Using SPIN and STeP to Verify
Business Processes Specifications

Juan C. Augusto Michael Butler Carla Ferreira Stephen Craig

Declarative Systems and Software Engineering Research Group
Department of Electronics and Computer Science
University of Southampton, Southampton, UK
{jca, mjb, cf, sjcO2r}@ecs.soton.ac.uk

Abstract. Business transactions are prone to failure and having to
deal with unexpected situations. Some business process specification lan-
guages, e.g. StAC, introduce notions like compensation handling. Given
the need of verification of correctness in business related software, it is
important to fill in the gap between business process specification lan-
guages like StAC and the verification software already available.

We report on two of our previous attempts to develop a tool to allow ver-
ification of StAC specifications by using already existing systems, SPIN
and STeP. We highlight some of the problems we faced during these
attempts as they can prevent successful and widespread use of verifica-
tion tools. Our experience can be used to make the available tools more
versatile and hence, useful to a wider range of applications.

1 Introduction

Because of their complexity, business transactions are prone to failure in many
ways. For example, a request that normally is satisfied under certain conditions
can be unexpectedly rejected. That can be experienced in daily life when the
book we requested is not anymore in stock, or when our trip is cancelled.

However systems are normally built considering the normal and expected
pattern of behavior. A way to deal with this conflict is to supplement the usual
pattern of behavior with mechanisms which allow the system to react more
appropriately when an unexpected /undesired event occurs. One such mechanism
proposed in the literature is to associate a compensation action to each action,
which will repair or handle in an appropriate way abnormal situations. Offering
alternatives and rescheduling can be ways to compensate previous actions. We
focus on StAC (see [5] and [4]), a business process modelling language with a
formal semantics which handles compensation.

We report here some of our attempts to provide a suitable verification frame-
work for StAC specifications. We considered two systems with different charac-
teristics, SPIN [7] and SteP [3]. The first option led us to consider a translation
from the StAC specification language to Promela, the input language for SPIN.
For the second option we considered instead a translation to SPL, the input
language for STeP.

This paper is an abstract of a larger article [1] which gives more details about
the main contribution. After a brief introduction to StAC (section 2) we explain
some of the main obstacles we found attempting to use SPIN (section 3) and
STeP (section 4) to verify StAC specifications. We also provide a description
on how we handled compensations (section 5) and samples of the verifications
we were able to make (section 6). The conclusions (section 7) will summarize
some of the features that need to be made available in the next generation of
verification systems for business-related systems.

2 StAC

StAC (Structured Activity Compensation) is a language that, in addition to
CSP-like operators [6], offers a set of operators to handle the notion of com-
pensation. In StAC is possible to associate to an action a set of compensation
actions providing a way to repair an undesired situation. Compensations are
expressed as pairs with the form P +), meaning that @) is the compensation
planned in case that the effect of P needs to be compensated at a later stage.
As the system evolves, compensations are remembered. Each compensation op-
erator is bounded to a scope of application. If all the activities are successfully
accomplished then the operator accept, 4 | releases the compensations. If any
activity fails then the operator reverse, X , orders the system to apply all the
recorded compensations for the current scope. The abortion of a process can be
imposed by using the early termination operator, ®.

DEFINITION 1 Let A represent an activity, b a boolean condition, P and @Q two
generic processes, x a variable and X a set of values. Then, we can define as
follows the set of well formed formulas in StAC:

Process ::= A (activity label)

| 0 (skip) |b— P (condition)

| rec(P) (recursion) | P;Q (sequence)

| P||Q (parallel) | || € X.P, (generalised parallel)

| PJQ (choice) | [€ X.P, (generalised choice)

| @ (early termination) | {P} (termination scoping)

| P -+ Q (compensation pair) | [P] (compensation scoping)

| & (reverse) | (accept) A

In the examples below, processes written in boldface are intended to be basic
activities. Each StAC specification is coupled with a B machine [2] describing
the state of the system and its basic activities. We address the reader who want
a more in-detail account of StAC to [5] and [4].

