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ABSTRACT

The paper presents research on a robust technique for texture-based image retrieval in multimedia museum
collections. The aim is to be able to use a query image patch containing a single texture to retrieve images
containing some area with similar texture to that in the query. A retrieval technique without the need for
segmentation is presented. The algorithm uses a multiscale sub-image matching method together with an
appropriate texture feature extractor. The multiscale sub-image matching is achieved by first decomposing
each database image into a set of 64x64 pixel patches covering the entire image. The resolution of the
database image is then rescaled to create sub-images corresponding to a larger scale. The process continues
until the final resolution of the image is equal to some pre-determined value. Finally, a collection of sub-
images corresponding to different image regions and scales is obtained. The final image feature vector consists
of a collection of feature vectors corresponding to each sub-image. Several wavelet-based feature extractors
are tested with the multiscale technique. From the experiments, it is found that the multiscale sub-image
matching method is an efficient way to achieve effective texture retrieval without any need for segmentation.

Keywords: Texture feature extraction, multiscale, sub-image matching, content-based retrieval, wavelet
transform

1. INTRODUCTION

Image retrieval has been a very active research area since the 1970s, with the thrust from two major research
communities; database management and computer vision.! Image retrieval can be divided into text-based
image retrieval (TBIR) and content-based image retrieval (CBIR). The text-based technique first annotates
the images with text, and then uses text-based database management systems to perform image retrieval.
The use of text-based image retrieval was very popular in the early days of computer vision, but its usage
has been less dominant in recent years. There are two major factors that contribute to this; the vast amount
of labour required in manual image annotation and the subjectivity of human perception. This leads to more
efforts being required on content-based image retrieval. Using this technique, images are indexed by their
own visual content, such as colour, texture or shape. CBIR has become more and more important with
the advance of computer technology, and potentially should provide the answer to the two drawbacks of the
TBIR system mentioned above.

Among many retrieval features associated with CBIR, texture retrieval is one of the most difficult. This
is mainly because no satisfactory quantitative definition of texture exists at this time. Texture analysis
has a long history and texture analysis algorithms range from using random field models to multiresolution
filtering techniques such as the wavelet transform. Unlike colour, texture cannot be represented by a single
pixel, making texture analysis a very challenging field. One way to perform content-based image retrieval
using texture as the cue is by first segmenting an image into a number of different texture regions and then
performing a texture analysis algorithm on each texture segments. However segmentation can sometimes be
problematic for image retrieval.? In this paper, we propose a simple but effective algorithm for texture-
based image retrieval without the need for segmentation. Our algorithm uses a multiscale sub-image matching
method together with an appropriate texture feature extractor.
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Figure 1. Flow chart of the multiscale algorithm.

The idea of a multiscale feature extraction technique has found much success in the area of colour analysis.
One example can be found in Chan et al’s work,® where they use the multiscale approach to extract colour
features using the colour coherence vector (CCV) technique. The resulting algorithm, which they call a
multiscale colour coherence vector (MCCV), manages to handle the problem of sub-image colour retrieval
effectively, without the need for any segmentation. With minor modification, the multiscale approach can be
used in the same way to extract texture information using any texture feature extraction method, although
the ones with low computational load are preferable. In this paper, three wavelet-based feature extraction
methods are tested with the multiscale technique, namely the pyramid-structured wavelet transform (PWT),
the tree-structured wavelet transform (TWT), and the discrete wavelet frames (DWF). Wavelet-based feature
extractors are chosen because of their high classification accuracy and low computational load.

This paper is organized as follows. Section 2 describes the multiscale algorithm, while section 3 presents
the overview of wavelets and the three different feature extractors to be tested with the multiscale algorithm.
Section 4 describes the experimental details followed by results and evaluation. Finally the conclusions and
future work are presented in section 5.

2. MULTISCALE ALGORITHM

Fig. 1 shows the flowchart of the proposed multiscale algorithm. The idea behind the multiscale algorithm
is to create enough sub-images of size 64x64 to cover the whole region of a particular image. This process is
repeated at several different resolutions or scales of the image, hence the name multiscale. The result of this
process is a collection of 64x64 sub-images each corresponding to different scales and regions of the parent
image. A suitable feature extractor can then be used to create a feature vector for each of the sub-images.
Chan et al® initially rescaled the image to be processed into a pre-determined dyadic size image before
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Figure 2. Example of sub-image tiling.

applying the multiscale technique. The 64x64 sub-image regions will then be very easy to determine due to
the dyadic nature of the image size. To process the image at a different scale, the current image resolution
is simply halved in each dimension. The process continues until either the row or the column of the image is
of size 64.

