Foundation of Combined Datapath and Controller Self-checking Design 

Petros Oikonomakos


Mark Zwolinski

Electronic Systems Design Group, Department of Electronics and Computer Science

University of Southampton, Southampton SO17 1BJ, United Kingdom

email : {po00r,mz}@ecs.soton.ac.uk

Abstract
We consider the problem of designing self-checking controllers for applications with sequential datapaths. Firstly we compare encoded and unencoded (one-hot) controller implementations and we argue that self-checking of encoded control signals is not sufficient in terms of testability. Subsequently, we present four alternative controller self-checking schemes, based both on parity and on the observation that a self-checking data path can be employed for control path self-checking as well, by exploiting Intrinsically Secure control states. We discuss the properties of each of them, and present a few experimental results.

1. Introduction

In addition to the traditional self-checking of data paths, controller checking has recently become mandatory practice for ensuring the correct operation of finite-state machine (FSM) designs. Zeng et al [9] proposed an integral FSM synthesis technique, featuring single- and / or multiple-parity concurrent error detection, and suitable state encoding. Hellebrand et al [2] proposed a low-cost and fast pipeline control unit structure with on-line testing capabilities. Leveugle [6] used Hamming encoded states, and further accelerated design for fault detection or tolerance by automatically modifying the original HDL descriptions of given designs. While we favour all automation attempts, we also note that all the above work is suitable for FSMs with combinational datapaths, but no mention appears to be made about datapaths that include storage elements.
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Bolchini et al [1] were the first to provide a brief mention of self-checking for FSMs with sequential datapaths, while both Lakshminarayana et al [4] and Karri et al [3] dealt with designs that include such datapaths. The former propose parity checking for the controller output, while the latter mention duplication of the controller for self-checking purposes. Neither approach is concerned with controller checking as such; rather, the problem is addressed as a small issue of limited significance in the context of some other piece of work. As a consequence, important details regarding the nature and properties of controller realisations for FSMs with sequential datapaths are missing. For example, none of them addresses highly parallel designs with several communicating FSMs.

It is this gap that we fill here. We overview the structure of an FSM with a sequential datapath, and demonstrate why it is important to provide self-checking for the unencoded (or ultimately decoded) one-hot controller output. Subsequently, we present a collection of alternative solutions for this task, taking into account multiple communicating FSMs that constitute the overall design, and exploiting possibly existing datapath self-checking resources.

2. Encoded vs one-hot implementations
Figure 1 shows a typical FSM with a sequential datapath. The hardware model of the controller is given on the left-hand side, while the datapath is shown in the form of a data flow graph (DFG) on the right-hand side. The controller consists of the state register and the next state logic block. The datapath consists of modules, implementing operations, and registers that are used to preserve intermediate results across control state (CS) boundaries. In figure 1, operations O1 – O4 are scheduled over control steps N – N+2, and the associated registers are also shown. The loading of registers at the proper control steps is achieved by appropriately connecting register “load enable” pins to controller outputs. During any given active CS, only the “active” registers should have a logical “true” value on their “load enable” ports, while all other registers should have a logical “false”. Therefore, the actual control signals reaching the storage units are by construction one-hot encoded. Since the state register contents can be encoded according to a variety of encoding schemes, a decoder is applied (figure 1) to produce the necessary one-hot load-enable signals.

From the testability point of view, typically the state signals are encoded according to a coding scheme with enhanced error detection and correction capabilities [1, 2, 6, 9], (e.g. Hamming [1, 6]). All checking and correcting is taking place at the actual state register outputs (point “A” of figure 1). If this is applied in a configuration such as that of figure 1, then any possible faults in the decoder are not considered, and are therefore likely to corrupt the decoded control signals, resulting in an erroneous sequence of states, which remains undetected. The more complicated the encoding scheme, the more complicated the decoder, and the more possibilities that a fault may corrupt it. Consequently, if robust reliability properties are to be maintained, it is highly desirable that controller testing take place after the decoding operation, that is on the raw one-hot control signals (point “B” of figure 1).

