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Abstract

A kinetic modelling approach for the quantification of in vivo tracer studies with dynamic positron
emission tomography (PET) is presented. The approach is based on a general compartmental
description of the tracer’s fate in vivo and determines a parsimonious model consistent with the
measured data. The technique involves the determination of a sparse selection of kinetic basis func-
tions from an overcomplete dictionary using the method of basis pursuit denoising. This enables the
characterization of the systems impulse response function from which values of the systems macro
parameters can be estimated. These parameter estimates can be obtained from a region of interest
analysis or as parametric images from a voxel based analysis. In addition, model order estimates are
returned which correspond to the number of compartments in the estimated compartmental model.
Validation studies evaluate the methods performance against two pre-existing data led techniques,
namely graphical analysis and spectral analysis. Application of this technique to measured PET
data is demonstrated using [11C]diprenorphine (opiate receptor) and [11C]WAY-100635 (5-HT1A

receptor). Whilst, the method is presented in the context of PET neuroreceptor binding studies,
it has general applicability to the quantification of PET/SPET radiotracer studies in neurology,
oncology and cardiology.

Keywords: PET, Tracer Kinetics, Compartmental Modelling, Parameter Estimation,
Basis Pursuit Denoising, Sparse Basis Selection
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1 Introduction

The development of Positron Emission Tomography (PET) over the last two decades has provided
neuroscientists with a unique tool for investigating the neurochemistry of the human brain in vivo.
The ever increasing library of radiolabelled tracers allows for imaging of a range of biochemical, phys-
iological and pharmacological processes. Each radiotracer has its own distinct behavior in vivo and
their characterization is an essential component for the development of new imaging techniques and
their translation into clinical applications. Estimation of quantitative biological images from the rich
4D spatio-temporal data sets requires the application of appropriate tomographic reconstruction and
tracer kinetic modelling techniques. The latter are used to estimate biological parameters by fitting a
mathematical model to the time-activity curve (TAC) of a region of interest or voxel. Calculations at
the voxel level produce parametric images but are associated with an increase in noise for the TACs.
Analysis strategies must therefore be robust to noise, yet fast enough to be practical.

There are a range of quantitative PET tracer kinetic modelling techniques which return biologically
based parameter estimates. These techniques may be broadly divided into model-driven methods
(Kety, 1951; Sokoloff et al., 1977; Phelps et al., 1979; Mintun et al., 1984; Huang and Phelps, 1986;
Gunn et al., 2001) and data-driven methods (Gjedde, 1982; Patlak et al., 1983; Patlak and Blasberg,
1985; Logan et al., 1990, 1996; Cunningham and Jones, 1993). The clear distinction is that the data-
driven methods require no a priori decision about the most appropriate model structure. Instead this
information is obtained directly from the kinetic data.

Model-driven methods use a particular compartmental structure to describe the behaviour of the
tracer and allow for an estimation of either micro or macro system parameters. Well established
compartmental models in PET, (see Figure 1), include those used for the quantification of blood
flow (Kety, 1951), cerebral metabolic rate for glucose (Sokoloff et al., 1977) and for neuroreceptor
ligand binding (Mintun et al., 1984). Further developments have produced a series of reference tissue
models which avoid the need for blood sampling (Blomqvist et al., 1989; Cunningham et al., 1991;
Hume et al., 1992; Lammertsma et al., 1996; Lammertsma and Hume, 1996; Watabe et al., 2000).
Parameter estimates are obtained from a priori specified compartmental structures using one of a
variety of least squares fitting procedures; linear least squares (Carson, 1986), non-linear least squares
(Carson, 1986), generalized linear least squares (Feng et al., 1996), weighted integration (Carson et al.,
1986) or basis function techniques (Koeppe et al., 1985; Cunningham and Jones, 1993; Gunn et al.,
1997). Data-driven methods such as graphical analysis (Gjedde, 1982; Patlak et al., 1983; Patlak and
Blasberg, 1985; Logan et al., 1990, 1996) or spectral analysis (Cunningham and Jones, 1993) derive
macro system parameters from a less constrained description of the kinetic processes. The graphical
methods (Patlak and Logan plots) employ a transformation of the data such that a linear regression
of the transformed data yields the macro system parameter of interest and are attractive and elegant
due to their simplicity. However, they require the determination of when the plot becomes linear,
they may be biased by statistical noise (Slifstein and Laruelle, 2000) and they fail to return any
information about the underlying compartmental structure. Appendix A gives a formal derivation of
the Logan plot and shows that it is valid for an arbitrary number of compartments for both plasma and
reference input models when the data are free from noise. Spectral analysis (Cunningham and Jones,
1993) characterizes the systems impulse response function (IRF) as a positive sum of exponentials
and uses non-negative least squares to fit a set of these basis functions to the data. The macro system
parameters of interest are then calculated as functions of the IRF (Cunningham and Jones, 1993; Gunn
et al., 2001). Spectral analysis also returns information on the number of tissue compartments evident
in the data and is defined as a transparent technique. Schmidt (1999) showed that for the majority of
plasma input models the observation of all compartments led to only positive coefficients, and as such
the spectral analysis (Cunningham and Jones, 1993) solution using non-negative least squares is valid.
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Figure 1: A range of PET compartmental models commonly used to quantify PET radio-
tracers. These include models for tracers that exhibit reversible and irreversible kinetics and

models which use either a plasma or reference tissue input function.

the systems impulse response function (IRF) as a positive sum of exponentials and uses non-
negative least squares to fit a set of these basis functions to the data. The macro system
parameters of interest are then calculated as functions of the IRF (Cunningham and Jones
1993; Gunn et al. 2001). Spectral analysis also returns information on the number of tissue
compartments evident in the data and is defined as a transparent technique. Schmidt (1999)
showed that for the majority of plasma input models the observation of all compartments led
to only positive coefficients, and as such the spectral analysis (Cunningham and Jones 1993)
solution using non-negative least squares is valid. However, it is straightforward to deduce
that for reference tissue input models negative coefficients can be encountered and that this
approach is strictly not valid (see Appendix C in Gunn et al. (2001)).

