Learning Mechanisms for Information
Filtering Agents

Terry R. Payne* & Peter Edwards
Department of Computing Science
King’s College
University of Aberdeen
Aberdeen, Scotland, AB24 3UE
{terry, pedwards}@csd.abdn.ac.uk

Abstract

In recent years, software agents have been developed which assist
users with tasks such as information filtering or information re-
trieval. Such systems have evolved from simple agents that refer
to a user-defined script to filter incoming mail, to complex Web
agents that not only learn their user’s preferences but actively
seek out Web pages that could be of interest. To provide personal
assistance, an agent needs information about the user’s interests
and needs. This paper reviews how different mechanisms have
been used to define a wuser profile, from simple rules to com-
plex machine learning algorithms. Problems with user-defined
scripts are discussed, as are the issues involved with integrat-
ing learning mechanisms into agents. One approach currently
being developed to learn within an agent environment is then
described.

*Terry R. Payne acknowledges financial support provided by the UK Engineering
& Physical Sciences Research Council (EPSRC).

163

1 Introduction

A software agent! can be characterised as a system which aids and assists
a user with some common task. It may employ some degree of learn-
ing or adaptation to improve the quality of its assistance over time; be
autonomous, e.g. the agent can learn without needing to be explicitly
trained; offer assistance only when requested, or act independently of
the user; be mobile, travelling in search of useful information or to fulfill
tasks for the user; interoperate, i.e. exchange information and services
with other agents, to provide greater assistance to the user than if the
agent worked in isolation [15]. Described as:

“...computer programs which employ Artificial Intelligence
techniques to provide assistance to a user dealing with a partic-
ular computer application...” Pattie Maes [21],

many systems have been developed to deal with filtering information, such
as electronic mail or USENET news articles [32, 27]. Other systems have
been developed which actively seek out information [34, 4], and the num-
ber of such systems being developed is increasing. With more information
becoming available on the Internet daily, searching for interesting or rel-
evant information is becoming increasingly difficult [32]. Hence, there is
a definite need for agents which can assist users with such tasks.

If an agent is to be of assistance, it requires knowledge about the domain
application and/or the user. Two approaches have traditionally been used
to provide an agent with knowledge about its task domain. The first and
most common method is for users to provide their own rules, e.g. using a
scripting language. Some systems provide an environment to allow users
to simulate the behaviour of rules and to test them with hypothetical mes-
sages [8]. The second method makes use of traditional knowledge engin-
eering techniques to identify background knowledge about the application
and the user. This technique has been applied to advisory agents, such as
UCEgo [6], which provides advice on using the UNIX operating system.
Whilst this shifts the task of programming the agent from the user to
the Knowledge Engineer, the agent will not be customised for a particu-
lar user. Thus, approaches such as this cannot be used for personalised
tasks, such as information filtering.

!For a survey on agent theories and architectures, see Wooldridge & Jennings [37].

164

An alternative is to acquire knowledge about the user through learning.
Many agents employ machine learning techniques to induce a user profile.
This not only eliminates the need for users to define their own scripts,
but allows the agent to adapt to changes. To date, many different learn-
ing mechanisms have been employed within agents. Genetic algorithm
approaches [13] have been used for news filtering agents [32]; decision
tree algorithms such as C4.5 [29] and CN2 [7], and instance-based ap-
proaches [33] have been used with mail and USENET news filtering tasks
[23, 26, 27] and automated Web browsing [4, 14]. Minimum Description
Length techniques have been explored in USENET news filtering [19],
and relational learning algorithms such as FOIL [28] have been applied to
text categorisation [9]. However, it is difficult to evaluate the relative per-
formance of the techniques employed by learning agents, even within the
same domain (such as news filtering). Evaluations performed on various
agent systems to date have relied on individually constructed datasets.
No standard datasets yet exist within the UCI Machine Learning Data
Repository [24] to evaluate such systems?. However, some studies [26, 19)
have made comparisons of learning techniques across data gathered from
existing agent-based systems.

2 Interface Agents

The evolution of knowledge acquisition techniques for interface agents
can be illustrated by examining the issues raised by various information
filtering/retrieval systems.

2.1 Early Interface Agents

Early interface agents relied on users writing scripts to describe their
interests or preferences. Users of systems such as the Information Lens
[22] had to define a set of rules which were used to filter and sort incoming
mail messages. The Tapestry System [16] is an example of a collaborative
mail filtering agent which provides a database query language, so that
users can retrieve popular or interesting mail articles. Other systems
rely on user-defined scripts which contain short programs, such as those
employed by the Information Retrieval Agent (IRA) [34]. The use of
scripts highlights a number of important issues [9]. Learning and utilising

2USENET news data gathered for a recent study [17] is currently being prepared
for submission to the UCI repository.