Regarding the implementation of the controller, the usual design trade-offs apply. If the state register is one-hot by design, then the next state logic block is trivial, while no decoder is needed. The unit is fast but at times too expensive. The number of flip-flops is reduced if suitable encoding is applied; the complexity of next state logic and decoder are, however, increased. The resulting controller is also slowed down. Whatever the technology-related decisions that dictate one or another realisation, the self-checking techniques presented in the following are generally applicable, under the sole assumption that any targeted controller fault may corrupt a single (or at times an even number of) control output line(s) [6, 9]. This is easily achieved when one-hot state register realisation is applied. In the case of an encoded realisation, the decoder and next state logic blocks need to be designed with special care to achieve this property [6].

3. Parity-based self-checking

3.1 Preliminaries
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Figu

re 1 : Finite State Machine with Sequential Datapath

 

Parity-based checking is the most common, and most discu-ssed form of self-checking design. Among others, it has been propo-sed for FSM self-checking [4, 9]. Clearly, it is a tempting choice for the one-hot controller output, due to its relatively low cost. On another note, modern digital systems often consist of more than one communicating FSM. These FSMs often share an initialisation CS, which forks out to several finite state “sub-machines”, as figure 2 depicts. In the figure, rectangles correspond to CSs, while vertices show the flow of control.

In this section, we address parity-based FSM controller checking in the context of highly parallel designs featuring sequential datapaths. We will refer to communicating FSMs that constitute parallel designs, as concurrent processes. In addition, one-hot controller outputs will be referred to as control signals.

3.2 Per process parity-based self-checking

Consider the design of figure 2, consisting of n concurrent processes (P1,…,Pn), each one consisting of mi CSs, plus the common initialisation state. As argued in section 2, control signal self-checking has to be applied to the raw one-hot signals. This is easily implemented as follows. Every process has its control signals checked by a separate odd parity checker, and all responses are compacted by a dual-rail checker, as is the usual practice in self-checking design [7]. The control signal corresponding to the initialisation state becomes active only upon system reset, and is fed to all parity checkers. Thus, at any given time point each parity checker receives a one-hot signal at its input, and therefore detects any single- or even-multiplicity errors. We will refer to this scheme as the Parity_1 self-checking scheme.

Assume that all checkers are composed of two-input gates only. The hardware cost of Parity_1 is estimated as follows. n fault secure [7] parity checkers (PC1,…,PCn) are used. Checker PCi has mi+1 inputs (all states in the corresponding process, plus the common state), and consists of mi-1 XOR gates. Further, the dual-rail checker has n input pairs; therefore it consists of n-1 dual-rail checker cells [5], which yields 6*(n-1) AND/OR gates. Finally, let Ns be the total number of states in the design. It can be shown that the hardware cost for this technique is given by the following expression :
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Table 2 : Viterbi encoder synthesis results
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     (1)

where CostXOR and CostAND/OR refer to the hardware costs of respective gates. 

Equation (1) gives the hardware cost of this controller self-checking scheme for the design as a function of the number of processes, the total number of CSs, and of the target technology.

3.3 Self-checking using a single parity checker

Using parity checking necessarily results in a number of XOR gates that is of the order of Ns, as defined above, and cannot be dramatically decreased. However, the dual-rail checker may be considered redundant if all control signals from all processes are led to a single parity checker. At reset only the initialisation state control signal will have a logical 1 value; at any other time point the number of 1s will be equal to the number of processes n. In order to maintain odd parity at all times, n must be odd (n=2k+1). If n=2k, then a single-state “dummy” process is inserted. We refer to this scheme as the Parity_2 self-checking scheme.

The odd parity checker has Ns inputs. The hardware cost is given by :
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Comparing equations (1) and (2), the hardware savings associated with the Parity_2 technique can be appreciated. Indeed, eq. (1) gives a number of gates of the order of Ns+5*n, while eq. is of the order of Ns. Therefore, the higher the degree of parallelism (n), the more significant the hardware savings.