Recently, we have published general theory for both plasma input and reference tissue input
models (Gunn et al. 2001). This work shows that a general PET tracer compartmental
system may be characterized in terms of its impulse response function (IRF), and that this is
independent of the administration of the tracer and is therefore applicable to both bolus and
bolus-infusion methodologies. The term tracer excludes multiple injection protocols involving
low specific activity injections which are classed as non-tracer studies and lead to non-linear
compartmental systems. In brief, a general PET tracer compartmental model leads to a set
of first order linear differential equations. This set of equations may be solved to yield an
expression for the total tissue radioactivity concentration in terms of either a plasma input
function or a suitable reference tissue input function. These results are derived from linear
systems theory which lead to the deduction that the IRF is comprised solely of exponentials and
a delta function (Gunn et al. 2001). This work forms the foundation for the presented method;

Figure 1: A range of PET compartmental models commonly used to quantify PET radiotracers.
These include models for tracers that exhibit reversible and irreversible kinetics and models which use

either a plasma or reference tissue input function.

However, it is straightforward to deduce that for reference tissue input models negative coefficients
can be encountered and that this approach is strictly not valid (see Appendix C in Gunn et al. (2001)).

Recently, we have published general theory for both plasma input and reference tissue input models
(Gunn et al., 2001). This work shows that a general PET tracer compartmental system may be
characterized in terms of its impulse response function (IRF), and that this is independent of the
administration of the tracer and is therefore applicable to both bolus and bolus-infusion methodologies.
The term tracer excludes multiple injection protocols involving low specific activity injections which
are classed as non-tracer studies and lead to non-linear compartmental systems. In brief, a general
PET tracer compartmental model leads to a set of first order linear differential equations. This set of
equations may be solved to yield an expression for the total tissue radioactivity concentration in terms
of either a plasma input function or a suitable reference tissue input function. These results are derived
from linear systems theory which lead to the deduction that the IRF is comprised solely of exponentials
and a delta function (Gunn et al., 2001). This work forms the foundation for the presented method;
Data-driven estimation of parametric images based on compartmental theory (DEPICT).

DEPICT allows for the estimation of parametric images or regional parameter values from dynamic
PET data. DEPICT requires no a priori description of the tracers fate in vivo, it derives the model
description from the data and it returns the number of compartments (model order). This transparent
modelling technique has application to a wide range of PET radiotracers but the emphasis here is
with respect to the analysis of radioligands which bind to specific neuroreceptor sites.

2 Theory

This section introduces the theory behind DEPICT; Firstly, the general forms for plasma input and
reference tissue input models are presented, secondly, key parameters for neuroreceptor binding studies
are cast in this framework, and thirdly, the general parameter estimation approach is constructed using
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basis functions and solved via basis pursuit denoising. The method encompasses the majority of linear
compartmental systems which are applicable to tracer studies with an arbitrary input function. It
assumes that there is only one form (the parent compound) in which radioactivity enters the tissue
from the arterial plasma. Specifically, those models which are defined by Definitions 1 and 2 in Gunn
et al. (2001) are considered. These sets of models encompass all non-cyclic systems, the subset of
cyclic systems in which the product of rate constants is the same regardless of direction for every
cycle and requires the eigenvalues of the system to be distinct.

2.1 Plasma Input Models

The general equation for a plasma input compartmental model is given by,

CT (t) = VBCB (t) + (1−VB )
n∑

i=1

φie
−θit ⊗ CP (t). (1)

where n is the total number of tissue compartments in the target tissue, ⊗ is the convolution operator,
VB is the fractional blood volume, CT ,CP , and CB are the concentration time courses in the target
tissue, plasma and whole blood respectively. The delivery of the tracer to the tissue is given by

K1 =
n∑

i=1

φi.

Reversible Kinetics [θi > 0]

For compartmental models which exhibit reversible kinetics the volume of distribution, VD , which is
equal to the integral of the impulse response function is given by,

VD =
n∑

i=1

φi

θi
. (2)

Irreversible Kinetics [θi6=n > 0, θn = 0]

For compartmental models which exhibit irreversible kinetics the net irreversible uptake rate constant
from plasma, KI , is given by,

KI = φn. (3)

2.2 Reference Tissue Input Models

The general equation for a reference tissue input compartmental model is given by,

CT (t) = φ0CR(t) +
m+n−1∑

i=1

φie
−θit ⊗ CR(t). (4)

where m is the total number of tissue compartments in the reference tissue, and n is the total number
of tissue compartments in the target tissue, CT and CR are the concentration time courses in the
target and reference tissues respectively and RI (= φ0) is the ratio of delivery of the tracer between
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the target and reference tissue. This definition excludes the presence of blood volume components to
either of the tissues. Explicit formulation including a blood volume term has been given previously
(Gunn et al., 2001).