The above condition however might be suitable for colour features, but might not work for texture features.
By non-linearly re-scaling the resolution of the input image, the texture characteristics of the image might
be affected, and features extracted from it might not reflects an accurate representation of the texture, hence
resulting in incorrect retrieval. Because of this, we will not apply the above dyadic re-scaling in our multiscale
algorithm. Instead, we begin our multiscale algorithm from the original size of the input image. Because of
the possibly non-dyadic nature of the image size, we will end up with a collection of slightly overlapping 64 x 64
sub-images at the current resolution. The total number of sub-images for a particular scale is calculated by:
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number of sub-images = ceil ((

A suitable texture feature extraction can now be performed on all sub-images separately. Each time
a feature vector of a sub-image is produced, it is added to the final feature vector, which represents the
multiscale feature vector of the parent image. After all sub-images of the current scale have been processed,
the image is linearly rescaled and the whole process is repeated. To find the resolution of the image at the
next scale, we first find the smallest value, ¢ between the number of row pixels and the number of column
pixels at the current scale, compute the nearest dyadic integer to that value, j, and then linearly rescale the
image by a factor of j/i. Starting from this level onwards, to go to the next scale, we simply rescale the
image by a factor of half. The process stops once either the row or column of the image is of size 64. The
final feature vector, which consists of a collection of feature vectors corresponding to different regions and
scales, is saved. Fig. 2 shows an example of the sub-image tiling.

During matching, a comparison is made by computing the distance between the feature vector of the
query image and all the feature vectors of the sub-images, and the smallest distance between them represents
the dissimilarity measure between the query image and that particular database image. The feature vector
of the query image is computed using the same feature extractor but without the multiscale approach. This
is because we assume the query image is a texture patch, hence no local feature extraction is needed.



3. WAVELET-BASED TEXTURE FEATURE EXTRACTORS

Wavelets were invented to overcome the shortcomings of the Fourier Transform. The fundamental idea is
not only to analyse according to frequency but also according to scale, which is not covered by the Fourier
transform. Most standard wavelets are based on the dilations and translations of one mother wavelet, v,
which is a function with some special properties.

In image processing terms, the dilations and translations of the mother functions v are given by the
wavelet basis function:

P (t) =272 (2752 —1).

The variables s and [ are integers that dilate and orientate the mother function ¢ to generate a family of
wavelets, such as the Daubechies wavelet family.* The scale index s indicates the wavelet’s width, and the
location index [ gives its position in 2-D.

Wavelets can be divided into orthogonal and non-orthogonal. They are orthogonal if their basis functions
are mutually orthogonal. Because of the orthogonality, there exist a series of coefficients that can represent
the wavelet decomposition for the whole family of a particular wavelet. The series of coefficients is named the
quadrature mirror filter (QMF). This concept, along with the theory of filter banks, is the basis for producing
the famous fast algorithm wavelet transform by Mallat.”

Quadrature mirror filter is a filter that can be either low-pass or high-pass just by changing sign and
rearranging its coefficient as below:

lowpass : [ ¢ ¢ ¢ c3 |,

(2)

highpass : [ —c3 ¢ —c1 ¢ |,
where cg,c1,co and c3 are the coefficients of a 4-tap filter.

In 2-D wavelet decomposition, the QMFs are used as both highpass and lowpass in both horizontal and
vertical directions, followed by a 2 to 1 subsampling of each output image. This will generate four wavelet
coefficient images, i.e. the low-low, low-high, high-low and high-high (LL, LH, HL, HH respectively) channels.
The process is then repeated until some pre-determined condition is met. For detailed information on wavelet
theory, readers are referred to the references.58

Features are computed from each of the channels of the wavelet transform output. The mean p of
the magnitude of the transform coeflicients is used to calculate the features. Let the output channel be
Wn(z,y) and mn denotes the specific channel, where m is the decomposition level and n=1,2,3,/ indicates
the LL,LH HL and HH bands respectively, then i, is calculated by:

1
Hmn = N2

mn

/ [Wonn (2, y)| dz dy, (3)

where N is the length of a particular channel mn.

3.1. Pyramid-structured Wavelet Transform (PWT)

The pyramid-structured wavelet transform is the initial decomposition structure of wavelet transform and
was developed by Mallat.® In PWT, the decomposition process is continued in the LL channels only until
some predetermined condition is satisfied. An example of a 2-level decomposition of an image is shown in
Fig. 3.