165

a scripting language may discourage non-technical users from using the
system. As well as understanding exactly how they require the system
to behave, a user must appreciate how the agent will perform with the
script. For example, the behaviour of individual rules may differ when
used in isolation and when used with other rules. The user also has to be
responsible for maintaining the scripts over time as their interests change.

An alternative to using a user-defined script, is to build user profile of
the user’s preferences and requirements, by either querying the user dir-
ectly or by passive observation of the user. Letizia [20] is one system
which observes the user as he/she browses the Web. By applying a set of
heuristics to these observations, the browser can recommend links that it
believes the user will find interesting. Defining such heuristics requires an
understanding of how users interact with the agent. For example, Letizia
assumes that the user frequently visits pages that are of interest. Whilst
for some pages this may be the case, others may simply be a starting
point for exploration, such as those that contain search forms. Hence,
the agent only performs well when the user behaves as anticipated, and
cannot react if this behaviour changes.

2.2 Interface Agents & Machine Learning

Machine learning techniques have been investigated as a means of creating
user profiles, and as reported above, many different learning algorithms
have been applied to this problem. The user requires no prior knowledge
about scripting languages, as the user profile is induced from their ac-
tions. The profile can also evolve as the user’s behaviour changes. In
order to induce this profile, mechanisms are needed to extract informa-
tion for learning. Machine Learning algorithms represent their knowledge
prior to learning as a set of instances. An instance contains a fixed number
of attributes, each of which contains a single value. A feature extraction
mechanism must be used to identify terms, such as keywords in news art-
icles or mail messages, and map these to attributes for learning. Different
techniques for identifying terms have been used, such as information the-
oretic approaches [31], or user directed approaches [18].

The USENET news reader, NewT (News Tailor) [32] is one system which
uses genetic algorithms [13] to manage a population of profiles which
reflect the users interest in different topics. Each profile contains a set of
tuples which comprise of grouped keywords and an associated weighting
value. Only the highest ranking, or fittest profiles survive; to control the

166

size of the population, those profiles with a low fitness are eliminated. In
addition, two genetic operators, Crossover and Mutation can be used to
search for better solutions. NewT uses crossover to create new profiles
by exchanging the keywords of two existing profiles. Mutation is used to
explore new newsgroups by applying the keywords in an existing profile
to a different newsgroup.

The Memory-Based Reasoning (MBR) algorithm [33] has been employed
within the MAXIMS mail filtering agent [23]. MBR is a member of the
Instance-Based Learning family of algorithms. This approach stores sets
of exemplars or instances and then compares these to new unclassified
situations. Maxims stores instances which describe a situation (such as
receiving a mail message) and the user’s response to it (for example, de-
leting the message). A modified version of the MBR algorithm was used
which incorporated priority weightings [18]. This enabled the agent to
rate elements (such as different keywords) within exemplars by import-
ance. When the user acts upon a message, such as deleting or reading
it, keywords from the message and the user’s action are stored as an ex-
emplar. The agent then attempts to predict the user’s likely response
to the arrival of a new message, by comparing it with the exemplars. If
a similar match is found, a confidence rating is generated with the pre-
diction, which determines how the agent will react. If the agent makes
an incorrect prediction, the user is given an explanation as to why the
agent behaved as it did and is given an opportunity to indicate if this is
because of incorrectly set weightings (such as too little importance given
to a certain field). For example, the agent may ask: “...was the message
less important than I thought?...”, and then adjusts the priority weights
for the keywords found in the message accordingly.

Both NewT and MAXIMS addressed how a particular machine learning
technique could be applied to information filtering and retrieval, and what
additional support was needed from the user for the agent to succeed in its
task. Work by Lang [19] on the news-filtering system, NewsWeeder, has
studied how well machine learning techniques perform compared to tradi-
tional information filtering techniques. The performance of the Minimum
Description Length principal (MDL), described in [19], was compared to
term-frequency/inverse-document frequency weighting (tfidf) [31]. Results
showed that machine learning techniques could outperform information
filtering techniques for identifying news articles of interest.