Reversible Target Tissue Kinetics [θi > 0]

For reference tissue models which exhibit reversible kinetics in both the target and reference tissues
the volume of distribution ratio is given by the integral of the impulse response of the system,

VD

V ′
D

= φ0 +
m+n−1∑

i=1

φi

θi
. (5)

Irreversible Target Tissue Kinetics [θi6=m+n−1 > 0, θm+n−1 = 0]

For reference tissue models which exhibit irreversible kinetics in the target tissue and reversible kinetics
in the reference tissue the normalised irreversible uptake rate constant from plasma is given by,

KI

V ′
D

= φm+n−1. (6)

2.3 Parameters for Neuroreceptor Binding Studies

For reversible neuroreceptor binding studies the binding potential may be calculated from the macro
parameters, using either a plasma or reference tissue input function, under the assumption that the
volume of distribution of the free and non-specific binding is the same in the target and reference
tissues. Throughout this paper the term binding potential is used interchangeably to refer to BP
(the binding potential as originally defined by Mintun et al. (1984)), BP .f2 and BP .f1 where f2 and
f1 are the tissue and plasma free fractions respectively. For a reference tissue input analysis BP .f2
is the only binding potential estimate possible, whilst with a plasma input analysis it is possible to
obtain estimates for BP .f1 , BP .f2 and if a separate measure of the plasma free fraction exists BP .
The binding potential is a useful measure of receptor specific parameters which includes the both the
maximum concentration of receptor sites and the affinity,

BP =
Bmax

KDTracer
(1 +

∑
i

Fi
KDi

)
, (7)

where Bmax is the maximum concentration of receptor sites, KDTracer
is the equilibrium disassociation

rate constant of the radioligand, Fi and KDi are the free concentration and equilibrium disassociation
constants of i competing ligands. To derive values for both the receptor concentration and affinity it
is necessary to perform a multi-injection study with differing specific activities of the the radioligand.
A summary of commonly used receptor binding parameters and their calculation from the general
form of the IRF are given in Table 1, for further details see (Gunn et al., 2001). The relative merits
of these different binding parameters are discussed elsewhere (Laruelle, 2000).
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Parameter Target Reference Input Calculation

VD R − CP
∑n

i=1
φi

θi

KI I − CP φn

BP .f1 R R CP
∑n

i=1
φi

θi
−
∑m

i=1
ϕi

ϑi

BP .f2 R R CP

∑n
i=1

φi
θi∑m

i=1
ϕi
ϑi

− 1

BP .f2 R R CR φ0 − 1 +
∑m+n−1

i=1
φi

θi
KI
V ′

D
I R CR φm+n−1

Table 1: Calculation of commonly used binding parameters from the general impulse response func-
tion. φ and θ are the parameters for the target tissue, ϕ and ϑ are the parameters for the reference

tissue and R and I denote reversible and irreversible tissue kinetics respectively.

2.4 Construction of the General Model in a Basis Function Framework

Plasma input1 and reference tissue input PET compartmental models are characterized by,

CT (t) =

[
φ0δ(t) +

q∑
i=1

φie
−θit

]
⊗ CI (t). (8)

where CT is the tissue concentration time course and CI is the concentration time course of the input
function (plasma or reference tissue). This can be expressed as an expansion on a basis,

CT (t) =
N∑

i=0

φiψi(t), (9)

where

ψ0(t) = CI (t), (10)

ψi(t) =
∫ t

0
e−θi(t−τ)CI (τ)dτ. (11)

A set of N values for θi may be pre-chosen from a physiologically plausible range θmin ≤ θi ≤
θmax. Here, the θi values are spaced in a logarithmic manner to elicit a suitable coverage of the
kinetic spectrum. Other possibilities for the spacing of the basis exist such as an equi-angular scheme
(Cunningham et al., 1998). For data that has not been corrected for the decay of the isotope θmin

may be chosen as (or close to the decay constant (θmin = λ min−1) for the radioisotope and θmax may
be chosen as a suitably large value (θmax = 6 min−1). For reversible systems, where the calculation
of VD or BP .f2 is the goal, the choice of a value for θmin which is slightly bigger than λ can suppress
the calculation of infinite VD and BP .f2 values from noisy data. PET measurements are acquired
as a sequence of (F ) temporal frames. Thus, the continuous functions must be integrated over the
individual frames and normalized to the frame length to correspond to the data sampling procedure.

1Here, the blood volume term for plasma input models is treated as a plasma volume term (i.e. CB (t) = CP (t)) which
enables us to express both the plasma and reference tissue input cases in the same framework. This is simply so that we
may be concise in our notation. To use a whole blood volume term ψ0 = CP is replaced by ψ0 = CB in equation (10).
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The tissue observations, y, already exist in this form and correspond to,

y = [y1 . . . yF ]T ,
(12)

yj =
1

tej − tsj

∫ tej

tsj

CT (t)dt,

and the matrix of kinetic basis functions (or dictionary), Ψ, are pre-calculated as,

Ψ =

ψ01 ψ11 . . . ψN1
...

...
...

...
ψ0F ψ1F . . . ψNF

 ,

(13)

ψ0j =
1

tej − tsj

∫ tej

tsj

CI (t)dt,

ψij =
1

tej − tsj

∫ tej

tsj

∫ t

0
e−θi(t−τ)CI (τ)dτdt,

where tsj and tej are the sequences of start and end frame times (j = 1, . . . , F ). For all practical
purposes (i.e. choosing a large enough value for N to obtain a good coverage of the kinetic spectrum),
this leads to an overcomplete basis (N > F − 1) which by definition is non-orthogonal. Examples
bases for a plasma and reference tissue input are displayed in Figure 2. To determine the fit to the
data it is necessary to solve the underdetermined system of equations,

y ∼= Ψφ. (14)

To account for the temporally varying statistical uncertainty of the measurements it is more appro-
priate to consider the weighted least squares problem,

W
1
2y ∼= W

1
2Ψφ, (15)

where W is the inverse of the covariance matrix. Given the statistical independence of the frames,
W is diagonal. These diagonal elements can be approximated from the total image TAC and frame
durations (Mazoyer et al., 1986). The weighted least squares solution is simply obtained by weighting
both the data and the basis functions i.e. y is replaced by W

1
2 y and Ψ is replaced by W

1
2 Ψ.