The number of channels, hence the number of features for PWT is given by:
number of channels =3 x [ — 1, 4)

where [ is the number of decomposition level.
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Figure 3. PWT decomposition of an image.

3.2. Tree-structured Wavelet Transform (TWT)

In TWT, the decomposition process is not restricted to the LL channels only, but also in specific circum-
stances, on LH, HL and HH channels as well. This results in a richer range of possibilities for analysis. The
reason for using TWT in texture analysis is because the dominant frequencies of textured images do not only
lie in the lower resolution band, but perhaps in the middle band as well.® Thus TWT helps in providing the
platform to analyse texture information in the middle frequency band. To avoid full decomposition, various
ways are suggested to determine which channels are suitable for further decomposition. One popular method
is to use an energy measure, where only sub-images with energy above a certain threshold are decomposed
further. However this results in a much complex algorithm. Our tree-structured wavelet transform follows
the one suggested by Ma and Manjunath,'® where the LL, LH and HL channels are decomposed further at
every level. The HH channel is not decomposed as this often does not lead to stable features. Fig. 4 shows
a 2-level TWT decomposition of an image.
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Figure 4. TWT decomposition of an image.

The number of channels, hence the number of features for TWT is given by:

number of channels = 4 X gl=t g2, 4 30, (5)
where [ is the number of decomposition level, and [ > 0.

3.3. Discrete Wavelet Frames (DWF)

DWF, or over-complete wavelet transform, is nearly identical to the standard wavelet transform (PWT),
except that one upsamples the filters, rather than downsampling the image. While the frame representation is
over-complete, and computationally more intensive than PW'T, it holds the advantage of being translationally
invariant.!!

Given an image, the DWF decomposes it using the same method as the PWT, but without the subsampling
process. This results in four filtered images with the same size as the input image. The decomposition is
then continued in the LL channels only as in PWT, but since the image is not sub-sampled, the filter has to
be upsampled by inserting zeros in between its coefficients. Fig. 5 shows a 2-level DWF decomposition of an
image.

The number of channels, hence the number of features for DWF is given by:
number of channels =3 x | — 1, (6)

where [ is the number of decomposition level.
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Figure 5. DWF decomposition of an image.

4. EXPERIMENT
4.1. Experiment Details

The multiscale algorithm together with the three feature extraction techniques were tested on a collection
of museum images, where each image may or may not contain a certain amount of texture within them.
The total number of images in the test collection is 1106, with sizes ranging from 341x512 to 958 x648. The
performance of the proposed method will be evaluated based on the ability of the algorithm to retrieve images
which contain a texture region similar to the query image patch.

The combination of the multiscale algorithm with PWT, TWT and DWF are called multiscale-PWT
(MPWT), multiscale-TWT (MTWT) and multiscale-DWF (MDWTF) respectively. A summary of parameters
used for each technique is described below:

MPWT: decomposition level = 2, filters = Daubechies 8-tap wavelets,
feature vector size per sub-image = 7;

MTWT: decomposition level = 2, filters = Daubechies 8-tap wavelets,
feature vector size per sub-image = 13,
decomposition structure = fixed on LL, LH and HL channels;

MDWF: decomposition level = 2, filters = Daubechies 8-tap wavelets,
feature vector size per sub-image = 7;

The Daubechies 8-tap wavelet filters were chosen because they are compactly supported and well localized
in both the time and frequency space. An 8-tap Daubechies wavelet filter coefficients are given by:

lowpass : [ —0.0106 0.0329 0.0308 —0.1870 —0.0280 0.6309 0.7148  0.2304 |,

(7)
highpass : [ —0.2304 0.7148 —0.6309 —0.0280 0.1870 0.0308 —0.0329 —0.0106 |.

For each technique, the mean energy as described previously is used to form the feature vectors. The
distance measure used is the Euclidean distance. The distance between 2 features ¢ and j is then given by:

ati,) = 33 [t~ ] )

m n

Since all images used in this experiment are colour images, the feature extractor is applied on the lumi-
nance value of the images. The luminance of an image can be computed using the formula:

Luminance, L = 0.299R + 0.587G + 0.114B, (9)
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Figure 6. Retrieval result using query image 1.

where R, G, B are image components corresponding to red, green and blue respectively. It is important to
note that the PWT, TWT and DWF algorithms are mainly a texture descriptor algorithm and therefore
the retrieved images might not be in a correct colour order. The correct colour order might be achieved by
integrating the texture descriptor with some colour descriptor such as the histogram RGB method but it is
beyond the scope of this paper.