167

2.3 Experiences with Learning Agents

To explore the issues involved in applying machine learning to information
filtering agents, we have designed an agent architecture [26] and have used
this to implement Magi [25], UNA [17] and LAW [4]. The instantiation
of this architecture for the Magi system is shown in Figure 1.

e A

Profile Generation

Feature Extraction

Classification

Feature Extraction

Figure 1: The Magi Architecture.
(Taylor & Francis, 1997, used with permission)

The work on Magi (Mail Agent Interface) explored the use of this ar-
chitecture in developing an agent which aids a user in sorting incoming
electronic mail [25]. A version of Xmail, a graphical user interface for mail,
was modified to record observations of the user, i.e. to record what actions
the user performed on his/her mail messages. Keywords, or features, were
extracted from these observations, and used to generate a user-profile. A
symbolic rule induction algorithm, CN2 [7], was used to induce the profile.
Features were then extracted from incoming mail messages and tested by
the classification engine. A classification was generated, which determ-
ined in which mailbox the message should be placed. The performance of
this agent was compared to that achieved when the instance based tech-

168

nique, IBPL1 [26] was used instead of CN2. Coverage (i.e. how many
new messages could be classified) and accuracy (i.e. whether the classi-
fications made were correct) were recorded for the system. A total of 408
mail messages were used in the evaluation, sorted into 12 mail boxes. The
results are described in [26].

UNA (USENET News Agent) applied the agent architecture to the task of
identifying interesting USENET news articles. A version of the zrn news
browser was modified so that users could indicate their level of interest
(on a scale of 1 - 6) in the articles read. A similar feature extraction
mechanism to that developed for Magi was used, and the performance
of user-profiles generated by both CN2 and IBPL1 were compared. This
work is described in [14].

LAW (Learning Agent for the Web) extended this work by addressing
some of the issues involved in feature extraction. Like its predecessors,
LAW observed the user as he/she browsed the World-Wide Web, using a
modified version of the web browser, Chimera. These observations were
then used to induce the user-profile, using IBPL1 or C4.5 [29]. The profile
was used to identify interesting Web pages. This was done in two ways:
by highlighting links believed to point to pages of interest, and by using
the profile as input to an autonomous Web robot. In addition, four in-
formation retrieval techniques (term frequency, tfidf, signal to noise, and
term relevance) were compared to investigate which method extracted the
best features for inducing the user-profile. See [4] for a full description of
the results obtained, and [14] for a discussion of the practicality of this
agent.

From our work on these systems, it is clear that there are a number of
important issues relating to agent-based information filtering which need
to be explored. Our work on Magi [26] highlighted the problems associated
with extraction of multiple features from each mail message. The rule
induction algorithm used in that study, CN2 [7], expected single values
for each attribute. This required all possible permutations of values to
be created from the original feature sets, which resulted in large numbers
of instances being generated for each training example. For example in
Figure 2, six instances are generated from features extracted from a single
mail message. Not only did the algorithm take longer to induce the rule
set from these examples, but it biased the rule set towards values in feature
sets with fewer values, such as the Subject set in Figure 2.

169

CN2: Generating Examples from Features

Feature Extraction | €————
i
’ !
!

/| al bl cl;

From={ al a2 } K /a2 b1 cl:
Subject={ b1 } / /| at bt c2;
Body={ ¢l c2¢c3} | | a2 b1 e2;

! K al bl c3;

/) a2 bl c3;

Figure 2: Generating Multiple Examples from Feature Sets for Magi.
(Taylor & Francis, 1997, used with permission)

The work on UNA highlighted the need for learning algorithms that learn
graded concepts. For example, UNA represents the graded concepts dull
and interesting by rating the article on a scale of 1-6. A rating of 1
indicated that the user found the article extremely dull or uninteresting,
whilst a rating of 6 indicated that the user found it highly interesting. If
two articles are rated 5 and 6 respectively, they may share many features
which indicate that the article is of interest. However, nothing can be
learned from features shared by widely differing articles (i.e. rated 1 and
6 respectively), as such features characterise both dull and interesting
articles.

UNA also highlighted the need for alternative feature extraction tech-
niques. The technique used by Magi identified features that characterised
the mail message. However, this approach was unsuited to learning in-
terest within a newsgroup. For example, in a sporting newsgroup (such
as rec.sport.orienteering), the predominant features extracted from all the
articles will be sporting terms, irrespective of whether the user found the
article interesting or not. This leaves few features in the training data
from which the concepts of dull and interesting can be learned. The work
on feature extraction methods in LAW explored different ways of improv-

170

ing the feature extraction stage. This stage is crucial in providing quality
training instances from which concepts can be learned.

