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Abstract

The performance of a range of 1, 2 and
4 bit/symbol pilot symbol assisted modula-
tion (PSAM) [1, 3] arrangements employ-
ing first-order linear, low pass, polynomial
and optimum higher-order linear interpola-
tion schemes is analysed in contrast to that
of the equivalent non-coherent modems. Both
the non-coherent modems as well as the co-
herent PSAM schemes exhibited a residual
bit error rate (BER), but the best comprom-
ise in terms of performance, system delay
and complexity was attributable to the first-
order linear interpolator. In case of short
interpolation buffers the polynomial interpol-
ator slightly outperformed the low-pass and
the higher-order linear optimum interpolators,
but this advantage erodd in case of longer
buffers. The higher complexity of the min-
imum mean squared error interpolator is not
justifiable in terms of performance improve-
ments. The low-complexity linearly interpol-
ated PSAM schemes have an improved per-
formance in comparison to the differential
schemes in case of higher order coustellations,
such as 4- and 16-level quadrature amplitude
modulation (QAM).

1 Motivation

The potential of re-configurable multilevel linear
modulation schemes in adaptive multi-mode trans-
ceivers has been the subject of various studies [1].
This treatise endeavours to compare the performance
of 1, 2 and 4 bit/symbol coherent pilot symbol as-
sisted modulation (PSAM) [1, 3] arrangements em-
ploying first-order linear, low pass, polynomial and
optimum higher-order linear interpolation schemes to
that of the equivalent lower complexity non-coherent
modems.

The paper is organised as follows. Section 2
provides a brief system overview, Section 3 describes
the minimum mean squared error channel gain estim-
ation and Section 4 summarises the system paramet-
ers used. Detailed performance figures are provided
in Section 5, before concluding in Section 6.
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Figure 1: Schematic of a PSAM System showing the
PSAM Frame

2 PSAM System Description

The block diagram of a general PSAM scheme is de-
picted in Figure 1, where the pilot symbols P are cyc-
lically inserted into the data sequence prior to pulse
shaping. A frame of data 1s constituted by M sym-
bols, and the first one in every frame is assumed to
be the pilot symbol 4(0), followed by (M — 1) useful
data symbols 6(1),5(2)...6(M —1).

Detection can be carried out by matched filtering,
and the output of the matched filter is split in data
and pilot paths, as seen in Figure 1. The set of pilot
symbols can be extracted by decimating the matched
filter’s sampled output sequence using a decimation
factor of M. The extracted sequence of pilot symbols
must then be interpolated in order to derive a channel
estimate v(k) for every useful received information
symbol r(k). This contribution endeavours to com-
pare the performance of the simple linear, low-pass,
polynomial and the highest complexity optimum lin-
ear interpolator [3]. Finally, decision is carried out
against a decision level reference grid, scaled and ro-
tated according to the instantaneous channel estimate
v(k).

The received data symbols must be delayed ac-
cording to the interpolation and prediction delay in-
curred. This delay becomes longer, if interpolation is
carried out using a longer history of the received sig-
nal to yield better channel estimates. Consequently,
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there is a trade-off between processing delay and ac-
curacy. The interpolation coeflicients can be kept
constant over a whole pilot-period of length M, but
better channel estimates can be obtained if the inter-
polator’s coefficients are optimally updated for every
received symbol.

The complex envelope of the modulated signal can
be formulated as:

> b(k)p(t - kT),

k==~00

m(t) = (1)

where b(k) represents the I or Q components of the
symbols to be transmitted, T is the symbol dura-
tion and p(¢) is a band-limited unit-energy signalling
pulse, for which we have:

/ " p(o)de = 1. @

For a narrowband Rayleigh channel the received
signal is given by:

r(t) = e(t) - m(t) + (1), ®3)

where n(t) is the AWGN and c(t) is the channel’s
complex gain. Assuming a Rayleigh-fading envelope
a(t) and uniformly distributed phase ¢(t) we have:

c(t) = a(t)ed?®). (4)

The matched filter’s output symbols at the sampling
instant k7" are then given as:

r(k) = b(k) - c(k) + n(k). (5)

It is convenient to assume [3] that in every channel
sounding block 5(0) is the pilot symbol and consider
the detection of the useful information symbols in the
range |—M/2] < k < |(M —1)/2], where |e] is the
integer part of e.

