control law applied on the current
pass, i.e. to information which is propagated in the pass to pass ðkÞ direction.)

This control law has clear physical meaning for practical applications of discrete linear
repetitive processes and the obvious questions now to ask are: (i) can we obtain conditions for
closed loop stability along the pass coupled with easily (in relative terms) applied algorithms for
computing the controller parameters? and (ii) can we also obtain computable information as to
expected closed loop performance which is relevant to what may be demanded of such a closed
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loop process? Here we show that the answer to both these questions is yes if the LMI setting of
the previous section is used. (Note that there may well be alternative approaches to these
questions}if this is indeed the case then the results here will serve as a baseline comparison.)

Application of the control law (14) to (1) results in the following condition for closed loop
stability along the pass on applying the necessary and sufficient conditions of Theorem 1 to the
resulting closed loop state space model

Ccðz1; z2Þ=0; 8ðz1; z2Þ 2 %UU2 ð15Þ

where

Ccðz1; z2Þ :¼ det I �
z1ðAþ BK1Þ z1ðB0 þ BK2Þ

z2ðC þ DK1Þ z2ðD0 þ DK2Þ

" #" #
ð16Þ

Now introduce the matrices

#BB1 ¼
B

0

" #
; #BB2 ¼

0

D

" #
ð17Þ

Then we have the following result which is proved by simply repeating the proof of Theorem 2
for the closed loop system which results from application of the control law (14) and hence the
details are omitted.

Theorem 3
Suppose that a discrete linear repetitive process of the form described by (1) is subjected to a
control law of the form (14). Then the resulting closed loop process is stable along the pass if 9
matrices P ¼ PT > 0 and Q ¼ QT > 0 such that

ð #AAT
1 þ KT #BBT

1 ÞP ð #AA1 þ #BB1KÞ þ Q� P ð #AAT
1 þ KT #BBT

1 ÞP ð #AA2 þ #BB2KÞ

ð #AAT
2 þ KT #BBT

2 ÞP ð #AA1 þ #BB1KÞ ð #AAT
2 þ KT #BBT

2 ÞP ð #AA2 þ #BB2KÞ � Q

" #
50 ð18Þ

The major remaining difficulty with the matrix inequality of Theorem 3 is that it is nonlinear in
its parameters. It can, however, be converted into the following result where the inequality is a
strict LMI with a linear constraint which also gives a formula for computing K in (14).

Theorem 4
The condition of Theorem 3 is equivalent to the requirement that 9 matrices Y ¼ Y T > 0;
Z ¼ ZT > 0; and N such that the following LMI holds.

Z � Y 0 Y #AAT
1 þ NT #BBT

1

0 �Z Y #AAT
2 þ NT #BBT

2

#AA1Y þ #BB1N #AA2Y þ #BB2N �Y

2
6664

3
777550 ð19Þ

If (19) holds, then a stabilizing K in the control law (14) is given by (see also Reference [11] for
the origins of this formula (and (26) below) in standard systems theory)

K ¼ NY �1 ð20Þ
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Proof
First apply the Schur’s complement formula of (5) to (18), with

W ¼
Q� P 0

0 �Q

" #
; V ¼ P�1; L ¼ P ½ð #AA1 þ #BB1KÞ ð #AA2 þ #BB2KÞ�:

Now left and right multiply the result from this step by diagðP�1; P�1; P�1Þ; and then make the
following substitutions:

Z ¼ P�1QP�1 > 0; Y ¼ P�1 > 0 ð21Þ

to yield

Z � Y 0 Y ð #AAT
1 þ KT #BBT

1 Þ

0 �Z Y ð #AAT
2 þ KT #BBT

2 Þ

ð #AA1 þ #BB1KÞY ð #AA2 þ #BB2KÞY �Y

2
6664

3
777550 ð22Þ

Application of the formula given by (20) now completes the proof.
An alternative design is possible via the 2D Lyapunov inequality (9). In particular, write

R ¼
B 0

0 D

" #
; K ¼

K1 K2

K1 K2

" #
ð23Þ

Then interpreting (9) closed loop gives the following sufficient condition for stability along the
pass

ðFþ RKÞTW ðFþ RKÞ � W50 ð24Þ

where (as before) W ¼ W1 � W2; and the following result can now be established.