3 Developing an Instance-Based Learning
Algorithm for Information Filtering

The UNA and LAW systems [14] emphasised the need for good feature
extraction techniques which generate quality training instances. Both
systems consider feature extraction and learning as separate stages in
the generation of the user-profile. Many agents (such as NewsWeeder
[19] and Magi [25]) filter out the majority of features based on frequency
or relevance measures, and retain only the most frequent or most relev-
ant features. Other agents (e.g. NewT [32]) rely on the user to specify
keywords from the text. The learning process then identifies which of
these features best represent a concept or class. The problem with such
approaches is that many of the features which are removed by the feature
extraction stage may improve the concepts learned. By combining these
two stages into one, features could be identified by the learning algorithm
which act as good classifiers, and these used for learning.

One solution to this problem would be to create training instances that
contain all the features. For example, for each mail message, Magi gener-
ates a vector of all the words and their frequency counts within the mes-
sage. This vector can be expanded to contain every word encountered,
and each word can be mapped to a single attribute in the training in-
stance. This would result in instances whose size is of the order of 20 000
- 100 000 attributes [19]. The number of instances required to learn a
concept increases as the number of attributes in each instance increases,
and therefore many more instances would be needed to determine which
attributes characterise the class. In addition, the time required to induce
a user-profile from such instances could be so great that it would make
this approach infeasible.

An alternative solution would be to utilise Prototypical Learning [5]. This
type of learning has been explored by the Instance-Based Learning com-
munity as a means of reducing the amount of space required to store
training instances. By identifying the most useful or significant instances
stored, those that contribute little to future classifications can be removed.
This approach could also be applied to sets of features. If the most useful
or significant features are identified within each set, those features that

171

contribute little to future classifications can be removed.

3.1 Prototypical Learning and Instance-Based Learning

As mentioned earlier, Instance-Based Learning algorithms use specific
instances rather than a pre-compiled abstraction when classifying new in-
stances. Also known as exemplar-based [10] and nearest-neighbour meth-
ods [12], these techniques learn by storing instances as points in a feature
space, and then calculating distances between a new instance and the
existing exemplars. Distances can be calculated simply by using normal-
ised Euclidean values if the instances contain numeric data. However, for
symbolic data, distances may be calculated by considering the vector of
overlapping features or using more complex statistical metrics. They have
also been described as Lazy Learning algorithms because they store in-
stances and postpone any form of generalisation until classification time.
They can learn graded concepts, as shown by the Bloom algorithm [1],
and provide a basis for exploring prototypical learning [5]. The use of
multiple nearest neighbours, known as k-nearest neighbours (k-NN), has
been shown in some cases to improve classification over methods that
use the single nearest neighbour [11]. There is also work on the use of
weighting methods [35, 36] to improve classification accuracy.

As instance-based algorithms store all the information held within each in-
stance, noisy, redundant or irrelevant attributes are also preserved. Such
algorithms therefore require large amounts of storage. Because of these
factors, there has been a growing interest in prototypical learning. Much
of the recent work in prototypical learning has emerged from psycholo-
gical studies of humans. Rosch & Mervis [30] argue that natural concepts
are represented by an image of the prototype of the concept. A prototype
is an object that belongs to the concept and represents it best. Proto-
typicality can also be viewed as a graded property. In other words, as
members of a concept get further away from the prototypical member,
the less representative they are of the concept. Barsalou [3] argues that
concepts in real world applications contain a number of graded instances.
For example, when asked, American college students agreed that a robin
was a typical bird, a pigeon was a moderately typical bird, and an ostrich
was atypical. Zhang [38] developed a measure of typicality of an instance,
i.e. how likely an example is to appear within one class, as opposed to
other classes. This value was calculated in order to learn graded concept
structures. The TIBL (Typical Instance-Based Learning) system was de-

172

veloped by applying this measurement to a standard instance-based learn-
ing algorithm, IB1 [2] to reduce the number of instances stored. When
compared to other instance-based learning techniques, the results showed
that with datasets which contained graded concepts, TIBL recorded lower
storage requirements and higher classification accuracies than these other
methods. Similar work has recently been carried out by Biberman [5].

3.2 The IBPL1 Algorithm

To explore the use of prototypical learning for information filtering agents,
an instance-based learning algorithm was required. The Memory-Based
Reasoning algorithm [33] was studied, as it had formed the basis for the
learning component in a previous mail filtering system, MAXIMS [23].
We have developed a new instance-based algorithm, IBPL1, which is an
extended version of MBR.

