Teaching databases at Southampton University
Ken Thomas
Department of Electronics and Computer Science
University of Southampton
Highfield, Southampton

SO17 1BJ
 kst@ecs.soton.ac.uk
 http://www.ecs.soton.ac.uk/~kst/

Abstract

In this paper, we describe some of the issues faced when designing a database systems course that will be a compulsory component for second year undergraduates in computer science. The main goal is to give an overview of database systems starting from Codd’s classical paper through to practical implementation using a SQL server (MySQL)

For conceptual modelling, we chose UML because of the prior knowledge of the target class.
The logical model is derived from the conceptual model and we place great importance those features that preserve the integrity of the database. SQL is used to define the tables that MySQL can implement.

We show how simple application programs are produced using JDBC.
Keywords

UML, SQL, MySQL, Java, JDBC

1. Introduction
A course database systems has existed at the University of Southampton for over 25 years. The early courses inspired by the prophetic paper[3], developed the theory of relational and other database models. We studied the relational model, relational algebra and normalisation theory. Conceptual design was introduced using ER diagrams[2]. However practical work stopped short of complete implementation, since good database management systems and the powerful hardware to support them were lacking.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. To copy otherwise, to republish, to post on servers or to redistribute to lists, requires prior specific permission.

Teaching, Learning and Assessment in Databases, Coventry 2003

© 2003 LTSN Centre for Information and Computer Sciences

In [6], we have
The SQL language may be considered one of the major reasons for the success of relational databases.

We would be failing our computer science students if they graduate without proficiency in SQL. Hence, we require a course that having both a practical component and some coverage of the fundamental theory. The purpose of this paper is to describe the course as it is taught at present.

The growth of the personal computer has made the practical component more feasible. 99% of our undergraduates own at least one computer; campus agreements from Microsoft enable the undergraduates to have licensed copies of their latest software.
1992 saw the incarnation of the internet and now web-based database systems underpin e-business. The database has emerged into a mission-critical component in the software of an organisation; solid design and the need to consider security now become essential.
The course is taught by conventional lectures to about 110 students in their second year. Many will have taken Computer Science at A-level and developed an Access database as a project. In their first year they study programming (Java) and software engineering (UML using [7]). We try to build on this knowledge and challenge the experts who might lose motivation.

The lectures are supplemented by web pages that give: SQL tutorials[13, 10], MySQL[11] and examples of JDBC programming[9]. We have selected several textbooks on databases for additional reading [1, 4-6, 12] The assessment is by conventional examination focussing on the theoretical aspects of the subject and by coursework. The coursework is an essential part of the learning experience. The students are given a scenario such as those in the appendices of, they must design and build a database and construct a few simple application programs.

2. Building the database

Our course has evolved from a purely theoretical discourse on relational databases to one that combines this important material with a practical component. Some theoretical material has had to be deferred to a later course because of constraints on time. A notable casualty was the relational algebra which was removed because of our emphasis on SQL.

The initial stage of database construction is the gathering of requirements. We do not have real clients and rely on a scenario to encapsulate this phase.
We focus now on the subsequent stages of database construction.

2.1 Conceptual modelling

The goal of the conceptual design stage is a complete understanding of the data structure in an organisation. It should be independent of the target database model and DBMS. The deliverable at this stage is a diagram that contains this information. ER diagrams form the traditional diagrammatic representation. However the notation is far from standard and we not have CASE tool support in the department. We chose UML for a number of reasons:
· the students will have used it before;

· they have installed at least one CASE tool on their own machines;

· the notation is standard;

· UML is a skill desired by many potential employers.

A disadvantage of the move to UML is that many otherwise splendid textbooks are now alien. Fortunately, two of our recommended texts describe both UML and ER.

However, the use of a CASE tool dictates the level to which UML is supported; a construction shown in a text may not be realised in a chosen CASE tool. A good example is the composite attribute which many texts show by indentation.Figure 1 has been copied from [4] to illustrate the point.
[image: image1.emf]Branch

BranchNo {PK}

Address

Street

city

postcode

Composite attribute

Figure 1: UML showing a composite attribute
Rational Rose[8] does not support this and we need an alternative strategy. Figure 2 gives two alternatives. We can adopt an approach similar to the Object-Relational model and allow the class to be used as a type or use aggregation.
[image: image2.emf]Branch

branchNo : Integer

address : Address

Branch2

branchNo : Integer

Address

street : String

city : String

postcode : String

Figure 2 Two ways of modelling a composite attribute
One problem for the student is the level of detail that must be in the final diagram. We have to be rather prescriptive in order to avoid the same questions from each one of our students. Following, we suggest that the conceptual model should:

· identify entities;

· give relations as associations with any cardinality or participation constraints;

· define appropriate attribute with domains selected from a limited number of types(string, integer, date,…);

· indicate attributes that may become primary keys.