Theorem 5
Suppose that a discrete linear repetitive process of the form described by (1) is subjected to a
control law of the form (14). Then the resulting closed loop process is stable along the pass if

9 matrices P ¼ P1 � P2 > 0; P1 ¼ PT
1 40; P2 ¼ PT

2 > 0 and N ¼
N1 N2

N1 N2

� �
such that

�P FP þ RN

PFT þ NTRT �P

" #
50 ð25Þ

holds. Also a stabilizing K in the control law (14) is given by

K ¼ NP�1 ð26Þ

Proof
First apply the Schur’s complement formula (6) to (24) to obtain

�W �1 Fþ RK

ðFþ RKÞT �W

" #
50 ð27Þ
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Multiplying (27) from the left and right by diagfW ; Ig now yields

�W W ðFþ RKÞ

ðFþ RKÞTW �W

" #
50 ð28Þ

Now introduce the substitution P ¼ W �1; and then multiply the result from the left and right by
diagfP ; Pg to yield

�P FP þ RKP

PFT þ PKTRT �P

" #
50 ð29Þ

and the proof is completed by substitution from (26).
One important point to note about the results to date in this section is that the LMI decision

variables Y and P in Theorems 4 and 5, respectively are subsequently directly involved in the
computation of the resulting controller (via (20) and (26) respectively). This could be a source of
further conservatism and a similar problem has been encountered in 1D discrete linear systems
theory. This has been considered in References [12, 13] and here we extend these ideas to the case
of discrete linear repetitive processes, starting with the following result as an alternative to
Theorem 5.

Theorem 6
Suppose that a discrete linear repetitive process of the form described by (1) is subjected to a
control law of the form (14). Then the resulting closed loop process is stable along the pass if
9 matrices W1 ¼ W T

1 > 0; W2 ¼ W T
2 > 0; Q ¼ QT > 0 and G1; G2; N1; and N2 such that

�W FGþ RN

ðFGþ RN ÞT �G� GT þ W

" #
50 ð30Þ

holds, where W ¼ W1 � W2; G ¼ G1 � G2; (and R is again defined as in (23)). Also a stabilizing
K in the control law (14) is given by

K ¼ NG�1 ð31Þ

Proof
First note that G is invertible since from (30) Gþ GT > 0: (Note also that the special case when
G ¼ P recovers the result of Theorem 5.) Now left multiply (30) by ½I RNG�1� and right multiply
by the transpose of this last matrix. Then on substituting from (31) we obtain the Lyapunov
inequality (24) and the proof is complete.

In actual fact, it is possible to weaken the block diagonal matrix assumptions required in this
last result and hence reduce a possible source of conservativeness in the resulting stability along
the pass condition. In particular, we have the following result.

Theorem 7
Suppose that a discrete linear repetitive process of the form described by (1) is subjected to a
control law of the form (14). Then the resulting closed loop process is stable along the pass
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if 9 matrices P ¼ PT > 0; Q ¼ QT > 0; G ¼ G1 � G2; and N ¼ N1 � N2 such that

Q� P 0 *AA1
#GG1 þ R #NN1

0 �Q *AA2
#GG2 þ R #NN2

ð *AA1
#GG1 þ R #NN1Þ

T ð *AA2
#GG2 þ R #NN2Þ

T P � G� GT

2
6664

3
777550 ð32Þ

where

*AA1 ¼
A 0

C 0

" #
; *AA2 ¼

0 B0

0 D0

" #

#NN1 ¼
N1 0

N1 0

" #
; #NN2 ¼

0 N2

0 N2

" #

#GG1 ¼
G1 0

0 0

" #
; #GG2 ¼

0 0

0 G2

" #
ð33Þ

and R is defined in (23).

Proof
This follows immediately on left multiplying (32) by I

Y1
Y2

����
� �

and right multiplying this same

equation by the transpose of this matrix to obtain

Y1PY T
1 þ Q� P Y1PY T

2

Y2PY T
1 Y2PY T

2 � Q

" #
50 ð34Þ

where

Y1 ¼ *AA1 þ
BN1G�1

1 0

DN1G�1
1 0

" #

Y2 ¼ *AA2 þ
0 BN2G�1

2

0 DN2G�1
2

" #
ð35Þ

i.e. the 2D Lyapunov equation based sufficient condition for closed loop stability along the pass
and the proof is complete.