As described earlier, a large number of instances containing single val-
ues for each attribute were generated when the CN2 algorithm was used
within Magi (see Figure 2). To overcome this, the original MBR algorithm
was modified to learn from sets of values for each attribute, i.e. each at-
tribute can contain one or more unordered values within a single instance.
The new algorithm considers all the inter-instance distances within two
respective feature sets (Figure 3) when calculating the distance between
two instances. These inter-instance distances are then averaged to find
an overall distance value.

IBPL1 Inter-Instance Comparisons

Fielda: 4 comparisons made p= ‘ C2, al a2, bl b2, cl c2 c4; ‘

Fieldb: 2 comparisons made

Fieldc: 9 comparisons made
=

al a2, b1, cl c2 c3; ‘

Figure 3: Calculating the Inter-Instance Distance.
(Taylor & Francis, 1997, used with permission)

173

Before the IBPL1 algorithm can be discussed in detail, some terms must
be defined. Instances used in training, known as ezemplars, and instances
which are classified, known as ezamples, are denoted by the Greek letters
p and 7 respectively. These instances contain fields, such as From and
Subject used in our study. The set of all possible fields is written F,
where each field f contains a set of features. A feature set for the field
f in instance p is written p.f. The values held within the feature sets
are denoted by the italic characters ¢ and j. The number of values held
within a feature set is represented as |p.f|. The set of all possible classes
an instance may belong to is written C.

The distance Af(7, p) between a new example 7 and a memorised exem-
plar p is computed as the sum of all partial distances for f € F,, i.e. the
partial distance for each field f in the example 7 Eq.(1).

The partial distance Af(7.f, p.f) Eq.(2) is calculated by taking the aver-
age of the distances for each of the features in the two sets belonging to
field f. This distance between ¢ and j is the product of the feature dis-
tance between ¢ and j and the weight of 4, i.e. d(i, j) defined in Eq.(3) and
w(i) defined in Eq.(4). These values are based on calculating d(c,) which
is the ratio of the number of times value z occurs in training instances of
class ¢, to the number of times z occurs in the training set.®> For example,
if the value x occurred in 8 instances belonging to class ¢ and only in 2
instances belonging to the other possible classes, then §(c,z) = %. This
metric is used to determine the quality of a feature as a good classifier.

Arp) = Y Aprtfpd) (1)

FeF,

Do di, fw(i)

_ i€T.f jEp.f
Asirfopt) = SR ©)

G,) = 3 (3(e.i) ~ 8(e, 7)) 3)

ceC

3This ratio only considers instances that contain the value z within the field f where
reT.forx€Ep.f.

174

w(i) = [y 8(c,i)? (4)
ceC

Once the distances A(7, p) Eq.(1) have been calculated between the ex-
ample and every memorised exemplar, they are used to generate a classi-
fication &, and a confidence rating. A score is determined for each of the
exemplars by taking the reciprocal? of the distance A(7,p) Eq.(5). The
exemplars are then sorted with respect to the score. The classification &
is determined by the class of the highest scoring exemplar. The £ highest
scoring exemplars are used to determine the confidence rating. For each
class ¢ € C, a confidence is generated by summing the scores of exemplars
belonging to that class Eq.(6). The confidence rating is the difference
between the confidence of the classification , and the confidence in other
classifications -k, as shown in Eq.(7).

Score(r,p) = (5)

A(r,p) +0.01

Con fidence®SC(r, p) = Z Score(t, p) (6)

Confidence”™ (1) = Con fidence”(r, p) — Z Confidence®(t,p) (7)
ceECAcF#kK

3.3 The IBPL2 Algorithm

As IBPL1 was developed, many issues were raised, such as how unknown
values should be handled, and how the algorithm could overcome noise.
However, the concept of learning with sets was new, and it introduced
additional problems, such as how comparisons should be made between
a set of values and either its superset or subset (e.g. comparing the sets
{a, b, ¢, d} and {b, c}). Alternative methods for calculating distances
are currently being considered. In IBPL1, the distances between inter-
instance attribute values are calculated and averaged. Because of this,
two identical instances will not be found to be identical (i.e. will not

4A small value, in this case 0.01, is added to avoid dividing by zero.

175

have a distance of zero) due to the effects of averaging all the distances.
This can be overcome by only considering the closest value distance. The
inter-instance calculation shown in Equation 2 has been modified so that
only the smallest (i.e. the closest) distance between the value 7.f.i in the
example and each of the values in the feature set p.f in the exemplar are
considered when finding the average distance between instances (Eq. 8).
This new calculation forms the basis for a new version of the algorithm,
IBPL2.

