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Automatic gait recognition by symmetry analysis
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Abstract

We describe a new method for automatic gait recognition based on analysing the symmetry of human motion using

the Generalised Symmetry Operator. This approach is reinforced by the psychologists� view that gait is a symmetrical
pattern of motion and results show that gait can indeed be recognised by symmetry analysis.

� 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

We present a new method of extracting sym-

metry for automatic gait recognition based on

analysing the symmetry of human motion. The

method is reinforced from the psychologists� view
that human gait is a symmetrical pattern of motion

and also by other works that suggest symmetry is
suitable for gait recognition. We use the Genera-

lised Symmetry Operator which locates features

according to their symmetrical properties rather

than relying on the borders of a shape or on gen-

eral appearance and hence does not require the

shape of an object to be known in advance.

Current interests in biometrics include ear and

face recognition, body tracking and hand gesture
recognition, to mention just a few. Gait recogni-
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tion is the most recent biometric to be added to

this domain. As a biometric, gait involves rec-

ognising people by the way they walk regardless of

their clothes or the background to them. One

major advantage of gait over other biometrics (e.g.

fingerprints) is the absence of need for contact with

subjects. Further, gait can be difficult to disguise

or conceal in application scenarios like bank rob-
bery where robbers usually put on helmets, masks,

spectacles and gloves making it virtually impossi-

ble to use any of the other known biometrics such

as fingerprints or face. Currently, gait is also the

only biometric at a distance and can be used when

other biometrics are either obscured or at too low

a resolution to be perceived. Though it could be

argued that physical condition such as drunken-
ness, pregnancy and injuries involving joints can

affect an individual�s motion, these factors are
similar in principle to factors affecting other bio-

metrics.

There have been allied studies of gait, Nixon

et al. (1999), notable among these are medical and
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psychological studies, together with computer vi-

sion studies aimed to model human motion and to

track people. Amongst these, psychologists, Cut-

ting et al. (1978), suggest gait is a symmetrical

pattern of motion and that humans perceive gait

as unique.
There is already a number of approaches to gait

recognition even though it is a fairly new research

area. The spatio-temporal approach, presented by

Niyogi and Adelson (1994) is probably the earliest.

Here, the gait signature was derived from the

spatio-temporal patterns of a walking person. The

different patterns of the motions of the head and

the legs in translation and time were extracted. The
patterns were then processed to determine the

motion of the bounding contours from which a

five-stick model was fitted. The gait signature was

then derived by normalising the fitted model in

terms of velocity, that is by linear interpolation.

Encouraging (85%) recognition rates were achie-

ved.

Little and Boyd (1998) used optical flow to
derive gait signatures by analysing the motion

content (shape of motion) of a human walking and

reported a recognition rate exceeding 90% on a

small database of six subjects. Generic object-

motion characterisation is also another approach

where the gait signature is derived from a para-

metric eigenspace. Murase and Sakai (1996) ap-

plied the approach to a database of seven subjects
with ten image sequences of each. The recognition

rates were 88% and 100% for 8 and 16 eigenvec-

tors, respectively. The approach was extended by

Huang et al. (1999) using canonical analysis, a

model free approach to reduce the dimensionality

of the input data whilst optimising class separa-

bility. A recognition rate of 100% was obtained on

a database of five subjects. Recently, Shutler et al.
(2000) extended statistical gait recognition via

temporal moments. This derived statistics with an

intimate relationship to gait, with symmetry

properties. On a small database of four subjects

with four image sequences each, a recognition rate

of 100% was obtained. The notion that gait is a

biometric is supported by the most recent papers

on automatic gait recognition, BenAbdelkader
et al. (2001) and Johnson and Bobick (2001), es-

pecially the motion of self-similarity for recogni-
tion. The only model-based approach by Cunado

et al. (1999) derived gait signatures from the

frequency components of the variations in the

inclination of the human thigh. As pendulums

modelled the periodic motion of the thigh during

walking, this again suggests that symmetry analy-
sis is suited to gait recognition.