EXAMPLE 1 (order fulfillment scenario [5]) The whole process can be described
throughout the following steps: a) an order is accepted from a customer; b)
the warehouse prepares the order for shipment, including booking a courier for
delivery; ¢) simultaneously with step (b) there is a credit check to verify if the
customer can pay the order; d) if the check is successful the order completes,
otherwise it is stopped and the compensation mechanism is started.

abc = (acceptOrder -+ restockOrder);
fulfillOrder;
((okFulfillOrder — M) [[(notokFulfillOrder — X))
fulfillOrder = {wareHousePackaging ||
(creditCheck ;
((notokCreditCheck— @) [(okCreditCheck — 0))) }
wareHousePackaging = (bookCourier = cancelCourier) || packOrder

packOrder = || i€I .(packltem(i)+ unpackltem(i)) A

3 Translating StAC to Promela

Model checking can be used to check whether a logical property is consistent
with the specification of a system. A particularly successful implementation of
this approach is SPIN, [7] that has been widely accepted as a tool for verification
of software specifications. Promela is the specification language of SPIN. It is
a C-like language enriched with a set of primitives allowing the creation and
synchronization of processes, including the possibility to use both synchronous
and asynchronous communication channels.

We refer the reader to the extensive literature about the subject as well
as the documentation of the system at Bell Labs web site for more details:
http://netlib.bell-labs.com/netlib/spin/whatispin.html We assume
some degree of familiarity with this framework from now on.

Translating StAC specifications to Promela proved to be a non-trivial matter
and, when possible, demanded more complex data and control structures to
recreate StAC novel features.

Coordinating Nested Procedures. Calls to non-primitive processes in StAC
behave as calls to procedures in programming languages. For example, a sequence
of calls to non-primitive processes in the StAC specification must be executed
without interleaving between them, while their proctype counterparts in Promela
will allow interleaving. For example, “run P; run Q” will start P first and then
will start Q@ without waiting for P to terminate. Q can be started at any time
after P has been. The ; operator in this case does not have the usual semantics
expected for procedures in high level programming languages as it is the case
for StAC.

Synchronization can be achieved as expected in StAC through a fork & join
mechanism forcing all subprocesses to be finished before the process that created
them is considered finished. Broadly speaking, a way to introduce this mechanism
in the translation, e.g. by using channels, is as follows: for every process P calling
other subprocesses pi,...,p,, i.e. implemented as proctype calls through the
run sentence, we can a) add at the end of each p;, with ¢ = 1,...n, a way to
acknowledge that the process have finished, and b) after the call sentence in
the caller process a way to recognize that the called processes finished before
proceeding.

For parallel processes let us consider the general case: A(...) || B(...).
We will call the parallel definition to be coordinated a block. A block A || B
terminates when both A and B terminates. Differently from the sequential case
we want to ensure that parallelism is restricted to those processes in the block.
In this case the testing for acknowledgments is shifted immediately after the
translation of the intervening processes inside the block.

If we use a parallel or a generalised parallel operator, we want to ensure that
we consider the process finished if and only if all the processes being run con-
currently are finished. Then again we need to address the coordination problem.
Since Promela does not support generalised parallel we need to use a loop to
create the appropriate number of parallel processes. Naturally the problem is
far simpler when using generalised choice because when the choice involves a
procedure call all we need to check is that one call was made.

StAC allows recursive definitions. In this particular case, we cannot adapt the
idea of using channels as before. Messages to ensure termination will successfully
ensure all the calls ended before proceeding to execute code after the recursive
call but it could be the case that messages generated for an instance i1 of the
recursive proctype will be allowing to finish an instance i2,71 # 2. One option
would be to generate “keys”, which univocally tie each acknowledge with a call.
Another simpler, but partial, solution to the problem is to translate tail-recursive
specifications to an iterative one.