On solution of this equation the appropriate macro parameters (VD , KI , K1, VD
V ′

D
, KI

V ′
D

, RI ) may be
calculated from the φ’s (see equations 2,3,5, and 6). If the data are not corrected for the decay of the
isotope, then λ should first be subtracted from the θ values..

2.5 Solution of the General Model by Basis Pursuit Denoising

Standard least squares techniques are not applicable because of the overcomplete basis which leads
to an under-determined set of equations. This ill-posed problem requires an additional constraint to
impose a unique solution on the estimation process. This constraint is chosen to be consistent with
prior knowledge about the solution; namely that the solution will be sparse in the basis coefficients.
This constraint has also been used in the wavelet community, for the estimation of sparse representa-
tions from over-complete dictionaries (Chen, 1995; Chen et al., 1999). The motivation for sparseness
is consistent with the expectation that the data is accurately described by a few compartments (such
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(a) Plasma input basis (b) Normalised plasma input basis

(c) Reference tissue input basis (d) Normalised reference tissue input basis

Figure 2: Example Dictionaries (Ψ)

as the models in Figure 1).

To transform the problem so that a unique solution exists it is necessary to change the metric from
ordinary least squares. The introduction of a regularizer or penalty function to the standard least
squares metric offers a framework for this,

min
φ

1
2

∥∥∥W 1
2 (y −Ψφ)

∥∥∥2

2
+ µ ‖φ‖p, (16)

where the regularization parameter µ(> 0) controls the trade-off between approximation error and
sparseness, Ψ is the overcomplete basis, φ are the basis coefficients to be determined and y is the ob-
served data. The addition of an Lp norm to the standard L2 norm in equation 16 allows for a uniquely
determined parameter estimation process. Some possible choices for Lp are L0 (atomic decomposi-
tion), L1 (basis pursuit de-noising), and L2 (ridge regression) (Chen, 1995). The three regularisers
have different characteristics and implementations. Both atomic decomposition and basis pursuit de-
noising promote a sparse solution which is consistent with our expectation of a compartmental model
consisting of just a few tissue compartments, whilst ridge regression will encourage all parameters to
be non-zero. Atomic decomposition is computationally demanding due to its combinatorial nature.
Both basis pursuit de-noising and ridge regression can be constructed in a quadratic programming
framework. Given these factors, a good choice for the estimation process is basis pursuit denoising as
this balances both a sparse solution with a computationally feasible parameter estimation approach.
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The basis pursuit denoising solution to the problem is presented here,

min
φ

1
2

∥∥∥W 1
2 (y −Ψφ)

∥∥∥2

2
+ µ ‖φ‖1, (17)

With the introduction of slack variables basis pursuit de-noising can be written as a simple bound
constrained quadratic program, (Chen, 1995; Chen et al., 1999),

min
x

1
2

xTHx + cT x, (18)

such that xi ≥ 0 and where,

H =
[

ΨTWΨ −ΨTWΨ
−ΨTWΨ ΨTWΨ

]
, (19)

c = µ1−
[

ΨTWy
−ΨTWy

]
, (20)

x =
[
φ+

φ−

]
. (21)

The basis coefficients are given by,
φ = φ+ − φ−. (22)

The quadratic program can be solved readily using standard optimisers (Mészáros, 1998). Thus, given
a suitable regularization parameter, the general compartmental model can be fitted to the data. A
method which enables the selection of an appropriate regularization parameter is now considered.

Selection of the Regularization Parameter (µ)

Basis pursuit denoising requires the determination of the regularization parameter, µ, for the penalty
term. Here, this is obtained by the method of leave one out cross-validation (LOOCV) (Shao, 1993;
Hjorth, 1994). LOOCV is a ”resampling” method which allows the generalisation error to be esti-
mated. Fits are performed in which each data point is omitted in turn, and the generalisation error is
then estimated by summing up the prediction error for each omitted data point. The regularization
parameter, µ, is chosen to minimize this estimate (see Figure 3). To achieve a more robust estimate
of the most appropriate µ value LOOCV is applied to a set of time activity curves and the mean µ
value is selected.

Model Order and Transparency

The presented method is transparent because it returns information about the underlying compart-
mental structure. The number of non-zero coefficients returned corresponds to the model order which
is related to the number of tissue compartments. The number of non-zero components is counted as
the number of distinct peaks within the spectrum. The method will often include two peaks next to
each other in order to approximate an exponential in between them. This occurrence is treated as
a single non-zero coefficient. For plasma input models the model order equals the number of tissue
compartments (ignoring the blood volume component) and for reference tissue models the number
of non-zero coefficients corresponds to the total number of tissue compartments in the reference and
target tissues.
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Figure 3: Effect of the regularization parameter (µ) and selection via leave one out cross
validation: When the µ value is too small the data (•) are overfitted and when the value is
too big the data are underfitted. The ”best” µ value is chosen using LOOCV. A data point is
omitted (◦) and the data are fit for a set of µ values. The error in the models prediction of the
omitted data point is then calculated in a least squares sense (i.e. D2

i ). This is repeated for
the omission of each data point in turn and the resultant generalisation errors are summated.
A µ is selected by choosing the value of µ which minimises this generalisation error. The figure
shows how the parsimonious model minimises the generalisation error (i.e. D2

2 < D2
3 < D2

1).

components is counted as the number of distinct peaks within the spectrum. The method
will often include two peaks next to each other in order to approximate an exponential in
between them. This occurrence is treated as a single non-zero coefficient. For plasma input
models the model order equals the number of tissue compartments (ignoring the blood volume
component) and for reference tissue models the number of non-zero coefficients corresponds to
the total number of tissue compartments in the reference and target tissues.