Z Min (d(é,5)w(3))
ier.f JEp.f

7.1

Ap(rfop-f) = ©)

Our work so far on IBPL1 and IBPL2 has concentrated on learning con-
cepts from sets of values. Work will begin shortly to explore the use of
the weighting metric (Eq. 4) as a means of identifying words (terms)
which act as poor classifiers. This value reflects the typicality of a term,
i.e. how likely the term is to occur in one class but not in others. Terms
which appear with equal frequency in all classes have a low weighting
value, whereas those that mostly appear in a single class have a higher
value. These low weighted terms can be identified and removed from the
feature sets in the stored examples prior to classification. This will result
in a smaller number of values in the feature sets during classification, and
hence fewer distance calculations will be required to identify the nearest
neighbour.

3.4 An Evaluation of IBPL1/IBPL2

To date, IBPL1 has been used in three agent-based systems: Magi, UNA
and LAW. For each system, comparisons were made between IBPL1 and a
rule induction algorithm. The results from Magi indicated that the overall
accuracy of predictions made by IBPL1 was slightly lower (57%) than
those for CN2 (65%), although the results for individual mail boxes varied.
IBPL1 was found to perform badly on very small mail boxes, typically
those containing less than 10 messages. However, this can be explained by
considering the voting strategy used by IBPL1. The closest k exemplars
are considered when determining the classification. In these tests, k was
set to 10. Cover [11] demonstrated that a larger value of k results in an
improvement in the behaviour of large samples, at the expense of small

176

sample behaviour. IBPL1 was also found to be significantly faster than
CN2. This was due to the length of time taken by CN2 to induce rules
from the large number of permutations of training instances.

100+ 100+
80- 80-
2 2
= =
[} [
< 60~ 2 60-
) By
o o
3 5
E 404 § 404
< IBPLL ~— < IBPLL ~—
B B
IBPL2 -x IBPL2 %
20+ 20+
0

U U I) I I 1 U I 1 U U I) I I 1 U I 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
% training data % training data

Figure 4: Comparing IBPL1 & IBPL2 as the Learning Component within
Magi.

100~ 100~ W———Q‘—QX—H

80~ 80~

40+

60~

40+

IBPLL —<—
IBPL2 -

IBPLL —<—
IBPL2 -

% Coverage: Phd_Possibilities
% Accuracy: Phd_Possibilities

20— 20—

U U I) I I 1 U I 1 U U I) I I 1 U I 1
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
% training data % training data

Figure 5: Comparing IBPL1 & IBPL2 as the Learning Component within
Magi.

The results obtained for UNA were lower than expected. It is believed this
was due to the type of features that were extracted from each news article
(see above). Comparison of IBPL1 and C4.5 within LAW showed that the
performance of both algorithms was similar. These results demonstrate
that IBPL1 can learn user-profiles for mail filtering and Web browsing.
A full discussion of the results from tests on Magi can be found in [26].

Preliminary studies have been carried out with IBPL2, to investigate al-
ternative methods of calculating distances. So far, it has been compared to

177

IBPL1 for classifying mail messages. Both algorithms were tested within
the Magi architecture to evaluate their performance. The results to date
indicate that both IBPL1 and IBPL2 perform equally well when applied
to classifying mail messages. Figures 4 and 5 show the number of messages
for which predictions are made (i.e. coverage), and the accuracy of those
predictions for both algorithms on the Agents mail box (Figure 4) and
Phd_Possibilities mail box (Figure 5). Further tests are to be carried out
with both algorithms on USENET news data and various datasets from
the UCI Machine Learning Data Repository [24]. This is to determine if
the closest value distance algorithm (IBPL2) is superior to the average
distance algorithm (IBPL1), and if the quality of features used affects the
performance of each algorithm.

4 Conclusions & Future Directions

The studies so far on Magi and UNA [25, 27] have shown that the type of
information extracted from mail messages or USENET news articles can
affect the concepts that are learned. Recent work on LAW [4] investigated
different feature extraction methods but concluded that no single method
improved the overall performance of the system. It is important to note
that certain feature extraction techniques may be unsuitable for identi-
fying features for some applications. For example, the feature extraction
technique used by Magi was unsuitable for rating USENET news articles
in UNA (as described above).

The work on IBPL1 described here has explored the use of feature sets to
learn user-profiles. This overcomes the requirement to generate multiple
instances, as is the case when existing learning algorithms such as CN2
and C4.5 are used. Different methods of comparing sets of values within
exemplars and examples have been investigated, such as the closest value
distance algorithm (IBPL2).