3 Channel Gain Estimation

Optimum detection is achieved if the corresponding
channel gain c(k) is estimated for every received sym-
bol r(k) in the above range. Assuming a linear model,
the channel gain estimate v(k) can be derived as a
welghted sum of the surrounding K received pilot
symbols r(iM), |-K /2] <1 <|K/2|, as shown be-

low:

L%/2]
D h(ik)-r(iM),

i=|—-K/2]

(k) = (6)
and the weighting coeflicients h(7, k) explicitly de-
pend on the symbol position k within the frame of
M symbols.

The estimation error e(k) associated with the gain
estimate v(k) is computed as:

e(k) = c(k) —v(k). (M
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While previously proposed PSAM schemes used
either a low-pass interpolation filter [4] or an ap-
proximately Gaussian filter [5], Cavers employed an
optimum Wiener filter to minimise the channel es-
timation error variance oZ.(k) = E{e*(k)}, where
E{ } represents the expectation. This well-known
estimation error variance minimisation problem can
be formulated as follows:
2(k) E{e*(k)} = E{[c(k) — v(k)]*} \
B {[e06) — Sy i) - i0)]
(8)
In order to find the optimum interpolator coeffi-
cients h(¢, k), minimising the estimation error vari-
ance 02.(k) we consider estimating the k** sample
and set:

o

dol(k) . .

Th(i k) 0 for |~K/2|<i<|K/2]. (9)
Then using Equation 8 we have:
do?e(k) 0
Oh(i, k)

L&/2]
=E{2 (c(k)— Y. h(i,k)-r(iM)| r(iM)
i=[-K/2]

After multiplying both square bracketed terms with
r(jM), and computing the expected value of both
terms separately, we arrive at

LK/2]
E{e(k)-r(jM)} = E{ Y h(i,k)-r(iM)»(iM)}.
i=|-K/2]
(10)
Observe that
®(j) = E{c(k) - r(jM)} (11)

is the cross-correlation of the received pilot symbols
and complex channel gain values, while

R(i,j) = E{r(iM) - r(jM)} (12)

represents the pilot symbol autocorrelations, hence
Equation 10 yields:

LK/2] .
h(i, k)-R(i, j) = @), j=1-%)--15]

(13)
If the fading statistics can be considered stationary,
the pilot autocorrelations R(i, j) will only depend on
the difference |i — j|, giving R(i,j) = R(|s — j|).
Therefore Equation 13 can be written as:

i=|~K/2

L&/2) i
S kA=) = o), i= (-1 15,

i=|-K/2]
(14)

which is a form of the well-known Wiener-Hopf equa-~
tions, often used in estimation and prediction theory.



This set of K equations contains K unknown pre-
diction coefficients h(i, k) |—K/2]...|K/2],
which must be determined in order to arrive at a
minimum error variance estimate of e(k) by v(k).

, =

First the correlation terms ®(j) and R(|i — j|)
must be computed and hence the expectation value
computations in Equations 11 and 12 need to be
restricted to a finite duration window. The pilot
autocorrelation, R(i, j), may then be calculated from
the fading estimates at the pilot positions within
this window. Calculation of the received pilots’ and
the complex channel gains’ cross correlation is less
straight forward, because in order to calculate the
cross-correlation the complex channel gains have to
be known at the position of the data symbols as well
as the pilot symbols. However, the channel gains are
only known at the pilot positions, while for the data
symbol positions they must be derived by interpol-
ation. Hence we fitted a polynomial to the known
samples of R(|¢ — j|) and then estimated the values
of ®(j) for the unknown positions.

The set of Equations 14 can also be expressed in
a convenient matrix form as:

R(0)  R(1) R(2) R(K)
R(1)  R(0) R(1) R(K — 1)
R(2)  R(1) R(0) R(K —2)
R(:K) R(K-1) R(K-2) ... R(0)
h(l=%1k) (|-51)
h(l- %HJ: k) *NL—%HJ)
h([- 7+2J, k) | =] @(-3+2]) |,

h(L%J,k) o (15))
which can be solved for the optimum predictor coeffi-
cients h(Z, k) by matrix inversion using Gauss-Jordan
elimination or any appropriate recursive algorithm.
Once the optimum predictor coefficients h(z, k) are
known, the minimum error variance channel estimate
v(k) can be derived from the received pilot symbols
using Equation 6, as also demonstrated by Figure 1.

4 System Parameters

We restricted our investigations to a set of worst-
case channel conditions characteristic of the Pan-
American IS-54 system, where the signalling rate was
set to 20 kBd. The propagation frequency was in-
creased from 900 MHz to 1.8 GHz and the vehicular
speed was fixed at 50 km/h. The corresponding Dop-
pler frequency 1s 83.3 Hz, giving a relative Doppler
frequency of 0.0042. In comparison, the GSM-like
DCS1800 system under identical propagation condi-
tions results in a relative Doppler frequency of 0.0003,
which is associated with a less dramatically fading
signal envelope and hence better fade tracking prop-
erties. The corresponding Doppler filter emulated a
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vertical loop antenna in a plane perpendicular to the
vehicle’s motion and, apart from the channel’s phase
rotations, perfect carrier and clock recovery were as-
sumed.