4. Intrinsically Secure states

4.1 Preliminaries

In this section, we assume that the design datapath has been synthesized according to a self-checking design technique, and we identify a way to utilise the self-checking resources inserted for the purpose of datapath checking, in order to provide improved self-checking for the control signals as well. Our motivating observations were made in the context of [8], but they are generic enough to be applied elsewhere as well.
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Consider figure 3a. A portion of a DFG is shown. A functional operation (+1) has been scheduled for control step (CS) N+1. A duplicate operation of the same type, with the same inputs (+1΄) is also scheduled for parallel execution during the same CS, while the outputs are fed to a fault secure comparator, responsible for verifying correct operation or signalling the presence of a fault. It is the duplication testing scheme, and if we assume that the clock period is long enough for an addition and a comparison to fit in a single CS, it provides self-checking at no error latency. Several variations of design methods for self-checking sequential datapaths have been proposed, e.g. [4] and [8].

Let us move on to figure 3b. In this case, the functional and duplicate operations have been scheduled a control step earlier. Thus, their outputs are stored in registers, and the comparison operation is executed one clock cycle later. Thus, any fault at the functional operation output will be detected with an error latency of one clock cycle. In the context of this work, the following observation is more important than a single clock cycle error latency:

Observation 1 : If an induced fault corrupts the control signal that activates state N+1 (i.e. enables the loading of respective registers), such that the said signal behaves as a stuck-at-1, then N+1 will be activated prematurely (i.e. before N, therefore before +1 and +1΄ are executed, and their outputs stored appropriately). Consequently, the comparison operation will not compare the values it is supposed to compare, but two random values (in principle unequal), and therefore it is likely to produce an error indication. Thus, a controller fault will be detected through the (existing) data path self-checking scheme.

There is always a possibility of fault escapes, if the random values mentioned above coincide. We will ignore this for the moment, and we will come back to it in 4.4. For the time being, we provide a definition:

Definition 1: A CS is referred to as Intrinsically Secure (IS), if the checking part of a datapath self-checking scheme has been scheduled in it, but at least one of the functional or redundant parts of the scheme has been scheduled in previous states.

In other words, a state in the situation of CS N+1 in figure 3b is IS by definition. Our discussion up to now has been restricted to duplication testing; however, the same concepts can be applied to any self-checking scheme that can have its computation and checking parts separated across the boundary of two different CSs. Also, note that in figure 3, control step N pre-existed in the design, and some operations were probably scheduled in it. Therefore there was no actual delay degradation by moving the operation and securing CS N+1. In the context of a realistic design, this may not always be possible (due to data dependencies) and some delay degradation may need to be accepted, but it is expected to be in principle tolerable. In addition, there are cases where Intrinsically Secure states appear in self-checking designs naturally, and therefore exploiting their controller self-checking potential is free. Finally, some additional hardware (registers) will need to be introduced in the data path, in order to carry the operation results across CS boundaries.

4.2 Per process Intrinsically Secure state-based self-checking

In this subsection, we provide a controller self-checking design technique that identifies and exploits IS states in the design. We first show how IS states can be exploited in the context of a single process. As depicted in figure 4, control signals from IS states are compacted using an OR gate; the resulting signal is fed to an odd parity checker, together with the control signals corresponding to non-IS states.

Theorem 1 : The configuration of figure 4 detects all single control signal faults, while providing the fault-free indication under fault-free operation.