Now we give the following example of the application of Theorem 4 as an illustration of the
new results developed in this paper. This is the special case of (1) defined by

A ¼

�1:1 0:2 0:1

0:1 �1:2 0:2

�2 �0:3 �1:2

2
664

3
775; B0 ¼

�0:1 �0:5 �0:4 0:1

�0:7 1:2 �0:5 0:5

�0:5 0:4 �0:5 �0:5

2
664

3
775
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C ¼

�1:05 �0:05 0:2

�0:3 �0:2 �0:2

0:2 �2:1 0:2

�0:1 0:1 �0:1

2
666664

3
777775; D0 ¼

�0:1 0:2 0:2 0:1

0:4 0:2 0:1 0:2

0:2 0:2 �0:1 0:1

0:2 0 �0:2 �0:1

2
666664

3
777775

B ¼

�0:1 0:2

0:3 0:2

0:2 0:2

2
664

3
775; D ¼

�0:1 0:5

0:7 0:2

�0:5 0:4

�0:2 �0:1

2
666664

3
777775

This process is unstable along the pass since (by direct computation) the matrix A has at
least one eigenvalue with modulus greater than unity and hence (3) does not hold. Use of a
routine from the MATLAB LMI toobox now shows that (19) of Theorem 4 is satisfied in this
case by

N ¼
�2:8115 �1:4622 16:0718 �18:1474 �12:8291 13:8705 0:6210

39:0056 32:7175 �35:7558 �17:9019 �9:3048 0:8362 �5:1715

" #

Z ¼

5:1525 2:6612 �4:7635 �2:4572 �2:1636 �2:4726 �0:9774

2:6612 5:8978 �1:6409 �1:0039 1:9362 0:8944 0:7474

�4:7635 �1:6409 11:1693 0:6381 0:7004 1:7970 �3:3638

�2:4572 �1:0039 0:6381 13:2382 8:9026 �11:2128 �3:0147

�2:1636 1:9362 0:7004 8:9026 8:7124 �4:9491 �2:7050

�2:4726 0:8944 1:7970 �11:2128 �4:9491 17:4904 5:7660

�0:9774 0:7474 �3:3638 �3:0147 �2:7050 5:7660 13:0843

2
666666666666664

3
777777777777775

Y ¼

13:3828 7:5835 �15:1242 �2:2763 �2:7902 �5:0771 �3:1627

7:5835 10:7170 �7:2051 1:5330 3:8629 �1:9397 �0:4330

�15:1242 �7:2051 35:0306 0:0373 �1:5865 0:6176 �2:3396

�2:2763 1:5330 0:0373 20:1395 14:9850 �15:0870 �6:3348

�2:7902 3:8629 �1:5865 14:9850 16:2573 �7:2847 �7:9448

�5:0771 �1:9397 0:6176 �15:0870 �7:2847 25:7798 9:2018

�3:1627 �0:4330 �2:3396 �6:3348 �7:9448 9:2018 28:4592

2
666666666666664

3
777777777777775

and also (where ð�Þ denotes the set of eigenvalues of the matrix argument)
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eigðY Þ ¼

1:3876

0:0142

9:8029

16:2720

22:5253

45:5108

54:2533

2
666666666666664

3
777777777777775

; eigðZÞ ¼

0:2139

0:0084

4:3234

8:0831

12:3740

16:4477

33:2945

2
666666666666664

3
777777777777775

Hence a controller of the form (14) which guarantees closed loop stability along the pass is
defined by the following matrices

K1 ¼
�1:5902 1:4529 �0:0192

8:2022 �2:2933 2:3288

" #

K2 ¼
�0:5497 �1:2365 �0:1375 �0:5575

�1:9194 4:5352 1:0874 1:3736

" #

The corresponding matrices to A; B0; C; and D0 in the closed loop stable along the pass process
are then given by

Anew ¼

0:6995 �0:4039 0:5677

1:2634 �1:2228 0:6600

�0:6776 �0:4681 �0:7381

2
664

3
775;

B0new ¼

�0:4289 0:5307 �0:1688 0:4305

�1:2488 1:7361 �0:3238 0:6075

�0:9938 1:0597 �0:3100 �0:3368

2
664

3
775

Cnew ¼

3:2101 �1:3419 1:3663

0:2273 0:3583 0:2524

4:2760 �3:7438 1:1411

�0:6022 0:0388 �0:3291

2
666664

3
777775;

D0new ¼

�1:0047 2:5913 0:7575 0:8425

�0:3687 0:2415 0:2212 0:0845

�0:2929 2:6323 0:4037 0:9282

0:5019 �0:2062 �0:2812 �0:1259

2
666664

3
777775

The existence of examples for which Theorem 4 holds when Theorem 5 only produces an
inconclusive result is perhaps not surprising given in the former the LMI analysis yields an
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unstructured P but use of Theorem 5 requires a structured solution W ¼ W1 � W2 of (9) closed
loop.