Algorithms that combine information filtering methods with machine
learning methods are being considered. The IBPL1 algorithm is being
modified to utilise the information retrieval technique, #fidf when consid-
ering weights and distance calculations. The use of weights will then be
used to identify features that result in good classifiers. By pruning val-
ues that act as poor classifiers from feature sets, the number of distance
calculations made can be reduced. The separate feature extraction stage
which appears in our architecture can then be eliminated, as the learning

178

stage identifies the most useful features.

As the means of providing knowledge about the user shifts from user-
defined scripts to the use of machine learning techniques, the user loses
explicit control over defining the agent’s behaviour. To avoid unexpec-
ted behaviour due to inadequately learned user-profiles, predicted actions
(such as deleting mail messages or suggesting news articles) are generated
with a confidence rating. This rating can be used to determine when the
agent should become autonomous and act on behalf of the user without
requesting confirmation. Some systems (such as MAXIMS [23]) interact
directly with the user, requesting immediate feedback when the agent is
unsure of how to act. Others (such as Magi) record predicted actions and
allow the user to cancel or confirm actions before they are performed (see
[26] for more details).

If machine learning techniques are to be used in practical agent systems,
the user will no longer have to learn scripting languages or maintain scripts
as requirements change. However, sufficient resources are needed to store
observations and training instances from which the user-profile is learned.
The learning and classification mechanisms have to be fast if such systems
are to be of any practical use. The user will also have to develop trust in
the agent’s assistance for the agent to behave autonomously, and the agent
should learn from its mistakes, through user feedback or by monitoring
its own performance.

5 Acknowledgements

T.R. Payne acknowledges financial support provided by the UK Engin-
eering & Physical Sciences Research Council (EPSRC). Thanks to Claire
Green and Karla Fitzhugh for their helpful comments on earlier drafts of
this paper.

References

[1] D.W. Aha. Incremental Instance-Based Learning of Independent and
Graded Concept Descriptions. In Proceedings of the 6th International
Machine Learning Workshop, pages 387-392, 1989.

[2] D.W. Aha and D. Kibler. Noise-Tolerant Instance-Based Learning
Algorithms. In Proceedings of the 11th International Joint Confer-
ence on Artificial Intelligence, IJCAI-89, pages 794-799, 1989.

179

[3]

[9]

[10]

[11]

[12]

[13]

[14]

L.W. Barsalou. Ideas, Central Tendency, and Frequency of Instanti-
ation as Determinants of Graded Structures in Categories. Journal
of Experimental Psychology: Learning, Memory, and Cognition,
11(4):629-654, 1985.

D. Bayer. A Learning Agent for Resource Discovery on the World
Wide Web. MSc Thesis, Department of Computing Science, Univer-
sity of Aberdeen, Scotland, 1995.

Y. Biberman. The Role of Prototypicality in Exemplar-Based Learn-
ing. In The 8th European Conference on Machine Learning, pages
77-91, 1995.

D. N. Chin. Intelligent Interfaces As Agents. In J. W. Sullivan and
S. W. Tyler, editors, Intelligent User Interfaces, pages 177-206. New
York, New York:ACM Press, 1991.

P. Clark and T. Niblett. The CN2 Induction Algorithm. Machine
Learning, 3:261-283, 1989.

P.R. Cohen, A. Cheyer, M. Wang, and S.C. Baeg. An Open Agent
Architecture. In Software Agents: Papers from the 1994 Spring Sym-
posium, pages 1-8. Menlo Park, CA:AAAT Press, 1994.

W.W. Cohen. Text Categorization and Relational Learning. In The
12th International Conference on Machine Learning, pages 124-132,
1995.

S. Cost and S. Salzberg. A Weighted Nearest Neighbor Algorithm
for Learning with Symbolic Features. Machine Learning, 10:57-78,
1993.

T.M. Cover. Estimation by the Nearest Neighbor Rule. IEEE Trans-
actions on Information Theory, 14(1):50-55, 1968.

T.M. Cover and P.E. Hart. Nearest Neighbor Pattern Classification.
IEEE Transactions on Information Theory, 13:21-27, 1967.

K. De Jong. Learning with Genetic Algorithms: An Overview. Ma-
chine Learning, 2:121-138, 1988.

P. Edwards, D. Bayer, C.L. Green, and T.R. Payne. Experience with
Learning Agents which Manage Internet-Based Information. In J.L.