Most of the approaches have used small data-

bases. We show how symmetry can be used to

recognise gait, again using these databases and

using a much larger database. We also investigate

the performance of symmetry with respect to

noise, occlusion and missing frames.
2. Symmetry and its extraction

2.1. Symmetry

Symmetry is a fundamental (geometric) prop-

erty suggesting it to be an important principle of

perception, Reisfeld et al. (1995). An object is said
be to symmetric if its shape remains unchanged by

the application of symmetry operations. Boolean

symmetry operations can only assess symmetry

when the shape of the object is known in advance,

rendering them inefficient in most cases. The dis-

crete symmetry operator can estimate symmetri-

city without the knowledge of the object�s shape,
unlike feature extraction operators that find a
shape by relying on its border or on general ap-

pearance. The symmetry transform assigns a sym-

metry measure to each point in the image and is

determined with respect to a given point-symmetry

group. Reisfeld et al. (1995) reported that the per-

formance of the symmetry transform is not

affected by existence of several objects in the scene.

This depends on values selected for controlling
parameters.

2.2. Symmetry extraction

The discrete symmetry operator uses edge

maps of images from the sequences of subject

silhouettes to assign symmetry magnitude and

orientation to image points, accumulated at the
midpoint of each analysed pair of points. The

total symmetry magnitude (also known as iso-
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tropic symmetry), MðpÞ of each point P is the sum
of the contributions of image points that have P
as their mid point, that is

MðPkÞ ¼
X

ði;jÞ2CðPkÞ
CðPi; PjÞ ð1Þ

where Pi and Pj are pairs of points having Pk as
their mid point and CðPi; PjÞ as their symmetry
contribution.

Fig. 1 shows two edge points Pi and Pj and their
symmetry contribution CðPi; PjÞ. The symmetry
relation or contribution, CðPi; PjÞ between the two
points Pi and Pj is

CðPi; PjÞ ¼ Di;jPhi;jIiIj ð2Þ
where Di;j and Phi;j (see Eqs. (3) and (6) respec-
tively) are the distance and the phase between the

two points. Ii and Ij are the logarithmic intensities
at the two points. The symmetry distance weight-
ing function gives the distance between two dif-

ferent points Pi and Pj, and is calculated as

Di;j ¼
1ffiffiffiffiffiffiffiffi
2pr

p exp

�
� kPi � Pjk

2r

� ��
8i 6¼ j ð3Þ

where r controls the scope of the function. The

logarithm intensity function, Ii, of the edge mag-
nitude M at point ðx; yÞ is
Ii ¼ logð1þMiÞ ð4Þ
Fig. 1. The symmetry contribution of edge points Pi and Pj.
where

Mi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

x ðx; yÞ þM2
y ðx; yÞ

q
ð5Þ

where theMx andMy are derived by the application

of (Sobel) edge templates. The phase weighting

function between two points Pi and Pj is:

Phi;j ¼ ð1� cosðhi þ hj � 2ai;jÞÞ
� ð1� cosðhi � hjÞÞ 8i 6¼ j ð6Þ

where

aði; jÞ ¼ atan
yi � yj
xi � xj

� �
ð7Þ

is the angle between the line joining the two points

and the horizon. From Eq. (6), the phase weight-

ing function has two factors. The first factor,
ð1� cosðhi þ hj � 2ai;jÞÞ makes it possible for

maximum symmetry to be achieved when ðhi �
ai;jÞ þ ðhj � ai;jÞ ¼ p. This is when the two gradi-
ents at the points Pi and Pj are oriented in the same
direction towards each other. This situation cor-

responds to a dark object on a light background.