Whilst, the model order dictates the number of compartments, any decision about the true
model configuration is limited by the problem of indistinguishability. Figures 4 and 5 depict
the sets of models which are equivalent in terms of model order for plasma input and reference
tissue input models. If one requires a compartmental description of the tracer, and the set is
not singular, then it is necessary to invoke biological information about the system in order to
select amongst the possible models.

3 Methods

For DEPICT and spectral analysis the tissue and plasma data were uncorrected for the decay
of the isotope. Instead, a decay constant was allowed for in the exponential coefficients (decay
constant for [11C]: λ = 0.034 min−1). For the Logan analysis the tissue and plasma data were
pre-corrected for the decay of the isotope.

Figure 3: Effect of the regularization parameter (µ) and selection via leave one out cross validation:
When the µ value is too small the data (•) are overfitted and when the value is too big the data are
underfitted. The ”best” µ value is chosen using LOOCV. A data point is omitted (◦) and the data
are fit for a set of µ values. The error in the models prediction of the omitted data point is then
calculated in a least squares sense (i.e. D2

i ). This is repeated for the omission of each data point in
turn and the resultant generalisation errors are summated. A µ is selected by choosing the value of
µ which minimises this generalisation error. The figure shows how the parsimonious model minimises

the generalisation error (i.e. D2
2 < D2

3 < D2
1).

Whilst, the model order dictates the number of compartments, any decision about the true model
configuration is limited by the problem of indistinguishability. Figures 4 and 5 depict the sets of
models which are equivalent in terms of model order for plasma input and reference tissue input
models. If one requires a compartmental description of the tracer, and the set is not singular, then it
is necessary to invoke biological information about the system in order to select amongst the possible
models.

3 Methods

For DEPICT and spectral analysis the tissue and plasma data were uncorrected for the decay of the
isotope. Instead, a decay constant was allowed for in the exponential coefficients (decay constant for
[11C]: λ = 0.034 min−1). For the Logan analysis the tissue and plasma data were pre-corrected for
the decay of the isotope.

DEPICT

The Basis Pursuit denoising approach was implemented with 30 basis functions (logarithmically spaced
between 0.048 and 6 min−1). The number of basis functions was chosen to be 30 based on a balance
between precision and computation time (data not shown). The weighting matrix was determined
from the true TAC activity and the frame duration as described previously (Gunn et al., 1997). The
regularization parameter, µ, was determined by numerically minimising the LOOCV error across
a discrete set of logarithmically spaced µ values (10−3.5 ≤ µ ≤ 100.5). For the 1D simulations, the
parameter µ̂ was determined as the mean value from the 1000 realisations. For parametric imaging the
µ̂ value was obtained from a series of LOOCV estimates (µi) obtained from random voxel locations
contained within a brain mask. This process examined at least 20 voxels and continued until the
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11
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33

Figure 4: Indistinguishability for plasma input models. (top) Model Order=1: One possible con-
figuration, (middle) Model Order=2: Two possible configurations, (bottom) Model Order=3: Four

possible configurations.

relative precision of µ̂ was less than 50%,

t0.975,dfσ(µ)√
N µ

< 0.5, (23)

where df is the degrees of freedom and is given by the length of µ− 1. µ̂ was then estimated as the
mean of the vector µ. DEPICT is available at http://www.bic.mni.mcgill/r̃gunn.

Spectral Analysis

Spectral analysis was implemented using the non-negative least squares algorithm (Cunningham and
Jones, 1993) with the identical basis and weighting matrix as were used for DEPICT.

Logan Analysis

The Logan analysis (Logan et al., 1990, 1996) was implemented as a linear regression of the transformed
data after 45 minutes.
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22

33

44

Figure 5: Indistinguishability for reference tissue input models. (top) Model Order=2: One possible
configuration, (middle) Model Order=3: Four∗ possible configurations, (bottom) Model Order=4:
Eight∗ possible configurations. ∗There are twice as many possible configurations than are shown, as

the reference and target tissues may be reversed.

3.1 1D Simulations

Simulations were performed to assess the stability of the three methods to different noise levels. A
measured input function from a PET scan was used in conjunction with a two tissue compartmental
model to simulate noise free data representative of a target tissue (K1 = 0.4 (mL plasma).(mL
tissue)−1 , k2 = 0.2 min−1, k3 = 0.4 min−1 and k4 = 0.1 min−1) and a reference tissue (K ′

1 = 0.4 (mL
plasma).(mL tissue)−1 , k ′

2 = 0.4 min−1, k ′
5 = 1 min−1 and k ′

6 = 1 min−1). 90 minutes of data were
simulated for a total of 24 temporal frames (3x10s, 3x20s, 3x60s, 5x120s, 5x300s, 5x600s). The noise
free simulated data are shown in Figure 6. For a range of noise levels 1000 realisations of noisy target
tissue TAC’s were generated by adding normally distributed noise proportional to the activity/frame
duration at each point. The noise variance was scaled so that a value of 1 corresponded to the largest
noise free TAC value. These data were then analyzed in two different ways; 1) using the plasma input
function the noisy target tissue TAC’s were fitted with the basis pursuit method, the Logan plot and
spectral analysis to derive VD estimates, 2) using the reference tissue input function the noisy target
tissue TAC’s were fitted with the basis pursuit method and the Logan plot to derive BP .f2 estimates.
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(a) Plasma input function (b) Reference tissue TAC (c) Target tissue TAC