If a discrete linear repetitive process is stable along the pass then the sequence of pass profiles
generated fykgk51 converges at a geometric rate (which is independent of the pass length) to the
resulting limit profile which is guaranteed to be a stable 1D discrete linear system. Hence any
form of computational information concerning this convergence rate would clearly be of interest
open or closed loop. In what follows, we show that if (9) holds open loop or Theorem 5 closed
loop, then it is possible to use the solution matrix W to extract computable information on the
rate of convergence to the resulting limit profile.

Suppose, therefore, that (9) holds for the example under consideration and that this example
is operating under a zero current pass input sequence and introduce

jjxkþ1ðp þ 1Þjj2W1
:¼ xTkþ1ðp þ 1ÞW1xkþ1ðp þ 1Þ

jjykþ1ðpÞjj
2
W2

:¼ yT
kþ1ðpÞW2ykþ1ðpÞ ð36Þ

Note also that (9) is equivalent to 9W ¼ W1 � W2 ¼ W T > 0 such that

FTW F� W ¼ �I ð37Þ

Then on pre-multiplying this last equation by ½xTk ðpÞ; y
T
k ðpÞ� and post-multiplying by the

transpose of this vector yields in terms of (36)

jjxkþ1ðp þ 1Þjj2W1
þ jjykþ1ðpÞjj

2
W2

� jjxkðpÞjj
2
W1

� jjykðpÞjj
2
W2

¼ �jjxkðpÞjj
2
I � jjykðpÞjj

2
I ð38Þ

Also no loss of generality arises from assuming xkþ1ð0Þ ¼ 0; k50; and introduce

jjxk jj
2
W1

:¼
X1
p¼0

jjxkðpÞjj
2
W1

jjyk jj2W2
:¼

X1
p¼0

jjykðpÞjj2W2
ð39Þ

and writing (38) in terms of these last two quantities gives

jjxkþ1jj2W1
þ jjykþ1jj2W2

¼ jjxk jj2W1�I þ jjyk jj2W2�I

4lðjjxk jj2W1
þ jjyk jj2W2

Þ ð40Þ

where (see below) l is a positive constant.
Now assume that

W1 � I4l1W1

W2 � I4l2W2 ð41Þ

where l1 and l2 are positive real scalars. Then

jjðxkþ1; ykþ1Þjj2 :¼ jjxkþ1jj2W1
þ jjykþ1jj2W2

4lðjjðxk ; ykÞjj2Þ ð42Þ

where l ¼ maxðl1; l2Þ: The process is stable along the pass if l51 which is always guaranteed to
be true if W1; W2 > I : Hence we have geometric convergence to zero in the pass to pass direction
of the output sequence of pass profiles.
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It is also possible to compute the rate l using the fact that if a square matrix, say #WW ; satisfies
#WW ¼ #WWT5I then 9#ll 2 ½0; 1Þ : #WW � I4#ll #WW : Then it is easily shown that

#WW � I4 #WW �
1

%ss2ð #WWÞ
#WW ¼ 1�

1

%ss2ð #WWÞ

� �
#WW ð43Þ

where %ssð�Þ denotes the maximum singular value of its matrix argument. Hence in the case of
(42), we have that

l ¼ max 1�
1

%ss2ðWiÞ

� �
; i ¼ 1; 2 ð44Þ

In effect, this result states that if the example under consideration satisfies (9) open loop or
Theorem 5 closed loop, then the pass profile sequence generated (and also the current pass state
vector sequence) converges to the resulting limit profile at a geometric rate for which a
computable upper bound is available from the 2D Lyapunov equation solution matrix. Further
research is clearly required to determine exactly how this information can be exploited to best
advantage in controller design.

At this stage, it is appropriate if note that (9) with 50 replaced by =�I is precisely the
Lyapunov equation first obtained in Reference [14] for the Roesser model of a 2D discrete linear
system whose dynamics are defined by the state space matrices fA;B;B0;C;D;D0g: It is, in
general, a sufficient but not necessary condition for stability (either for a 2D system or stability
along the pass of discrete linear repetitive process). This has an identical structure to that for 1D
discrete linear systems but is termed ‘2D’ in the literature to highlight the fact that there are
essentially two different approaches to developing Lyapunov equations for stability in the
setting of 2D linear systems/repetitive processes. The alternative is the so-called 1D Lyapunov
equation where the constant coefficients of the 2D equation are replaced by ones which are
functions in a complex variable. (For a detailed treatment of the 1D Lyapunov equation for
discrete linear repetitive processes see Reference [15]). The major unique feature of the 2D
Lyapunov equation for discrete linear repetitive processes developed here is the performance
bounds for a stable along the pass example.