A common mistake is to confuse attributes with associations as shown in Figure 3. It shows part of a University database with students and members of staff that advise the student. Figure 3 shows the attempt at modelling by many of our students. They correctly identify the association but then add the tutor as an attribute as well. This is perhaps anticipating the logical design when the “tutor” attribute becomes a foreign key.
[image: image3.emf]Student

universityID

tutor

Staff

0..n

1

supervises

+tutee

+tutor

0..n

1

Figure 3 Confusion of an attribute and an association.
2.2 Logical modelling

Our approach to logical design is inspired by the guidelines in and the transformation techniques in .The first step is the removal those features in the diagram that are incompatible with the relational model such as many-to-many relationships. We advocate the use of navigational arrows to indicate responsibilities in Figure 4.
[image: image4.emf]Book Reader

0..1 0..n

borrows

0..1 0..n

Figure 4 Using navigational arrows to show responsibilities
The deliverable from the first step is a revised class diagram.

The second stage is the production of the relational schema and deliverable is a file containing the SQL needed to create the database, define the tables and supply any initial data to populate the database.
The file can be used by the DBMS to install the database; the students will iterate at this stage until the installation is successful.

Students are given credit for:
· Attributes given types that are appropriate in size for the data;

· Defining primary keys;

· Defining alternate keys with (UNIQUE);

· Defining foreign keys;

· Enforcing referential integrity by appropriate constraints.
We expect the students to check that the database is in third normal form.

2.3 Implementation
We chose MySQL [11] to be the target DBMS for several reasons:

· free;

· fast;

· easy to install;

· supported by good documentation;

· JDBC drivers.

We made a decision to move from personal DBMS such as Access to a server based system such as MySQL. It is felt that a server based system is more appropriate for real world computing and is close to the systems they may meet in future employment.

Because it is free, the students will run it on their personal machines giving convenience when developing applications. The students will install their final database on a Linux machine run by our department. The graders of the coursework will run application programs that connect to this central machine.

Server based systems expose the student to the problems of security. They are given passwords that guard their installation, which they convey in their report that is submitted with their coursework. It is unlikely that a student database will contain sensitive data such as credit card numbers and the security is intended to protect them from unscrupulous colleagues who might steal their work and reengineer. (MySQL has a dump facility to do just this).
2.4 Application programs

We made a decision not to introduce web based application programming into this course. The main reason is lack of time. The students are all proficient in Java programming and so the applications are client applications that run on a two-tier architecture. As we wish to keep the language base of Java the JDBC API is appropriate and readily available [9]. They are then well placed to venture into web programming using JSP and servlets; these topics are covered in later courses.
Given their background, JDBC is very easy to teach; a single lecture dissecting sample programs is all that is needed. The code is made available to the students and in addition the web page for the course gives links to additional material.
The students were not expected to produce elaborate graphical interfaces for their applications; some of course did.
3. Conclusions

By careful management, it is possible to provide a broad based course on database systems that combines theory with practical experience.

The student response measured by questionnaire has been encouraging although some suffer withdrawal symptoms by moving away from Access. The course leader was pleased to note that out of our class there was only one defaulter. Of course, not all of their applications worked and there were some poor designs.

The main problem from the student was the difference between conceptual and logical modelling and this was one of my most frequent questions.

4. REFERENCES

[1] Carter, J., Database Design and Programming with Access, SQL and Visual Basic. 2000: McGraw-Hill.

[2] Chen, P.P., The Entity-Relationship Model: Toward a Unified View of Data. ACM Transactions on Database Systems, 1976. 1: p. 9-36.

[3] Codd, E.F., A relational model for data for large data banks. Comm ACM, 1970. 13(6): p. 377-387.

[4] Connolly, T., C. Begg, and A. Strachan, Database systems: a practical approach to design, implementation and management. 3 ed. 2002: Addison-Wesley.

[5]
Date, C.J., An introduction to database systems. 2000: Addison-Wesley.

[6] Elmasri, R. and S.R. Navathe, Fundamentals of Database Systems. 3 ed. 2000: Addison_Wesley.

[7] Fowler, M. and K. Scott, UML Distilled: A brief guide to the standard object modeling language. Second ed. 1999: Addison-Wesley.

[8] The home page of Rational, http://www.rational.com/.

[9] JDBC 2.0 Fundamentals, http://developer.java.sun.com/developer/onlineTraining/Database/JDBC20Intro/.

[10] Lee, C.-H., SQL Tutorial. 2003, http://www.1keydata.com/sql/sql.html.

[11] MySQL Home Page, http://www.mysql.com/.

[12] Rolland, F.D., The essence of databases. 1998: Prentice Hall. 226.

[13] SQL course.com, http://www.sqlcourse.com/.