Enumerates. A problem that applies to both, generalised parallel and gener-
alised choice, is that the above schema assumes the indexes of the generalised
operators are numeric. But, the usual case is to provide different enumerates for
each operator, representing names, brands, addresses and all sort of useful labels
motivated by real life applications. So, if a more flexible set of values has to be
used, the limitations imposed by Promela’s restriction to define all enumerates
by using just one mtype are obvious. Although it is possible, see [1], to overcome
the restrictions imposed in Promela to the use of enumerates that makes the
specification unnecessary complicated and inefficient.

Early Termination. The early termination operator, ® (see example 1 for an
illustration of its use), can be applied to force a process to terminate. Brackets
can be used to delimitate the scope for the operator application. For example
{P;®; Q}; R specifies that after P is executed, @ will be forced to terminate.
This will not affect R. If we apply ©® to a parallel process then all the par-
allel processes within the scope of the ® are also terminated. For example, in
{(P; ®; Q)||R}||S process R will also be terminated but S will not. We found that
the implementation of this characteristic is particularly problematic in Promela.

The closest approach to a solution was the use of the label provided available
in Promela which impose conditions to the executability of a proctype, provided
some conditions are fulfilled. Unfortunately a note in Promela user’s manual,
"provided clauses are incompatible with partial order reduction',
deters us to do so.

4 Translating StAC to SPL

STeP ([3]) is a verification system for reactive systems based in a deductive ap-
proach. STeP provides a collection of tools allowing verification by deduction,
sometimes with user interaction. Model checking is also available, and is a good
complement to the deductive system providing counter examples to false proper-
ties. A system can be input to STeP as an SPL program or as a Fair Transition
System [8].

The syntax of SPL programs follows that of traditional imperative languages
such as Pascal. In addition to the basic constructs found in these languages, SPL
supports nondeterminism by means of the selection statement ‘or’ and parallel
composition by means of the cooperation statement ||. Parallel processes can
interact through shared variables such as semaphores, as well as by synchronous
and asynchronous channels. Execution of parallel processes is assumed to pro-
ceed by interleaving. The specification language for temporal properties to be
checked is Linear-Time Temporal Logic [8]. More documentation about the sys-
tem, including tutorials, demos for specific parts of the system and case studies
can be found in the web page for STeP (http://www-step.stanford.edu/). Now
we shortly describe some of the obstacles we faced translating StAC to SPL.

Recursive Specifications Because “the parser just plugs in the bodies of
procedures when it finds a procedure call” ([9], pp. 29), general recursion cannot
be used as needed in StAC. To overcome that we have to resort to an equivalent
translation, e.g. a While-like loop like we used for our translation to Promela.
Naturally, with same limitations, i.e. it can be used just with tail-recursion cases.

Flexibility on Generalised Operators An advantage of SPL in compari-
son with Promela is that provides generalised parallel and generalised choice
sentences. The bad news being that SPL does not allow to use non-numeric
enumerate values in generalised choice and parallel. For example, we cannot use:
[or O[c:[java..xml]] ::Again we have to resort to encodings, mapping
strings into numbers and using numbers as a metaphor of the real information
with the same negative consequences of the previous step.

Early Termination SPL does not provide any constructor that can help to
implement the early termination operator. There is nothing in SPL syntax sim-
ilar to the label provided available in Promela to impose conditions on the
executability of a process.

This forced us to implement that notion by using special structures and pro-
cedures. To detect when a concurrent process has finished we use a structure
where to store inter-related processes and conditions of termination have to be
inserted inside inter-related processes to make their executions threads depen-
dent on each others computations.

Obtaining Counterexamples Interpreting a counterexample given by the
model checker is a very involved process as the steps that caused the unexpected
situation are described in terms of internal variables acting as indirect references
to the user’s structures.

There seems to be no syntax description in any of the publicly available doc-
umentation for the system. This force users to have a deep knowledge of all the
theoretical framework underlying the system in order to be able to understand
a counterexample.

5 Handling of Compensations.

A FIFO structure is used to record compensations, as a result, when the compen-
sation mechanism is applied the compensation will be executed following that
strategy. As the stack used to implement the notion of compensation is made up
of global structures, access to these structures should be coordinated amongst
the various concurrent processes.