The second factor, ð1� cosððhi � hjÞÞ is intro-

duced because the case ðhi � ai;jÞ ¼ ðhj� ai;jÞ ¼
p=2 is included in ðhi � ai;jÞ þ ðhj � ai;jÞ ¼ p when
the first factor attains its maximum. This is when

the edge directions are normal to the line join-

ing the points Pi and Pj. This situation also cor-
responds to a light object on a dark background.

The combination of factors makes it possible to

achieve the same measure for different object re-

flectance and lighting conditions. In the distance
weighting function, each value of r implies a dif-
ferent scale thus making it suited to multi-resolu-

tion schemes. A large value of r implies large-scale
symmetry that gives distant points similar weight-

ing to close points. Alternatively, a small value of

r implies local operation and local symmetry.

Recently, Parsons and Nixon (1999) observed that

increasing the value of r increases the weighting
given to the more distant points without decreas-

ing the influence of the close points. A comparison

with the Gaussian-like functional showed that the

mean of the distribution locates the function on

the mean value of the sample. A focus, l, was
therefore introduced into the distance weight-

ing function to control the focusing capability of



Fig. 2. Images from the new SOTON data: (a) original; (b) silhouette; (c) after Sobel and (d) symmetry map.
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the function, hence further improving the scaling

possibilities of the symmetry distance function.

The resulting function is called the focus weight-

ing function, FWF. This replaces Eq. (3) as fol-
lows:

FWFi;j ¼
1ffiffiffiffiffiffiffiffi
2pr

p exp

�
� kPi � Pjk� l

2r

� ��
8i 6¼ j

ð8Þ
The addition of the focus into the distance

weighting function moves the attention of the
symmetry operator from points close together to a

selected distance.

The symmetry contribution obtained is then

plotted at the midpoint of the two points. The

symmetry transform as discussed here detects re-

flectional symmetry, Reisfeld et al. (1995), that is

invariant under 2D rotation, translation transfor-

mations and under change in scale, and as such has
potential advantage in automatic gait recognition.
3. Symmetry and gait

3.1. Deriving a gait signature from silhouette

information

The gait signature for a subject is derived from

an image sequence. Each sequence of image frames

consists of one gait cycle taken between successive

heel strikes of the same foot, thus normalising for

speed. This cycle has been considered, Murray

(1967), ‘‘a total walking cycle’’ of gait. The fol-
lowing gives an overview of the steps involved in

extracting symmetry from silhouette information.

First, the image background is computed from the

median of five image frames and subtracted from
the original image (Fig. 2a) to obtain the silhouette

(Fig. 2b). This was possible because the camera

used to capture the image sequences was static and

there is no translational motion. Moreover, the

subjects were walking at a constant pace. The

Sobel operator is then applied to the image in Fig.

2b to derive its edge-map, Fig. 2c. The edge-map is

thresholded so as to set all points beneath a chosen
threshold to zero, to reduce noise or remove edges

with weak strength. These processes reduce the

amount of computation in the symmetry calcula-

tion. The symmetry operator is then applied to

give the symmetry map, Fig. 2d. For each image

sequence, the gait signature, GS, is obtained by

averaging all the symmetry maps, that is

GS ¼
XN
j¼1

Sj

 !,
N ð9Þ

where N is the number of symmetry maps in a

sequence.

3.2. Deriving a gait signature from optic flow

information

The process involved in deriving a gait signa-

ture from optic flow information is little different

from that of the silhouette information. A gait

cycle of a walking subject is used. Having removed



Fig. 3. Images involved in optic flow information.
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the background from each original image to ob-

tain the silhouette, two successive silhouettes are

used at a time using the algorithm as proposed by
Little and Boyd (1998) to extract the optic flow

image which replaces the information supplied by

the Sobel operator. The symmetry operator is then

applied. Finally, all symmetry maps in the se-

quence are averaged to obtain the gait signature.

Fig. 3 shows sample images of the process.

