Communicating Agents in Open Multi Agent
Systems

Terry R. Payne, Massimo Paolucci, Rahul Singh, and Katia Sycara

Carnegie Mellon University,
The Robotics Institute,
5000 Forbes Avenue,
Pittsburgh PA 15213, USA,
{terryp, paolucci, kingtiny, katia}@cs.cmu.edu,
http://www.cs.cmu.edu/~terryp/index.html

Abstract. Agents often utilise the services of other agents to perform
tasks within multi agent systems. To achieve this, an agent must first
locate another agent that has the capability to provide a desired service
(i.e. a service provider agent), and then interact with it. To communi-
cate with a service provider, an agent requires information about: 1) the
service provider agent’s interface; 2) the ontology that defines concepts
used by the provider agent; and 3) the agent communication language
(ACL) the agent uses so that it can parse and understand the commu-
nication. Currently deployed MASs encode the interface description and
the ontology within the capability description of a service provider, but
assume a common ACL between communicating agents.

Middle agents support the discovery of service providers based on the
advertised capabilities of the service providers. This advertisement de-
fines the provider agent’s interface, and may reference the ontology used
by the provider agent. However, the requester agent still requires in-
formation about the ACL used by the provider to be able to commu-
nicate with it. This paper demonstrates how agents can communicate
with each other without making assumptions about the ACLs used, by
presenting a template based shallow parsing approach to message con-
struction/decomposition, thus greatly simplifying and improving the ro-
bustness of inter-agent communication.

1 Introduction

Multi-Agent Systems (MAS) that contain more than a trivial number of hetero-
geneous agents rely on infrastructures that support service discovery and agent
interoperation. Many MASs achieve this through the use of a Middle Agent,
such as the OAA Facilitator [10], the RETSINA Matchmaker [14] and the Infos-
leuth Broker [11]. These Middle Agents provide lookup services that facilitate
the discovery of agents with specific capability descriptions; and may assist the
communication between agents. However, agent developers often make assump-
tions about homogeneity across communication languages and agent interfaces.
Although these assumptions may hold for smaller, closed MASs, they begin to

fail as the number and diversity of agents increases, and as agents and web
services appear within open environments, such as the Semantic Web][3].

Agents can be categorized as service providers or service requesters, or both,
depending on their role within the MAS, or the context in which they are used.
Service providers possess certain know-how or capabilities (e.g. planning routes
between two points within a city) that service requesters may desire. In addition
to this, service providers may be characterized by a set of service parameters
(e.g. cost, reliability, availability etc.) and Quality-of-Service guarantees. Ser-
vice requesters, on the other hand, have a set of preferences for particular types
of parameters associated with desired capabilities. Providers advertise their ca-
pabilities and service parameters with one or more Middle Agents. Requesters
submit service requests to these Middle Agents and select a provider according
to their preferences.

Problems arise when a service requester has no prior knowledge of the format
of the message expected by the provider or of how to interpret the response. In
such cases, although service requesters may discover the desired service providers
through the services of middle agents, they may not be able to communicate with
them. Agent Communication Languages (ACLs) such as KQML [6], FIPA [7],
and emerging web service communication languages such as SOAP [4] propose
the adoption of a common ACL to which all agents adhere. Whilst such lan-
guages specify the type of communicative action that the agents perform, as
well as the sender and other transport information, they do not always provide
a specification of the content of the message. Other MAS such as the OAA [10]
make no distinction between capability advertisements and agent queries.

The shallow-parsing template approach presented in this paper relaxes the
constraint that agents share a common language for describing the content and
format of messages. Message templates can be used in combination with adver-
tised capability descriptions to construct and exchange messages between agents.
Thus, the only assumptions made are that the agent can interact with the Middle
Agent (i.e. a common Middle Agent communications protocol is used, and agents
adhere to a common capability description language (CDL)! such as LARKS [14]
or DAML-S [1]) and that it shares the same ontology as the provider. Crucially
though, the two agents do not have to share the same ACL.

The contribution of this paper is twofold: we identify the assumptions that
agents have to make in order to communicate with each other; and we demon-
strate how a lightweight shallow parsing of the messages is sufficient to allow
agents to communicate robustly.

In the following sections, we discuss how services are discovered, and how
requests, queries and responses are constructed and interpreted, and present a
method that facilitates this process. Section 2 describes the mechanism used
for service discovery and capability matching within MASs that employ either

! It may be possible for different capability description languages (CDLs) to be used if
translation services between each CDL exist (e.g. between DAML-S [1] and WSDL
[5]). Typically, such translation services would be provided by the Middle Agent,
and thus interoperation at this level would appear seamless to the service requester.