Figure 6: 1D Simulation Data: Noise free time activity curves

3.2 4D Simulations

Simulated dynamic PET data were generated using PETSim, a dynamic PET simulator (Ma et al.,
1993; Ma and Evans, 1997) as described previously (Aston et al., 2000). In short, the simulator
takes an MRI image volume segmented into 28 regions, each of which is assigned an activity value,
and generates a simulated PET volume. The resolution and noise characteristics where chosen to
correspond to the ECAT HR+ PET camera (CTI, Knoxville, TN) in 3-D mode with a resolution
of 4 x 4 x 4.2 mm FWHM at the center of the field of view and images were reconstructed using a
6mm FWHM Hanning filter. A simulated [11C]SCH 23390 data set was generated using a measured
plasma input function and a two tissue compartmental model to simulate regional tissue kinetics using
rate constants for different brain regions taken from human PET data, K1 (0.08 to 0.13 ml plasma−1

min−1), k2 (0.24 to 0.37 min−1), k3 (0 to 0.14 min−1), k4 (0.1 min−1) for 34 time frames (4x15s, 4x
30s, 7x60s, 5x120s ,14x300s). The cerebellum was simulated with a one tissue compartment model.
Two dynamic data sets were generated; a noise free data set and the other consistent with an injection
of 370MBq of activity. The two data sets were analysed with DEPICT to estimate parametric images
of VD and model order.

3.3 Measured Data Sets

Two measured data sets, which were taken from ongoing clinical studies (MRC Cyclotron Unit,
Hammersmith Hospital, London U.K.), were analysed with DEPICT. Both data sets were acquired
on the ECAT EXACT3D (CTI, Knoxville, TN) (Spinks et al., 2000). The data were reconstructed
with model based scatter correction and measured attenuation correction using the method of filtered
back projection (ramp filter, 0.5 Ny). The reconstructed images had a resolution of 4.8 x 4.8 x 5.6
mm at the centre of the field of view :

11C Diprenorphine (opiate receptor): 130 MBq of the radioligand was injected into a normal male
volunteer and acquisition consisted of 32 temporal frames of data (1x50s, 3x10s, 7x30s, 12x120s,
6x300s, 3x600s). Continuous arterial sampling and metabolite analyses were performed during
the scan which allowed for the generation of a metabolite corrected plasma input function as
described previously (Jones et al., 1994). DEPICT was used to estimate parametric images of
VD and model order using a plasma input analysis.

11C WAY-100635 (5-HT1A receptor): 243 MBq of the radioligand was injected into a normal male
volunteer and acquisition consisted of 22 temporal frames of data (1x15s, 3x5s, 2x15s, 4x60s,
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7x300s, 5x600s). A region of interest was defined on the cerebellum for the extraction of a
reference region TAC. DEPICT was used to estimate parametric images of BP .f2 and model
order using a reference tissue input analysis.

4 Results

4.1 1D Simulations

A summary of the results from the 1D noise simulations are presented in Figure 7 for the plasma
input model. DEPICT was able to obtain a good fit to the data. Both DEPICT and spectral analysis
performed well in terms of parameter and model order estimation. Table 2 shows that DEPICT
produces the lowest Mean Square Error (MSE) of the three methods. The reference tissue input

(a) Example DEPICT fit (b) DEPICT spectrum from fit in (a)

(c) DEPICT VD (d) Spectral analysis VD (e) Logan analysis VD

(f) DEPICT Model Order (g) Spectral analysis Model Order

Figure 7: 1D Simulation: Plasma Analysis. In subfigures (f) and (g) the colour bar indicates the
fraction of fits which corresponded to a particular model order.
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simulations are summarised in Figure 8 and Table 3. Again DEPICT obtained a good fit to the data
and a reasonable model order estimation. Table 3 shows that DEPICT produces the lowest Mean
Square Error (MSE) of the two methods.

(a) Example DEPICT fit (b) DEPICT spectrum from fit in (a)

(c) DEPICT BP .f2 (d) Logan analysis BP .f2

(e) DEPICT Model Order

Figure 8: 1D Simulation: Reference Tissue Analysis. In subfigure (e) the colour bar indicates the
fraction of fits which corresponded to a particular model order.

4.2 4D Simulations

Parametric images estimated from the noisy 4D realisation using DEPICT were of good quality and
are presented in Figure 9. DEPICT accurately estimates the number of tissue compartments used
in the simulation, (see Figure 9b), with two tissue compartments estimated on average within the
cortical regions and one tissue compartment on average within the cerebellum. The regularization
parameter was calculated as µ̂ = 0.045 (see Figure 10(a)). DEPICT was also applied to the noise free
data set and this allowed for the calculation of the percentage error in the VD estimate. The error
distribution is given in Figure 10(b).
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Noise Level 0 0.01 0.02 0.04 0.08 0.16 0.32 0.64

DEPICT µ̂ 0.0001 0.0100 0.0120 0.0138 0.0328 0.0482 0.1990 0.4190
MSE 0.0002 0.0004 0.0011 0.0036 0.0107 0.0267 0.0815 0.2190

Logan analysis MSE 0.0123 0.0127 0.0137 0.0180 0.0356 0.1040 0.5670 0.9840

Spectral analysis MSE 0.0089 0.0089 0.0093 0.0103 0.0149 0.0325 0.0942 0.2280

Table 2: 1D Simulation: Summary Parameters for VD estimation with a plasma input function.
Mean Squared Error (MSE), Regularization Parameter µ̂.