180

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

Nealon and N.S. Taylor, editors, Proceedings of the UK Intelligent
Agents Workshop, pages 185-204. SGES Publications: Oxford, UK,
1997.

M.R. Genesereth and S.P. Ketchpel. Software Agents. Communica-
tions of the ACM, 37(7):48-53, 1994.

D. Goldberg, D. Nichols, B.M. Oki, and D. Terry. Using Collabor-
ative Filtering to Weave an Information Tapestry. Communications
of the ACM, 35(12):61-70, 1992.

C.L. Green. USENET News Agent. BSc Final Year Project Report,
Department of Computing Science, University of Aberdeen, Scot-
land, 1995.

R. Kozierok. A Learning Approach to Knowledge Acquisition for In-
telligent Interface Agents. Master’s Thesis, Department of Electrical
Engineering and Computer Science, MIT, 1993.

K. Lang. NewsWeeder: Learning to Filter Netnews. In Proceedings of
the 12th International Machine Learning Conference (ML95), pages
331-339. San Francisco, CA:Morgan Kaufmann, 1995.

H. Lieberman. Letizia: An Agent That Assists Web Browsing. In
Proceedings of the 14th International Joint Conference on Artificial
Intelligence, IJCAI-95, pages 924-929, 1995.

P. Maes. Agents that Reduce Work and Information Overload. Com-
munications of the ACM, 37(7):30-40, 1994.

T.W. Malone, K.R. Grant, F.A. Turbak, S.A. Brobst, and M.D. Co-
hen. Intelligent Information-Sharing Systems. Communications of
the ACM, 30(5):390-402, 1987.

M.E. Metral. Design of a Generic Learning Interface Agent. BSc
Thesis, Department of Electrical Engineering and Computer Science,
MIT, 1993.

P.M. Murphy and D.W. Aha. UCI Repository of Machine Learning
Databases. Department of Information and Computer Science, Uni-
versity of California, Irvine, CA.
[http://www.ics.uci.edu/~mlearn/MLRepository.html], 1994.

181

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

T.R. Payne. Learning Email Filtering Rules with Magi, A Mail Agent
Interface. MSc Thesis, Department of Computing Science, University
of Aberdeen, Scotland, 1994.

T.R. Payne and P. Edwards. Interface Agents that Learn: An In-
vestigation of Learning Issues in a Mail Agent Interface. Applied
Artificial Intelligence, 11(1). In Press.

T.R. Payne, P. Edwards, and C.L. Green. Experience with Rule In-
duction and k-Nearest Neighbour Methods for Interface Agents that
Learn. IEEFE Transactions on Knowledge and Data Engineering. In
Press. Presented at the ML95 Workshop on Agents that Learn from
Other Agents.

J.R. Quinlan. Learning Logical Definitions from Relations. Machine
Learning, 5:239-266, 1990.

J.R. Quinlan. C4.5 Programs for Machine Learning. San Mateo,
CA:Morgan Kaufmann, 1993.

E. Rosch and C.B. Mervis. Family Resemblances: Structures in the
Internal Structure of Categories. Cognitive Psychology, 7:573—-605,
1975.

G. Salton and M.J. McGill. Introduction to Modern Information
Retrieval. New York: McGraw-Hill, 1983.

B.D. Sheth. A Learning Approach to Personalized Information Fil-
tering. Master’s Thesis, Department of Electrical Engineering and
Computer Science, MIT, 1994.

C. Stanfill and D. Waltz. Toward Memory-Based Reasoning. Com-
munications of the ACM, 29(12):1213-1228, 1986.

E.M. Voorhees. Software Agents for Information Retrieval. In Soft-
ware Agents: Papers from the 1994 Spring Symposium, pages 126—
129. Menlo Park, CA:AAAT Press, 1994.

D. Wettschereck and D.W. Aha. Weighting Features. In Proceed-
ings of the 1st International Conference on Case-Based Reasoning.
Lisbon, Portugal:Springer-Verlag, 1995.

182

[36]

[37]

[38]

D. Wettschereck, D.W. Aha, and T. Mohri. A Review and Compar-
ative Evaluation of Feature Weighting Methods for Lazy Learning
Algorithms. Technical Report AIC-95-012, NRL NCARAI, 1995.

M.J. Wooldridge and N. Jennings. Agent Theories, Architectures
and Languages: A Survey. The Knowledge Engineering Review,
10(2):115-152, 1995.

J. Zhang. Selecting Typical Instances in Instance-Based Learning.
In Proceedings of the 9th International Machine Learning Workshop,
pages 470-479, 1992.

183