Proof : a) We first evaluate the case when one of the IS state control signals is active :
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a1) Under fault-free operation, since one of the IS state control signals is active (lo-gical 1), the OR output is logical 1; since the controller is one-hot, all control signals co-rresponding to non-IS states are 0. Therefore, the parity checker is fed by a one-hot pa-ttern, and correctly de-tects odd parity.

a2) If the control signal of an inactive IS state erroneously changes from 0 to 1, then the checking scheme of figure 4 does not detect the error; however, since the said state is IS, the error is detected by the corresponding checker in the data path.

a3) If the control signal of the active IS state erroneously fails to take the active (logic 1) value, and is stuck-at-0 instead, then the OR gate output is logical 0. At the same time, all non-IS control signals are 0, and the parity checker detects the erroneous (even) parity.

a4) If a non-IS control signal is stuck-at-1 when it should have the value 0, then since the OR gate outputs 1, the checker is fed by a two-hot type input, which is of even parity, and therefore detects the fault.

b) The case when one of the non-IS signals is active can be evaluated identically, and the detailed proof is omitted for the sake of brevity.▲
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The key point in the above proof, that clarifies the benefit of exploiting IS states is a2 : parity fails to detect the fault, but this does no harm, since error detecting capabilities for the considered type of fault exist in the datapath; therefore, we choose to deprive the controller checking scheme of error detection capabilities that are not needed. The most important benefit of this approach, is that errors of any multiplicity in control signals can be detected, provided that one of them corrupts an IS state signal. Thus, the odd-multiplicity error detection limitation of parity is overcome.

Based on the above, an overall self-checking scheme for a parallel design can be configured as figure 5 shows. Signals from each process are separated into two groups, corresponding to IS and non-IS state control signals. The scheme of figure 4 is thus separately applied to every process; parity checker responses are naturally compacted by a dual-rail checker. We will refer to this self-checking scheme as the IS_1 scheme.

4.3 Self-checking using a single parity checker

The last controller self-checking design scheme that we present here is naturally a combination of the Parity_2 scheme of 3.3, and the IS_1 technique of 4.2. It is depicted in figure 6, and will be called IS_2. As is obvious from the figure, all non-IS states from all processes, plus all OR gate outputs compacting IS state control signals are fed to a single odd parity checker.

Lemma 1 : The configuration of figure 6 detects all single control signal faults, while providing the fault-free indication under fault-free operation.

Lemma 1 is a generalization of theorem 1. During reset, only the initialisation state is active, thus a one-hot signal reaches the parity checker, and the correct operation is confirmed. During all subsequent CSs, each process will contribute a logical 1 either because of one of its non-IS state signals, or as the output of corresponding OR gates. So a total of n 1s will feed the parity checker. Therefore, exactly as in the Parity_2 technique, a single-state “dummy” process is inserted to ensure odd parity, in case n=2k.

Analytical expressions for the hardware costs of IS_1 and IS_2 can be derived, although not presented here. Exactly as in the parity-based techniques, IS_2 results in less hardware overhead with respect to IS_1 for n>1.

4.4 The possibility of fault escapes

Let us go back to figure 3b and comment on the probability of a stuck-at 1 error on the control signal corresponding to CS N+1 to remain undetected, due to the output of the duplicate operation coinciding with the contents of the (not properly loaded) register that stores the functional operation result.

Let us assume that the bit-width of operation “+1” in figure 3b is w. Then 2w different words can appear in the input of the comparator. Assuming that all words have the same probability, this probability for a particular word is equal to 1/2w. Therefore, given the value that “+1´” erroneously computes during N+1, and the functional operation bit-width w, we can estimate the probability of a fault escape as pe=1/2w. For example, for w=3, pe=12.5%, which is unacceptably high. Based on the above, we can update Definition 1 as follows :

Definition 1´ : A CS is referred to as Intrinsically Secure (IS), if the conditions of Definition 1 hold, and in addition the bit-width of the functional operation is higher than a defined threshold value t.
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Figure 3 : Securing a control state by accepting datapath error latency

 

A sensible value for the threshold would, e.g., be at least t=7, which gives pe≈0.8%.