Matchmaker or Facilitator based Middle Agents. Section 3 describes the process
of constructing messages based on message templates and capability descriptions,
followed by a discussion in Section 4, and concluding in Section 5.

2 Middle Agents and Capability Matching

Middle Agents [13,17] assist in the discovery of service providers based upon a
desired service capability description. For example, Middle Agents may help ser-
vice requesters locate agents that provide stock purchasing services or those that
return the ticker price for a given stock. Middle Agents may mediate communi-
cation between providers and requesters [10], and support service discovery. One
class of Middle Agents maintains knowledge of both the capabilities and prefer-
ences of different agents and coordinate the communication between them, thus
acting as Brokers or Facilitators [10,16]. These type of agents are often used
within market-based systems. Another sub-class of Middle Agents are generally
known as Matchmakers, Yellow Pages or Directory Agent systems [13,14,6, 8].
They only have knowledge about the capabilities of service providers, and do
not participate in the agent-to-agent communication process. Thus, if an agent
requires the services of another agent, it can query the middle agent, which then
returns a list of agents whose capabilities match the request.

The behavior of a middle agent is determined by its matching process and
its interaction protocols with service providers and requesters. The matching
process is dependent on the capability description language (CDL) used. In-
frastructures such as JINI [2] and UDDI [15] provide class-based or business-
based lookup mechanisms to identify registered, distributed services. In contrast,
capability-based lookup mechanisms identify agents by describing an agent or
service by its functionality; i.e. by describing the service as a transformation
from a set of input parameters to output parameters. For instance, an agent
that reports the value of a stock on the stock market can be represented as a
function that transforms the stock ticker into the stock quote.

Several CDLs exist, and vary according to their expressivity. CDLs such as
WSDL [5] define parameters in terms of datatypes, and rely on matching pro-
cesses that perform exact matches on parameter names etc. Larks [14] based
advertisements can be matched using a multi-filtered semantic matching engine.
This supports partial service matching through semantic and datatype subsump-
tion matching. For example, requests such as I would like an agent that can buy
stocks for me will match advertisements for agents that can buy financial instru-
ments, as the matching engine can infer that a stock is a financial instrument.
Other emerging CDLs such as DAML-S [1] are built upon semantic concepts
that can be reasoned about using DAML-based First Order Logic [9].

The interaction protocol determines how agents interact with a Middle Agent,

and in some cases how the Middle Agent mediates agent communication. Typ-
ically, when agents appear within a MAS, they advertise their capabilities with

the Middle Agent?. However, the method used for discovering and interacting
with a service provider can vary. The following sub-section describes how the ser-
vice transaction differs for two different classes of Middle Agent: the Matchmaker
and the Facilitator.

2.1 Simple Anatomy of a Service Transaction

Agents may discover available services through Matchmakers by constructing
and submitting requests for services based on their preferences, e.g. a request for
weather information. The format of the request is typically similar to that of the
advertisement; however, instead of specifying what parameters are required to
perform a service, it specifies what information the agent is willing to provide,
and what information is required from the service provider®.

The Matchmaker compares this request with advertisements maintained within
its advertisement database, to determine which service providers can provide the
desired service. A list of matching advertisements are then returned to the ser-
vice requester, which can use them to reason about which of the service providers
it will contact.

Provider Agent 2
Provider Agent 1

5) Execute service;
construct a response
that answers the
query and send it to
the requester

1) Provider advertises
capability description

Matching Engine : a [
2) Submit request |
for service

Middle Agent
Protocol

4) Construct and submit
a query based on the
capability description

Matchmaker /3) Rotyrn Jist of |
Middle Agent matching capability |
descriptions

Requester Agent
\

Fig. 1. Service Discovery using a Matchmaker Middle Agent.

This discussion assumes that the Middle Agents acquire knowledge of available ser-

vice providers through advertisements; however, there are classes of Middle Agents,
such as Anonymizer or Blackboard Middle Agents, that store only service requests
or simply facilitate in the dissemination of service requests to other agents. See [13]
for details.
As a service requester is unable to maintain a model of all possible agent advertise-
ments, it can never be guaranteed to provide the exact set of preferences that will
match all relevant service providers. Hence a tradeoff exists between expressivity, i.e.
representing current and possible knowledge, and recall, i.e. the number of possible
capability matches.