In case of the linear interpolator the system
delay was minimised, since only one PSAM frame
had to be buffered in order to be able to derive a chan-
nel estimate for each information symbol between the
pilots. For the low pass interpolation we had to
resolve, what impulse response window function and
length constituted the best compromise in delay and
performance terms. When using a Buffer length of
5 PSAM frames as well as a pilot separation or Gap
of 40 symbols and evaluating the mean absolute er-
ror, the mean squared error and the maximum er-
ror between the real fading file and the interpolated
file, the Hamming window was found superior to the
Hanning window. Hence in our further endeavours
we opted for the Hamming window.

Four interpolation methods, namely linear, low
pass, polynomial and Cavers’ minimum mean
squared error (mmse) linear interpolation were sim-
ulated and compared in the context of pilot assisted
binary phase shift keying (BPSK), 4-level quaternary
phase shift keying (QPSK) and 16-level quadrature
amplitude modulation (16QAM). The 1 bit/symb, 2
bit/symb and 4 bit/symb modulation schemes were
combined with all four interpolators and their bit er-
ror rate (BER) performance was evaluated at chan-
nel signal to noise ratios (SNR) of 20, 30 and 40 dB,
which yielded 3 - 4 - 3 = 36 sets of results. In each
set of results pilot Buffer lengths of 3, 5, 7, 9, 11
PSAM frames and pilot separation or Gap values of
10, 20, 40, 60, 80, 100, 116 were employed, leading
to a plethora of performance curves, which allowed
us to generate a corresponding set of 3-dimensional
(3D) graphs of BER, versus Buffer and Gap.

Furthermore, in order to establish the relative
merits of PSAM compared to non-coherent modula-
tion, the performance of differential BPSK (DBPSK),
differential QPSK (DQPSK) and differential 16 Star
QAM [1] were also evaluated and the corresponding
BER figures will be compared in the next Section.

5 Results and Discussion

Our results are shown for 16QAM in Figure 2,
and similar tendencies were observed for QPSK and
BPSK as well. Results for the latter two schemes
will be presented only in a more compact form for
reasons of space economy. As expected, for all mod-
ulation schemes and interpolation techniques, as well
as at all Buffer and Gap values, the BER reduces with
increasing channe] SNR. Furthermore, increasing the
Buffer length and reducing the pilot Gap will typ-
ically reduce the BER, but all scenarios exhibited a
BER floor. Furthermore, the residual BER (RBER)



39

oL be;'

%
Ins ¢ 2

o ¥

i

_$ss§
AT

Wl
_«s&&&%&s

0N/AT PO 18 vonelodiaiug Jaur] YD Arenbs 9

‘\\.\.\.\.. ub,ﬂvm

ON/a P07 1 wonerodisy umumdo

() ua

=
SSSasass
SoSsSas

SR

\N N\NQ\QOOOO S
LTI
0, 00%.00:8%% 4

SR
0.0
203054
S

T
BRss
< ‘oss‘:

0N/ gPDS e uonejodiu] reroukiog

ON/4g gPOT e uonefodisw] enuoukiog

() ua

o1

100

() uTa

01

s
ol

i)
TS

S St SR
S SIS IS

ON/A3 EPOT 1 uonejodisiuy sseq 0]

100

() uTa

o1

’QMV T

Figure 2: BER versus Buffer length and pilot Gap performance of pilot-assisted 16QAM over Rayleigh channels

at 20 kBd, 50 km/h, 1.8 GHz



Interpolation -ﬁ—g— [dB]
technique 20 30 40
Linear RBER [%)] 0.41 0.042 0.0040
Polynomial RBER [%] | 0.43  0.040  0.0045
Low pass RBER [%)] 0.43 0.040 0.0045
Optimum RBER [%)] 0.43 0.040 0.0045

Table 1: RBER of pilot-assisted BPSK over narrow-
band Rayleigh fading channel using Linear, Polyno-
mial, Low pass and Optimum Linear Interpolation at

20 kBd, 50 km/h, 1.8 GHz

Interpolation %— [dB]
technique 20 30 40
Linear RBER [%)] 0.32 0.039  0.0049
Polynomial RBER [%] | 0.35 0.040  0.0050
Low pass RBER [%)] 0.35 0.040  0.0050
Optimum RBER [%)] 0.35 0.040 0.0050

Table 2: RBER  of pilot-assisted QPSK over narrow-
band Rayleigh fading channel using Linear, Polyno-
mial, Low pass and Optimum Linear Interpolation at
20 kBd, 50 km/h, 1.8 GHz

did not depend on the interpolation scheme used.