5. Experimental Results
From the above discussion, it is clear that controller self-checking can be implemented by a relatively simple module, added on the original design. However, the concept of Intrinsically Secure states can only be investigated within a data-flow graph. Therefore, a high-level synthesis environment appears to be the most suitable for such an implementation. In this work, we have used the high-level on-line test synthesis tool of [8], which is based on the MOODS system. A property of this system that is important in the context of the present work, is that it only produces one-hot encoded controllers. Therefore, the control signal “decoupling” assumption mentioned in section 2 is valid within this context by construction.

The most meaningful results of our experimentation are summarised in tables 1 and 2. In table 1, we present synthesis results for a standard high-level synthesis benchmark, namely the Qrs benchmark. We targeted Alcatel CMOS 0.35 VLSI technology, and used MOODS for high-level synthesis, and Leonardo Spectrum (Version 2002e.16) for RTL synthesis. The particular design is composed of a single process that consists mainly of arithmetic operations. Therefore, it is a good candidate for the IS_1 self-checking scheme. The first row shows area and delay statistics for a Qrs version with a self-checking datapath. In the second row, we have appended the simple parity_1 controller self-checking scheme to the design. It is obvious that parity checking can be applied with a very small hardware overhead. The reason why it appears so cheap, is that the particular design is strongly data path dominated, and the controller occupies a very small part of it. In the third row, we have applied the design space exploration technique explained in [8] to produce an alternative realisation of the same self-checking datapath, such that a significant number (27) of Intrinsically Secure states are identifiable. Subsequently, we have applied the IS_1 controller self-checking scheme. There is a hardware overhead of around 10% (mainly due to additional data depen-dencies and introduced registers), but there is an improvement in controller testability, since more than half of the control signals are not restricted by the odd multiplicity detection capability of parity checking. Therefore, if the overhead is affordable, and reliability is critical, it can be a valid option. Interestingly, there is no delay degradation – in fact there is a slight delay improvement.

In table 2, we present synthesis results for a highly parallel realisation of a Viterbi encoder. This design consists of 9 concurrent short processes. Our target technology this time is Xilinx Virtex FPGA, and Synplicity Synplify Pro 6.2, and Xilinx Design Manager 3.1i have been used for RTL synthesis and imple-mentation respectively. No Intrinsically Secure states are considered, since all signal bit-widths are below the threshold discussed in 4.4. However, the highly parallel nature of this design enables us to compare the parity_1 (second row) and parity_2 (third row) schemes, with respect to the original (untestable) design. From the table, we can see that for this number of concurrent processes the hardware savings associated with parity_2 start to become obvious.

The IS_2 scheme would be suitable for a design consisting of at least 10 communicating DSP blocks.

6. Conclusions
In this work we have addressed the problem of self-checking design of controllers in designs with se-quential datapaths. The two key concepts are the need for self-checking of the one-hot control signals, and the attempt to reuse existing datapath self-checking resources. Four alternative controller self-checking schemes were presented. The concept of Intrinsically Secure states was introduced. Finally, controller self-checking was included within high-level synthesis.
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Figure 1 : Finite State Machine with Sequential Datapath
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Table 1 : Qrs benchmark synthesis results



(Target Technology Alcatel CMOS 0.35 VLSI)�

�

Version�

Area (gates)�

Delay



(clock cycles)�

Area overhead %�

�

datapath self-checking�

25132�

52�

N/A�

�

datapath and controller (parity_1) self-checking�

25229�

52�

~0.4%�

�

datapath and controller (IS_1) self-checking



(27 IS states)�





27465�





51�





9.3%�

�





Table 2 : Viterbi encoder synthesis results



(Target Technology Xilinx Virtex XCV 1000 FPGA)�

�

Version�

Area (slices)�

Delay



(clock cycles)�

Area overhead %�

�

original�

174�

4�

N/A�

�

controller (parity_1)



self-checking�

184�

4�

5.7%�

�

controller (parity_2)



self-checking�

178�

4�

2.3%�

�
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Figure 6 : The IS_2 self-checking scheme
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