After the requester has selected a provider, it constructs and submits a service
query to the service provider. The service provider responds to the service query
by sending a reply. This message contains the results of the service request (if
such results are generated). The service transaction is complete once the service
requester receives, parses, and reasons about the reply (Figure 1).

Matching Engine

\ Middle Agent |
/ Protocol N/
Requester Agent Facilitator Provider Agent 1

Middle Agent

1) Submit Query Q1
2) Interpret Q1, and determine
what advertisements match
this query

3) Select a matching
advertisement, and construct 4) Interpret Q2, and
a corresponding query Q2 perform the service

5) Generate a response
6) Interpret R1 and transform R1 and return to the
7) Interpret and reason this into a response (R2) that Facilitator

about R2 can be understood by the
service requester

Fig. 2. Transactions between a service requester and a service provider through a
Facilitator Middle Agent.

To construct a query, the service requester requires knowledge about:

1. The agent interface, i.e. the inputs required and outputs generated by the
service provider. This may also include preconditions that should be satisfied
before the service can be performed. These attributes typically appear within
the CDL.

2. The agent communication language (ACL) used by the service provider. This
includes the protocol used, information about the message header, and the
format of the message content. In addition, there may be information about
the attribute data types for message validation.

3. The ontology used by the service provider. The CDL specifies the format of
the capability description, but knowledge of the ontology used when defining
an advertisement is essential for matching and reasoning about the adver-
tisement.

Once the requester has received an advertisement for a desired service, it can
construct the query based on the agent interface defined within the advertise-

ment, using known concepts defined within the service provider’s ontology, and
format the message using the same ACL as that used by the provider. Thus,
in currently deployed MASs assumptions about the ontology and the ACL need
to be made, if the service requester is to exchange messages with the service
provider.

Transactions within Facilitator based MAS are different, in that service re-
questers construct service queries directly without a priori knowledge of the
available service providers, and submit these directly to the Facilitator. In this
case, the middle agent has to communicate with both the service provider and
service requester, and if necessary translate between message formats. This trans-
action process (illustrated in Figure 2) proceeds as follows:

1. The service requester constructs and submits a query)1 for a desired service.

2. The facilitator interprets the query, and compares this to the advertised
capability descriptions of service providers.

3. A service provider is selected, and a second query Qs is constructed from
the contents of the first query*. The Facilitator then submits this query Q»
to the service provider.

4. The service provider interprets the query () and executes the service.

5. A response, Ry, is constructed containing the results of the execution, and
returned to the Facilitator.

6. The Facilitator translates R; into a response (Rz) that can be interpreted
by the requester.

7. The service requester receives, parses and reasons about the response R,.

As with the Matchmaker based MAS, knowledge is required regarding the
agent interface, the ACLs used by both agents, and the shared ontology. However,
as communication is mediated by the Facilitator, this knowledge need only be
maintained and used by the middle agent. Hence, it can mediate between two
agents that do not share the same ACL (unlike a Matchmaker), and translate
the messages between the two ACLs accordingly. However, knowledge is still
needed about the two ACLs.

The shallow-parsing template approach presented here alleviates the need for
knowledge about ACLs by providing preformatted message templates that de-
scribe how messages may be constructed or decomposed. The following section
describes how the inclusion of these templates within the CDL facilitates com-
munication between agents (within Matchmaker and Facilitator MASs), whilst
relaxing assumptions on the ACL.

* Typically, facilitated systems assume a common query language and agents have
a priori knowledge about the capabilities of other agents within the system. This
alleviates the need for query and response translation, and thus ()1 can be sent
directly to the service provider. Likewise, the reply R; can be returned to the service
requester without translation.

3 Query Construction and Reply Decomposition

The shallow-parsing template approach is based on the inclusion of preformatted
message templates within the advertised capability description. These templates
define the format of the messages as character sequences, and denote the location
of parameter values within the message using placeholders. Two additional fields,
query and reply, are inserted within the avertisement of a service provider,
containing templates for query and response messages respectively.

-
c i (query 2
[InputD_ecI'arat_lon's :behavior getInformation g
£ city:string; :primary-key ("Paris, France")) |G
3 OutputDeclarations [. 4
£ city:string; (
@ weather:{temperature:int, rainfall:string}; ,
2 | QueryTemplate .
2 Q Y(queF:-y Requester Agent
K :behavior getInformation
o :primary-key ("?city?"))
T | ReplyTemplate ;
3 repl 2 [(reply !
E (rep y:c;ii;y (2city?) % :city (Paris, France) ‘
:weather (weather o :weath:r (wealéher 20
:temperature ?temperature? ‘temperature W,
:precipitation (?precipitation?))) :precipitation (0 mm)))| provider Agent

Fig. 3. Generating messages from templates.