Noise Level 0 0.01 0.02 0.04 0.08 0.16 0.32 0.64

DEPICT µ̂ 0.0001 0.0010 0.0014 0.0026 0.0056 0.0187 0.0414 0.0869
MSE 0.0077 0.0081 0.0085 0.0155 0.0356 0.1060 0.2790 0.8180

Logan analysis MSE 0.0108 0.0128 0.0167 0.0345 0.1230 0.4040 1.7400 4.1400

Table 3: 1D Simulation: Summary Parameters for BP .f2 estimation with a reference tissue input
function. Mean Squared Error (MSE), Regularization Parameter µ̂.

(a) VD image

(b) Model Order image

Figure 9: 4D Simulation: Parametric images estimated using DEPICT.
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(a) Cost function for regularization parameter (µ) (b) % Error of VD estimate shown in Figure 9

Figure 10: 4D Simulation: Cost function and error in VD estimate.

4.3 Measured Data

Both the parametric images of VD for [11C]diprenorphine and BP .f2 for [11C]WAY-100635 were of
good quality and reflected the known distribution of opiate and 5-HT1A receptor sites respectively.
The model order images for both radioligands showed less structure than the 4D simulation but both
reflected the model order expected for [11C]diprenorphine (Jones et al., 1994) and [11C]WAY-100635
(Gunn et al., 1998; Farde et al., 1998; Parsey et al., 2000). These parametric images took 1 hour to
compute with DEPICT on a desktop workstation (equivalent computation times for parametric images
generated by the Logan analysis and Spectral analysis would be 5 mins and 30 mins respectively).
The regularization parameters were calculated as µ̂ = 0.0095 for [11C]diprenorphine and µ̂ = 0.015
for [11C]WAY-100635 (see Figure 12).

5 Discussion

The current paper has introduced, DEPICT, a tracer kinetic modelling technique for the quantita-
tive analysis of dynamic in vivo radiotracer studies which allows for the data-driven estimation of
parametric images based on compartmental theory. DEPICT requires no a priori decision about the
tracers fate in vivo, instead determining the most appropriate model from the information contained
within the data. Although, the method is classed as data-driven it is founded on compartmental
theory (Gunn et al., 2001) and this enables parameter estimates to be interpreted within a tradi-
tional compartmental framework. The system macro parameters are simply determined from the
estimated IRF. The method can be applied to dynamic radiotracer studies involving either a bolus
or bolus-infusion tracer administration scheme. DEPICT is general, and whilst the examples here
are concerned with tracers exhibiting reversible kinetics, the method is equally applicable to systems
with irreversible kinetics. In addition to parameter estimates, DEPICT returns model order estimates
which correspond to the number of numerically identifiable compartments in the system. There may
be additional compartments that are not supported by the statistical quality of the data, however this
is not in any way a practical restriction.

DEPICT uses a basis function approach (Koeppe et al., 1985; Cunningham and Jones, 1993; Gunn
et al., 1997) to the parameter estimation problem. The constructed problem is ill-posed and its solution
requires an appropriate constraint. Whilst, spectral analysis approaches this problem using the non-
negative least squares algorithm (Cunningham and Jones, 1993), DEPICT employs the method of basis
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(a) [11C]Diprenorphine: VD image

(b) [11C]Diprenorphine: Model Order image

(c) [11C]WAY-100635: BP .f2 image

(d) [11C]WAY-100635: Model Order image

Figure 11: Measured data: Parametric images estimated using DEPICT.
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(a) [11C]Diprenorphine (b) [11C]WAY-100635

Figure 12: Measured data: Cost functions for regularization parameter (µ).

pursuit denoising (Chen, 1995) which involves a 1-norm penalty function on the coefficients. Both
methods lead to a sparse solution but DEPICT does not constrain the coefficients to be positive which
makes it appropriate for application to the general reference tissue model. Basis pursuit denoising is
a technique that extracts a subset of terms from an overcomplete dictionary and thus it is possible to
provide a model which is interpretable, whilst retaining good approximating capability. The principle
behind the approach is to trade off the error in approximation with the sparseness of the representation.

The three data-driven methods investigated all performed well for low noise levels, as determined
from the 1D simulations, with DEPICT returning the lowest mean squared error. The Logan analysis
demonstrated a bias at higher noise levels which has been documented recently (Slifstein and Laruelle,
2000). To address the issue of noise induced bias in the Logan analysis two approaches have since been
developed (Logan et al., 2001; Varga and Szabo, 2002). These modifications would have improved the
performance of the Logan analysis at high noise levels but were not considered here as the aim was to
introduce DEPICT and compare it against the data-driven methods in common use. DEPICT and
spectral analysis allow for the estimation of the model order. The model order was well characterized
by both methods for the 1D plasma input simulations and using DEPICT for the reference tissue
input simulations. Spectral analysis is not valid for the general reference tissue model as it does not
permit negative coefficients which can occur in the impulse response function.

In summary, this paper has introduced a new method, DEPICT, which delivers parametric images or
regional parameter estimates from dynamic radiotracer imaging studies without the need to specify a
compartmental structure. DEPICT is applicable to both plasma and reference tissue input analyses.
The results presented demonstrate that DEPICT is highly competitive with existing data-driven
estimation methods. Furthermore, DEPICT is a transparent data-driven modelling approach as it
returns, not only macro parameter values, but also information on the underlying model structure.
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A Logan Plot derivation

Here, a formal derivation of the Logan plot is presented for both a plasma and reference tissue input
function. The plasma input Logan plot corresponds to the original presentation by Logan et al. (1990).
The reference tissue input analysis presented here differs from Logan et al. (1996) in that it proves
that the plot is valid for an arbitrary number of compartments in the reference tissue as well as the
target tissue. Both derivations presented exclude the presence of vascular contribution to the tissue
signal.