In order to present our findings in as terse a form
as possible, for each of the modulation schemes and
interpolation techniques the RBER, was inferred and
summarised in Tables 1-3. Note, however that the
Buffer and Gap values required to achieve the RBER
are dependent upon the type of interpolation tech-
nique used. Hence the system delay and complexity
explicitly depend on the choice of the interpolation
scheme.

The RBER values inferred from Figure 2 and
from the corresponding, but not displayed 3D-graphs
for QPSK and BPSK, can be portrayed more con-
veniently in terms of bit energy per noise spectral
density (Ey/Np), as shown in Figure 3. As expected,

Interpolation ﬁ—z [dB]
technique 20 30 40
Tinear RBER [%)] 0.62 0.041 0.006
Polynomial RBER [%] | 0.68  0.090  0.009
Low pass RBER, [%] 0.68 0.080 0.009
Optimum RBER [%] | 0.68 0.080  0.009

Table 3: RBER. of pilot-assisted 16QAM over nar-
rowband Rayleigh fading channel using Linear, Poly-
nomial,Low pass and Optimum Linear Interpolation
at 20 kBd, 50 km/h, 1.8 GHz

40

Residual BER vs SNR
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Figure 3: RBER for 1, 2 and 4 Bits Per Symbol
Modulation Schemes versus Eb/No.

BPSK and the QPSK are very similar, since QPSK
is constituted by two orthogonal BPSK systems. Ob-
serve that 16QAM requires an about 3.5 dB higher
Ey/Ng value and a further 6 dB higher channel SNR
value.

We observed that in case of small Buffer sizes
the polynomial interpolator succeeded for all modu-
lation schemes and at all SNRs to reduce the BER to
the value of the RBER, while maintaining the largest
gap. This is because in case of short buffers, ie when
the channel estimates are only available for a lim-
ited number of pilot symbols, the non-linear polyno-
mial model will out perform the linear model or a
severely truncated short impulse response. As the
Buffer size is increased, the high-order coefficients of
the polynomial interpolator diminish and hence in-
creasing the Buffer size becomes less significant. On
the same note, as the Buffer size increases, the im-
pulse response of the low pass interpolator becomes
more like that of an ideal Sinc function and therefore
its performance improves.

As the modulation constellation becomes less
complex, ie the number of bits per symbol is reduced,
the benefits of coherent modulation are reduced, as
evidenced by Table 4, and Figure 4, although this is
also a function of the channel SNR. Surprisingly, for
BPSK at an SNR of 20 dB, the differential scheme
has actually a marginally better BER performance
than the corresponding PSAM scheme, even when
disregarding the proportion of power allocated to
the pilots. In contrast, for higher order constella-
tions, such as QPSK and 16QAM, PSAM does re-
duce the RBER and has a better performance than
star 16QAM, while having a somewhat higher delay
and similar complexity, when using linear interpola-
tion.



Differential
f+[dB] | BPSK QPSK 16 Star
RBER[%] RBER[%] RBER[%]
20 0.38 0.42 1.2
30 0.05 0.058 0.18
40 0.011 0.012 0.03
PSAM
#[dB] [ BPSK QPSK 16 Square
RBER[%] RBER[%] RBER[%]
20 0.43 0.35 0.68
30 0.04 0.04 0.09
40 0.0045 0.005 0.009

Table 4: RBER for PSAM Schemes and Differential
Schemes, of various modulation constellations and at
various SNRs over a Narrowband Rayleigh fading
channel at 20 kBd, 50 km/h, 1.8 GHz
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Figure 4: RBER for 1,2 and 4 Bits Per Symbol
PSAM Modulation Compared With Equivalent Dif-

ferential Schemes

6 Summary and Conclusions

In conclusion, both the non-coherent differential mo-
dems and the coherent pilot-assisted BPSK, QPSK
and 16QAM modems exhibited a residual bit error
rate. The shortest system delay and lowest com-
plexity amongst the PSAM schemes was associated
with the one employing the first-order linear interpol-
ator. For higher-order phasor constellations, such as
that of QPSK and 16QAM the linearly interpolated
PSAM arrangement outperformed the corresponding
non-coherent scheme, while exhibiting a similar com-
plexity. Future work is targeted at a similar study of
block-coded modulation schemes.
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