The query template represents a sample query with unspecified input param-
eters. Placeholders, delimited with ’?’ characters, specify where input parameters
should appear. The reply template can be used to identify where output parame-
ters appear within incoming messages, so that these messages can be parsed and
decomposed. As an example, Figure 3 demonstrates how the query and reply
templates might be inserted into an advertisement for an agent that communi-
cates using KQML. This advertisement describes how an agent may be queried
to provide weather information about a given city. The query specifies that the
reference to the city should be put between double quotes and brackets after
the token :primary-key. For the reply, the template specifies where the desired
information will be located. In the example above the agent is committed to
providing temperature (i.e. 20) and precipitation (i.e. 0 mm) information, which
is specified after the keys :temperature and :precipitation respectively.

The requesting agent does not have to understand the content of the query it
submits, nor does it have to understand the content of the reply it receives. The
only task the requesting agent has to perform is a shallow parsing of the tem-
plates to locate where the placeholders are and replace them with the required
input information for the query, or to isolate and extract output information
returned in the reply. For example, to compile a query that returns the cur-
rent temperature in Paris, the agent simply constructs a query message from
the query template by replacing the placeholder 7city? with the name of the
desired city, i.e. Paris, France. Again, the agent does not have to understand
every detail of the reply, just the location of the information to be extracted.

By combining information about each parameter (i.e. data type, range of
possible values or links to semantic concepts) with the reply template in the ad-

vertisement, the requester can decompose the response from the service provider
into value-attribute tuples based on the reply template. This is achieved by com-
paring the template with the response, and attributing the unmatched string se-
quences to the corresponding parameter placeholders. For example, the reply in
Figure 3 can be decomposed by comparing it with the corresponding template
in Figure 3. This results in the generation of three tuples: [city, (Paris,
France)] [temperature, (20)] and [precipitation, (0 mm)].

This approach naturally lends itself to peer-to-peer communication within a
Matchmaker based MAS. It can also be applied to a Facilitator based MAS with
a slight modification:

1. The service requester submits a query to the Facilitator. This query contains
parameters representing a subset of the requesters knowledge, and the de-
sired preferences. These parameters can be extracted from the query by using
the query template attached to the message, and using this to decompose
the query into tuples.

2. The Facilitator locates a service provider that offers the desired service. As
the matching engine is assumed to compare service requests with advertise-
ments, the tuples could be used to construct such a service request®. This
request is then used to select a service provider.

3. The Facilitator constructs and submits a query to the service provider. This
is achieved by inserting the tuples into the provider’s query template defined
within the matching advertisement.

4. The service provider responds by sending a reply to the Facilitator, which
constructs a reply for the service requester. The Facilitator decomposes the
provider’s reply into tuples, based on the message template in the provider’s
advertisement. These tuples can then be used to construct a reply to the
requester based on the reply template sent with the initial query.

At this stage the transaction between the requester and the provider is com-
plete and the agent has the information that it was seeking. It can now proceed
to solve the problem that originally prompted the transaction.

4 Discussion

The previous section presented a simple method of constructing and decompos-
ing messages between agents based on message templates. Although this relaxes
the assumption that two communicating agents must share a common agent com-
munication language, it does impose certain restrictions on the type of messages
that can be exchanged. For example, the use of message templates establishes
an upper bound on the expressivity of agent communication, by restricting the
number of messages that two agents can exchange to those specified by the tem-
plates in the advertisement. In order to support a richer level of communication,

° It may be possible to construct several service requests based on the requester’s
query. However, as no formal method has yet been developed to address this, a
single, arbritary request is currently generated.

agents should agree upon an ACL based upon social semantics [12]. This allows
agents to express messages in which unrestricted conversations can take place.
However, in most cases, it is extremely difficult to construct agents that exploit
this, and currently there are no agents that interoperate with each other through
unconstrained communication.

The use of message templates imposes its own assumptions, namely that
agents can parse and interpret the templates, and that the templates will be
included within the capability descriptions. However, it is currently assumed
that agents within the MAS share the same CDL, and hence can utilize a Middle
Agent’s discovery services. Thus, the CDL can be augmented to include optional
message templates to support agent communication when there is a mismatch
with assumed ACLs.