3.3. Gait recognition

Having obtained gait signatures for all image

sequences in a database, we then apply the Fourier

transform to obtain the description FD, that is

FDðu; vÞ ¼
X
N

X
N

GSðx; yÞe�j2pN ðuxþvyÞ ð10Þ

where GS is a gait signature and the Fourier

transform is implemented by the FFT. FD is then

low-pass filtered to reduce sensitivity to high-fre-

quency components. Different cut-off frequencies

were used to determine the appropriate number of
Fourier components. We select only the Fourier

descriptions within a circle of radius, R, as

FD0ðu; vÞ ¼ FDðu; vÞ if ðu2 þ v2Þ6R2

0 otherwise

	
ð11Þ

For purposes of classification or recognition,

the similarity differences between the Fourier de-

scriptions of the gait signatures are then calculated

using Euclidean distance, that is
SDi;j ¼
X

kðjFD0ix;y j � jFD0jx;y jÞk ð12Þ

where the elements of FD0i are the Fourier de-
scriptions of the gait signatures of image sequence

i remaining after low pass filtering. The magnitude
spectra only were used here because they gave

a better result than the inclusion of the phase

information.

The new method was applied to three differ-

ent databases of spatial templates. The original

SOTON database has four subjects with four im-
age sequences each and that of UCSD six subjects

with seven image sequences of each. For both

original SOTON and UCSD databases, we derived

gait signatures for silhouette and optical flow in-

formation. These provide alternative versions of

the input data for our technique to process. From

similar work done by Huang et al. (1999), com-

bining the silhouette and optical flow information
can allow better recognition rates than achieved

using the two modalities separately but our aim

here is to establish whether human gait has distinct

symmetrical properties that can be extracted for

gait recognition. The values for r and l used were
27 and 90, respectively, unless otherwise stated.

The k-nearest neighbour rule was then applied for
classification, using k ¼ 1 and 3, as summarised in
Table 1. The correct classification rates (CCRs)

were 100% for both k ¼ 1 and 3 for the original

SOTON database for both data types. For the

UCSD database, the recognition rates for silhou-

ette information were 97.6% and 92.9% for k ¼ 1

and 3, respectively. A CCR of 92.9% was obtained

for the optical flow information, for both k ¼ 1

and 3.
After our earlier work, Hayfron-Acquah et al.

(2001), we applied the same method to a much

larger database of 28 subjects, the new SOTON

database. This new database equals in size the

largest (published) contemporaneous gait database

though new and larger databases will emerge in the

near future. Each subject has four image sequences

giving in total 112 image sequences. With this
database, only the silhouette information is used

and the recognition rates obtained are also shown

in Table 1. Clearly, using a much larger database

still gave the same good recognition rates and that

is very encouraging.



Table 1

Initial results obtained from three different databases

Database # Subjects # Sequences Data type CCR (%)

k ¼ 1 k ¼ 3

Original SOTON 4 16 Silhouette 100 100

Optical flow 100 100

UCSD 6 42 Silhouette 97.6 92.9

Optical flow 92.9 92.9

New SOTON 28 112 Silhouette 97.3 96.4
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For the low pass filter, all possible values of
radius were used to investigate the number of

components that can be used (covering 0.1–100%

of the Fourier data). Though the results of Table 1

were achieved for all radii greater than 3 (using the

original SOTON database), selecting fewer Fou-

rier components might affect the recognition rates

on a larger database of subjects, and this needs to

be investigated in future. Fig. 4 shows the general
trend of the recognition rate against the different

cut-off frequencies. The figure shows that selecting

about 1.1% of the Fourier descriptions is enough

to give the best recognition rates for both k ¼ 1

and 3, but this is only on a small database.

3.4. Performance analysis of symmetry operator

Performance was evaluated with respect to

missing spatial data, missing frames and noise
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Fig. 4. Recognition rates against th
using the original SOTON database. Out of the 16
image sequences in the database, one (from subject

4) was used as the test subject with the remainder

for training.