A.1 Plasma Input

The Logan plot with a plasma input (Logan et al., 1990) is given by,∫ t
0 CT (t)dt
CT (t)

' VD

∫ t
0 CP (t)dt
CT (t)

+ c. (24)

From Gunn et al. (2001) the general expression for the target tissue is given by,

CT (t) =
n∑

i=1

φie
−θit ⊗ CP (t), (25)

and the volume of distribution by,

VD =
n∑

i=1

φi

θi
. (26)

Without loss of generality an ordering on the θ’s is imposed such that θ1 > θ2 > . . . > θn. Substituting
equation (25) into the left hand side of equation (24) yields,∫ t

0 CT (t)dt
CT (t)

=

∫ t
0

∑n
i=1 φie

−θit ⊗ CP (t)dt
CT (t)

, (27)

=

∑n
i=1

φi

θi
(1− e−θit)⊗ CP (t)

CT (t)
, (28)

=

∑n
i=1

φi

θi
⊗ CP (t)

CT (t)
−
∑n

i=1
φi

θi
e−θit ⊗ CP (t)

CT (t)
, (29)

=
n∑

i=1

φi

θi

∫ t
0 CP (t)dt
CT (t)

−
∑n

i=1
φi

θi
e−θit ⊗ CP (t)

CT (t)
, (30)

= VD

∫ t
0 CP (t)
CT (t)

−
∑n

i=1
φi

θi
e−θit ⊗ CP (t)∑n

i=1 φie−θit ⊗ CP (t)
. (31)

For suitably large t, ∫ t
0 CT (t)dt
CT (t)

' VD

∫ t
0 CP (t)dt
CT (t)

− 1
θn
. (32)
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A.2 Reference Tissue Input

The Logan plot with a reference tissue input (Logan et al., 1996) is given by,∫ t
0 CT (t)dt
CT (t)

' VD

V ′
D

∫ t
0 CR(t)dt
CT (t)

+ c. (33)

From Gunn et al. (2001) the general expression for the target tissue is given by,

CT (t) = φ0δ(t) +
m+n−1∑

i=1

φie
−θit ⊗ CR(t), (34)

and the volume of distribution ratio by,

VD

V ′
D

= φ0 +
m+n−1∑

i=1

φi

θi
. (35)

Without loss of generality an ordering on the θ’s is imposed such that θ1 > θ2 > . . . > θm+n−1.

Substituting equation (34) into the left hand side of equation (33) yields,∫ t
0 CT (t)dt
CT (t)

=

∫ t
0 (φ0δ(t) +

∑m+n−1
i=1 φie

−θit)⊗ CR(t)dt
CT (t)

, (36)

=
φ0

∫ t
0 CR(t)dt+

∑m+n−1
i=1

φi

θi

∫ t
0 CR(t)dt

CT (t)
−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (37)

=

(
φ0 +

∑m+n−1
i=1

φi

θi

)
⊗ CR(t)

CT (t)
−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (38)

=

(
φ0 +

m+n−1∑
i=1

φi

θi

) ∫ t
0 CR(t)dt
CT (t)

−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

CT (t)
, (39)

=
VD

V ′
D

∫ t
0 CR(t)dt
CT (t)

−
∑m+n−1

i=1
φi

θi
e−θit ⊗ CR(t)

φ0δ(t) +
∑m+n−1

i=1 φie−θit ⊗ CR(t)
. (40)

For suitably large t, ∫ t
0 CT (t)dt
CT (t)

' VD

V ′
D

∫ t
0 CR(t)dt
CT (t)

− 1
θm+n−1

. (41)
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B Glossary

Symbol Description Units

CT (t) Concentration time course of radioactivity in the target tissue kBq.mL−1

CR(t) Concentration time course of radioactivity in the reference tissue kBq.mL−1

CP (t) Concentration time course of radioactivity in plasma kBq.mL−1

CB(t) Concentration time course of radioactivity in whole blood kBq.mL−1

CI(t) Concentration time course of radioactivity of the input function kBq.mL−1

φ Parameter vector for coefficients of the general impulse response function

θ Parameter vector for exponents of the general impulse response function

tsj Start time for the jth temporal frame min

tej End time for the jth temporal frame min

n Number of tissue compartments in the target tissue

m Number of tissue compartments in the reference tissue

q Number of exponential terms in the impulse response function

Ψ Matrix of basis functions or ”Dictionary” kBq.mL−1

y Measured PET tissue data kBq.mL−1

µ Regularization parameter

VD Volume of distribution of the target tissue (mL plasma).(mL tissue)−1

V ′
D Volume of distribution of the reference tissue (mL plasma).(mL tissue)−1

KI Irreversible uptake rate constant from plasma for the target tissue (mL plasma).min−1.(mL tissue)−1

BP Binding Potential (mL plasma).(mL tissue)−1

VB Fractional blood volume

f1 Plasma free fraction

f2 Tissue free fraction

Bmax Maximum concentration of receptor sites nM

KDT racer
Equilibrium disassociation rate constant nM

Fi Free concentration of competing ligand nM

KDi
Equilibrium disassociation rate constant of competing ligand nM

⊗ Convolution operator
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