Exchanging data between two agents is only part of the solution, however.
Both agents need to have some shared ontology within which the parameters
that appear within the advertisement and the message templates are grounded.
In addition, for all but the most trivial cases, where the vocabulary used is
highly constrained, semantics are required to support the matching of adver-
tisements. For example, an agent may advertise services for providing infor-
mation about rainfall, and another agent may request information regarding
precipitation. Shared ontologies are also necessary even with pre-agreed pa-
rameter vocabularies, as many concepts can be represented in different ways.
For example, a city may be expressed as just the city name (e.g. Paris), a city
and country (e.g. Paris, France), or with abbreviations (e.g. Paris, Fr.).
Fortunately, formal semantics and ontology specification languages such as the
DARPA Agent Markup Language (DAML) [9] are emerging, which support se-
mantic interoperation between agents. Concepts defined in DAML can be readily
combined with message templates, thus increasing the flexibility of template-
based messages, and hence accessibility and interoperability of services within
open environments.

5 Conclusions

For two agents to communicate successfully, knowledge about the agent inter-
faces, the ontologies used to define concepts, and the ACLs used to construct and
parse exchanged messages is required by both participants. This paper presents
a shallow parsing mechanism that provides message templates for use in mes-
sage construction. Although limited to simple message exchanges, this approach
relaxes the constraint of a shared ACL between agents, thus supporting flexible
communication between heterogeneous agents within open multi agent systems.

6 Acknowledgments

The research was funded by the Defense Advanced Research Projects Agency
as part of the DARPA Agent Markup Language (DAML) program under Air

Force Research Laboratory contract F30601-00-2-0592 to Carnegie Mellon Uni-
versity. Special thanks goes to Martin van Velsen for his contribution towards
the development of many of the ideas presented in this paper.

References

1.

10.

11.

12.

13.

14.

15.
16.

17.

A. Ankolekar, M. Burstein, J. Hobbs, O. Lassila, D. Martin, S. Mcllraith,
S. Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. Daml-s: Semantic
markup for web services. In International Semantic Web Working Symposium,
2001.

K. Arnold, B. O’Sullivan, R. Scheifler, J. Waldo, and A. Wollrath. The Jini Spec-
ification. Menlo Park, CA:Addison Wesley, 1999.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific American,
284(5):34-43, May 2001.

D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F.
Nielsen, S. Thatte, and D. Winer. Simple Object Access Protocol (SOAP) 1.1.
http://www.w3.org/TR,/2000/NOTE-SOAP-20000508/, 2000.

E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services
Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl, 2001.

T. Finin, R. Fritzson, D. McKay, and R. McEntire. KQML as an agent com-
munication language. In Proceedings of the third Conference on Information and
Knowledge Management, CIKM9j. ACM Press: New York, 1994.

FIPA. Foundation for Intelligent Physical Agents. http://www.fipa.org/, 1997.
M. Genesereth and S. Katchpel. Software Agents. Communications of the ACM,
37(7):48-53, 1994.

J. Hendler and D. L. McGuinness. Darpa agent markup language. IEEFE Intelligent
Systems, 15(6):72-73, 2001.

D. Martin, A. Cheyer, and D. Moran. The Open Agent Architecture; A framework
for building distributed software systems. Applied Artificial Intelligence, 13(1-
2):92-128, 1999.

M. Nodine and A. Unruh. Facilitating Open Communication in Agent Systems.
In M. Singh, A. Rao, and M. Wooldridge, editors, Intelligent Agents IV: Agent
Theories, Architectures, and Languages, pages 281-296. Springer-Verlag, 1998.
M. P. Singh. A social semantics for agent communication languages. Technical
Report TR-99-03, 22, 1999.

K. Sycara, K. Decker, and M. Williamson. Middle-agents for the internet. In
Proceedings of IJCAI-97, January 1997.

K. Sycara, M. Klusch, S. Widoff, and J. Lu. Dynamic service matchmaking among
agents in open information environments. SIGMOD Record (ACM Special Interests
Group on Management of Data), 28(1):47-53, March 1999.

UDDI. The UDDI Technical White Paper. http://www.uddi.org/, 2000.

M. Wellman. A Market-Oriented Programming Environment and its Application
to Distributed Multicommodity flow problems. Journal of Artificial Intelligence
Research, 1:1-23, 1993.

H. C. Wong and K. Sycara. A taxonomy of middle-agents for the internet. In
Proceedings of the Fourth International Conference on MultiAgent Systems, pages
465 — 466, July 2000.