Also, to reduce the bias caused by different illuminating conditions, the local mean is subtracted from
each sub-image before applying the feature extractor. For the query image, the image is first resized to 64 x 64
before a particular feature extractor is applied. No multidimensional indexing is used although it is intended
that the process will be accelerated by its introduction.

4.2. Result and Discussion

Figs. 6, 7, 8 and 9 show four examples of retrieval results for each wavelet technique using 4 different query
patches. The query image along with the top five retrieved images are shown. The box in the retrieved image
indicates that the sub-image is computed to be the most similar to the query image.

It is difficult to make a precise comparison between the performances of the three wavelet-based techniques
using the multiscale approach. This is because most of the images retrieved are the same for all three
techniques but with different order. However , as illustrated in the four examples shown, a fair conclusion
can still be made. Fig. 6 shows a very good retrieval results for all three methods. All images which contain
a region with the same texture as the query were retrieved in the top 5, regardless of its resolution. In Fig.
7, the same texture but with a different colour and resolution is used, and the retrieval result again shows
that the correct images are retrieved.

Fig. 8 shows the result of using a sub-image of the query patch in Fig. 6 as query. All three techniques
manage to recognize the small texture pattern throughout the entire database. However, closer inspection
suggests that the MTWT technique, due to its knowledge in middle frequency bands, provides more accurate
results with all the marked regions in the retrieved images being very similar to the query patches. The
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Figure 7. Retrieval result using query image 2.

MPWT and MDWF techniques does not have significant difference except that since MDWF is tanslationally
invariant, the marked regions in the retrieved images are more relaxed, hence the marked region might show
a quite different texture translation from the one in the query. This is clearly shown in Fig 8 where the first
retrieved image using MDWF shows the same texture but with different texture direction. Fig. 9 shows a
result of using a completely different texture patch. All the algorithms manage to find a region in an image
that has more or less the same busy pattern as in the query, even a very small graphic on a plate, as shown
in the second retrieved image of MDWF.

The main conclusion that can be taken from this experiment is that the multiscale method can be used
to retrieve texture without segmentation. There is not enough space to show all the retrieval results, but
generally the multiscale technique together with one of the three wavelet-based techniques, works very well in
retrieving textures. Although in some cases there are also some rather unfamiliar texture patterns retrieved,
that is not very crucial as long as all the wanted texture patterns are retrieved within the top matches. The
result also shows that the multiscale approach does manage to tackle the scale invariance problem, where
images with the same texture but with different resolution are retrieved together.

Image Size 768 x 512 958 x 648
(128 sub-images) | (293 sub-images)
MPWT 1.5 3.2
MTWT 2.9 6.3
MDWF 8.5 18

Table 1. Time (in seconds) taken to extract features for a single image. Image size 768x512 is the most used in the
experiment, while image size 958 X648 is the largest.

Table 1 compares the time taken to compute the feature vector for a single image. Considering the quite
large images used, all methods still manage to achieve a reasonably fast response. This is because, although
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Figure 8. Retrieval result using query image 3.

the PWT, TWT and DWF are applied several times for each image, the computation is performed on a
sub-image of size 64x64, which takes just a fraction of a second. The computational speed of the multiscale
algorithm is therefore an advantage since segmentation-based texture retrieval could take a longer time just
to segment the image.

5. CONCLUSIONS AND FUTURE WORK

In this paper we have proposed a modified multiscale algorithm to be used in texture-based image retrieval.
We have shown that the multiscale algorithm does not only work with colour retrieval, but given a suitable
texture descriptor, it can provide a very good texture retrieval platform as well. The retrieval accuracy of the
algorithm is excellent and further improvement to the algorithm should result in a very good texture retrieval
system. The computational load of the algorithm is also beneficial, as a segmentation-based texture retrieval
might take longer just to segment the image. In terms of performance comparison between the different
feature extractors, the MTWT technique gives a slightly better result than the MPWT and MDWF.

We are working on improvements to the algorithm, the multiscale algorithm is to be applied on both the
query image and the database images. Also, to improve the performance, creating more sub-images from a
single image might help. However these improvements have to come together with a suitable indexing system
as well as fast matching algorithm since the more sub-images produced, the more the feature vectors and the
more time it will take to perform feature matching. Texture retrieval with a correct colour order will also be
addressed.
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