3.4.1. Missing frames

The evaluation, aimed to simulate time lapse,

was done omitting a consecutive number of

frames. For a range of percentages of omitted
frames, Fig. 5a, the results showed no effect on

the recognition rates for k ¼ 1 or 3. This is due

to the averaging associated with the symmetry

operator. Fig. 5a shows the general trend of de-

viation of the best match of each subject to the

test subject. The increase in the similarity differ-

ence measures as more frames are omitted ap-

pears to be due to the apparent increase in high
frequency components when averaging with fewer

frames.
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3.4.2. Adding/omitting spatial data

The evaluation was done by masking with a

rectangular bar of different widths: 5, 10 and 15

pixels in each image frame of the test subject and

at the same position. The area masked was on

average 13.2%, 26.3% and 39.5% of the image

silhouettes, respectively. The bar either had the

same colour as the image silhouette or as the

background colour, as shown in Fig. 6, simulating
omission and addition of spatial data, respectively.
Fig. 6. Occluded and noisy data: (a) 10 pixels; (b) 15 pix
In both cases, recognition rates of 100% were ob-

tained for bar size of 5 pixels for both k ¼ 1 and 3.
For a bar width of 10 pixels, Fig. 6c failed but Fig.

6a gave the correct recognition for k ¼ 3 but not

for k ¼ 1. Fig. 6c failed as the black bar changes

effective body shape and recognition uses body

shape and body dynamics. For bar sizes of 15 (i.e.

Fig. 6b and d) and above, the test subject could

not be recognised as subject is completely covered

in most of the image frames. This suggests that
els; (c) 10 pixels; (d) 15 pixels; (e) 10% and (f) 50%.



2182 J.B. Hayfron-Acquah et al. / Pattern Recognition Letters 24 (2003) 2175–2183
recognition is unlikely to be adversely affected

when a subject walks behind a vertically placed

object, such as a lamp post.

3.4.3. Noise

To investigate the effects of noise, we added
synthetic noise to each image frame of a test sub-

ject and compared the resulting signature with

those of the other subjects in the database. Fig. 6e

and f shows samples of the noise levels used. The

evaluation was carried out under two conditions.

First by using the same values of r and l (Eq. (8))
as earlier, for a noise level of 5%, the recognition

rates for both k ¼ 1 and 3 were 100%. For 10%
added noise, the test subject could still be rec-

ognised correctly for k ¼ 1 but not for k ¼ 3. This

suggests that the recognition is not greatly affected

by limited amounts of failure in background ex-

traction, though those errors are less likely to be

uncorrelated. With added noise levels of 20% and

above, the test subject could not be recognised for

k ¼ 1 or 3. In order to reduce contribution of
distant (noisy) points, the values of r and l were
then made relatively small. Now the recognition

rates (100%) were not affected for both k ¼ 1 and 3

for added noise levels even exceeding 60%. Fig. 5b

shows how in this case the best match of each

subject deviated from that for the test subject, as

more noise was added. Here, the high recognition

rate is consistent with the same order being
achieved despite addition of noise. As such, the

symmetry operator can be arranged aiming to

include noise tolerance, but the ramifications of

this await further investigation.
4. Conclusions and further work

We have shown how symmetry can be used to

recognise people by their gait, as supported by

research in psychology. Human gait appears to

have distinct symmetrical properties that can be

extracted for recognition. The symmetry operator,

essentially, forms an accumulator of points, which

are measures of the symmetry between image

points to give a symmetry map. By using the
symmetry operator, the Discrete Fourier Trans-

form and a basic nearest-neighbour approach, the
results have produced encouraging recognition

rates on a small database, a performance that is

comparable with other approaches applied to the

same databases. Also, the recognition rates on a

much larger database remained almost the same as

those obtained from smaller databases. The sym-
metry operator has been shown to handle missing

spatial data, missing image frames, and to some

extent noise. As such, symmetry appears to be

promising approach with performance advantages

and we shall look forward to developing further

the notion of moving object description by tem-

poral symmetry.
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