Stored codes can be recovered later, if necessary, to know what compensations
must be applied and in which order that must be done. Each possible compen-
sation activity is identified with a code. To grant that each compensation has
a different code we need to force each generalised parallel or generalised choice
affecting a compensation pair to generate a disjoint set of codes from those used
in other compensation pairs.

Both, the complexity of the structure dictated by the kind of compensations
we need for some case studies, and the need of the generalised parallel to inspect
the structure are serious drawbacks in terms of search complexity, an important
issue for finite-state verification. Then, we found that implementing the very
basic operations related to compensation handling was also a major issue in
terms of the computational complexity required.

6 Verification

Because of all the problems mentioned before we were able to obtain fully au-
tomated verification just for a subset of StAC, e.g. excluding early termination,
general recursion, and case studies demanding sophisticated use of enumerates in
the case of the Promela specifications. The properties we verified by using SPIN
and STeP were written in PLTL [8]. Some examples of properties we can verify
by using SPIN in relation with the Fulfilment Order scenario follows. More case
studies investigated can be found in [1].

No unmotivated courier cancellations: O- (okCreditCheck A cancelCourier)
Each order will be packed: O (acceptOrder — < (packorder V- okCreditCheck))

No unwanted unpacks: O (acceptOrder — (= unpackItem W — okCreditCheck))

7 Conclusions

Business transactions can be very complex and ensuring correctness is a crit-
ical issue. We focused on the problem of providing automatic verification for
a business-related specification language, StAC. We considered using two well-
known tools in the literature of verification for hardware and software systems:
SPIN and STeP. Although the goal of achieving full automatic support for StAC-
based specifications was not completely achieved we have collected valuable ex-
perience from our research.

One of the results of our research is that we have have identified fragments
of StAC that can be translated to Promela or SPL. Another very interesting
outcome from our research was the detection of a list of features which are
common to business-related specification languages and that are problematic
to deal with, even for state of the art tools like SPIN and STeP. We provided
in section 2 two case studies that are classic business-related specifications and
cannot be satisfactorily mapped to either Promela or SPL.

Many, but not all, of the problems we faced are about mapping a high level
language as StAC to the control and data structures provided in Promela and
SPL. In some cases, the complexity of translation and space exploration of the
resulting model check process increases up to an undesirable level. We think
reporting this kind of experiences is very valuable in order to stimulate and
guide improvement of state of the art tools towards their next stage. Overcoming
this limitations should be part of the agenda to make model checking and other
verification frameworks accessible to a broader class of problems.

References

[1] J. Augusto and Michael Butler. Some Observations About Using SPIN and STeP to
Verify StAC Specifications. Technical report, DSSE-TR-2002-9, 2002. Electronics
and Computer Science Department, University of Southampton. 34 pages.

[2] J. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge University,
1996.

[3] N. Bjorner, A. Browne, M. Colon, B. Finkbeiner, Z. Manna, B. Sipma, and
T. Uribe. Verifying temporal properties of reactive systems: A step tutorial. Formal
Methods in System Design, 16:227-270, 1999.

[4] M. Butler and C. Ferreira. A process compensation language. In IFM’2000 -
Integrated Formal Methods, LNCS 1945, pp. 61-76. Springer Verlag, 2000.

[5] M. Chessell, C. Griffin, D. Vines, M. Butler, C. Ferreira, and P. Henderson. Ex-
tending the concept of transaction compensation. IBM Journal of Systems and
Development, 41(4):743-758, 2002.

[6] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[7] Gerard Holzmann. The spin model checker. IEEE Trans. on Software Engineering,
23(5):279-295, 1997.

[8] Z.Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems
(Specification). Springer Verlag, 1992.

[9] Zohar Manna and the STeP group. STeP: The Stanford Temporal Prover (Edu-
cational Release), User’s Manual. Technical report, 1995. STAN-CS-TR-95-1562,
Computer Science Department, Stanford University. 138 pages.