5. CONCLUSIONS

This paper has developed an LMI based approach to stability along the pass of discrete linear
repetitive processes}a distinct class of 2D linear systems of both theoretical and applications
interest. The major result is that this LMI formulation of stability along the pass can be
immediately used to design a powerful class of control laws for these processes which, crucially,
have a well defined physical interpretation for applications areas such as iterative learning
control. These features are missing from alternative stability characterizations}including those
arising from the use of theory first developed for the Roesser model for 2D linear systems (where
also control laws are much less related to the underlying dynamics).

The LMI based characterization has also been linked to the so-called 2D Lyapunov equation
interpretation of stability along the pass and this leads to computable information on expected
performance of examples which are stable along the pass (either open loop or closed loop under
control action). In particular, a computable bound on the rate of approach of the output
sequence of pass profiles to the resulting limit profile of stable along the pass examples have
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been developed. Such information is again critical to applications}in iterative learning control
there is clearly a trade-off between the rate at which the process converges to the learned signal
and the dynamics produced along any pass (or trial in iterative learning control terminology).

It is important to place the results of this paper in context}essentially they represent a
systematic procedure for stability analysis and onward controller design, as opposed to just
stability analysis only, for a very important and distinct class of 2D linear systems using control
laws which are well grounded in terms of the underlying process dynamics. One key area for
which little or no results are currently available is the stability and control of discrete linear
repetitive processes in the presence of uncertainty in the model structure. Here it is possible to
immediately see a role for the LMI analysis of this paper.

To detail this last point a little further, define the so-called augmented input matrix for
processes described by (1) as

C ¼
B

D

" #

Suppose also that C and the augmented plant matrix F are subject to additive perturbations
defined as follows

Fp :¼ Fþ DF

Cp :¼ Cþ DC

where

DF ¼
DA DB0

DC DD0

" #
; DC ¼

DB

DD

" #

Also assume that the uncertainties here have the following typical structure

½DF DC� ¼
H1

H2

" #
F ½E1 E2�

where the matrices on the right-hand side are of compatible dimensions and also F TF4I : It is
important to note here that the matrices Hi and Ei; i ¼ 1; 2; are fixed for a given example but F
can be any matrix which satisfies F TF4I :

Given this setup, it is a routine exercise to show that the analysis of this paper generalizes in a
natural manner to processes with this structure and hence the details are omitted here. One
counter argument may be that the uncertainty structure used here is well known in the 1D linear
systems area. This is, in fact, true but only in terms of some of the matrices in the defining
repetitive process state space model. Also the fact that no previous work has been done in this
area and that these processes do have certain structural similarities with 1D discrete linear
systems, makes it not an unreasonable place to start work. The most important conclusion to be
drawn is, we argue, that it is indeed possible to control these processes in the presence of
uncertainty in the defining model structure and that the results so obtained provide a useful
benchmark for further work. Note also that alternative LMI settings for the subject area of this
paper also exist}certainly in the case of 2D linear systems described by the Roesser model [16]
and these should also be investigated in the repetitive process setting. Also the numerics
associated with the resulting conditions may not always be well behaved and this area is again
one which merits attention.
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The fact that the LMI approach is based on sufficient but not necessary conditions for
stability along the pass raises the immediate question of whether an alternative starting point
would yield better results in at least some cases. In which context, note that the stability test of
Theorem 1 here can be formulated as a m problem with two repeated complex blocks. To see
this, first rewrite the condition of (3) as

det Inþm �
z1In 0

0 z2Im

" #
F

" #
¼ 0 ð45Þ

or, equivalently,

det Inþm � FT
z1In 0

0 z2Im

" #" #
¼ 0 ð46Þ

i.e.

det½I � FTD� ¼ 0 ð47Þ

with

D ¼ diagðz1In; z2ImÞ ð48Þ

which is similar to the m problem with two repeated complex blocks see, for example, Reference
[17] and for computational algorithms based on LMIs [18]. This general approach clearly has
potential and requires an extensive investigation. Here this is left as a subject for further work
with the note that the results given in this paper will provide a comparative benchmark for any
algorithms arising from this m analysis approach.
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